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Loïc Foissy * Laboratoire de Mathématiques -FRE3111, Université de Reims Moulin de la Housse -BP 1039 -51687 REIMS Cedex 2, France ABSTRACT. We consider systems of combinatorial Dyson-Schwinger equations (briefly, SDSE) X 1 = B + 1 (F 1 (X 1 , . . . , X N )), . . ., X N = B + N (F N (X 1 , . . . , X N )) in the Connes-Kreimer Hopf algebra H I of rooted trees decorated by I = {1, . . . , N }, where B + i is the operator of grafting on a root decorated by i, and F 1 , . . . , F N are non-constant formal series. The unique solution X = (X 1 , . . . , X N ) of this equation generates a graded subalgebra H (S) of H I . We characterise here all the families of formal series (F 1 , . . . , F N ) such that H (S) is a Hopf subalgebra. More precisely, we define three operations on SDSE (change of variables, dilatation and extension) and give two families of SDSE (cyclic and fundamental systems), and prove that any SDSE (S) such that H (S) is Hopf is the concatenation of several fundamental or cyclic systems after the application of a change of variables, a dilatation and iterated extensions.

We also describe the Hopf algebra H (S) as the dual of the enveloping algebra of a Lie algebra g (S) of one of the following types:

1. g (S) is a Lie algebra of paths associated to a certain oriented graph.

Or g (S)

is an iterated extension of the Faà di Bruno Lie algebra. 

Introduction

The Connes-Kreimer Hopf algebra of rooted trees is introduced in [START_REF] Kreimer | Combinatorics of (perturbative) Quantum Field Theory[END_REF] and studied in [START_REF] Broadhurst | Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees[END_REF][START_REF] Chapoton | Algèbres pré-lie et algèbres de Hopf liées à la renormalisation[END_REF][START_REF] Chryssomalakos | Normal coordinates and primitive elements in the Hopf algebra of renormalization[END_REF][START_REF] Connes | Renormalization and Noncommutative geometry[END_REF][START_REF] Figueroa | On the antipode of Kreimer's Hopf algebra[END_REF][START_REF] Foissy | Finite-dimensional comodules over the Hopf algebra of rooted trees[END_REF][START_REF] Michael | Combinatorics of rooted trees and Hopf algebras[END_REF][START_REF] Panaite | Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees[END_REF]. This graded, commutative, non-cocommutative Hopf algebra is generated by the set of rooted trees. We shall work here with a decorated version H D of this algebra, where D is a finite, non-empty set, replacing rooted trees by rooted trees with vertices decorated by the elements of D. This algebra has a family of operators (B + d ) d∈D indexed by D, where B + d sends a forest F to the rooted tree obtained by grafting the trees of F on a common root decorated by d. These operators satisfy the following equation: for all x ∈ H D ,

∆ • B + d (x) = B + d (x) ⊗ 1 + (Id ⊗ B + d ) • ∆(x).
As explained in [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF], this means that B + d is a 1-cocycle for a certain cohomology of coalgebras, dual to the Hochschild cohomology.

We are interested here in systems of combinatorial Dyson-Schwinger equations (briefly, SDSE), that is to say, if the set of decorations is {1, . . . , N }, a system (S) of the form:      X 1 = B + 1 (F 1 (X 1 , . . . , X N )), . . .

X N = B + N (F N (X 1 , . . . , X N ))
, where F 1 , . . . , F N ∈ K[[h 1 , . . . , h N ]] are formal series in N indeterminates. These systems (in a Feynman graph version) are used in Quantum Field Theory, as it is explained in [START_REF] Bergbauer | Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology[END_REF][START_REF]Dyson-Schwinger equations: from Hopf algebras to number theory[END_REF][START_REF] Kreimer | An étude in non-linear Dyson-Schwinger equations[END_REF]. They possess a unique solution, which is a family of N formal series in rooted trees, or equivalently elements of a completion of H D . The homogeneous components of these elements generate a subalgebra H (S) of H D . Our problem here is to determine Hopf SDSE, that is to say SDSE (S) such that H (S) is a Hopf subalgebra of H D . In the case of a single combinatorial Dyson-Schwinger equation, this question has been answered in [START_REF]Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations[END_REF].

In order to answer this, we first associate an oriented graph to any SDSE, reflecting the dependence of the different X i 's; more precisely, the vertices of G (S) are the elements of I, and there is an edge from i to j if F i depends on h j . We shall say that (S) is connected if G (S) is connected. Noting that any SDSE is the disjoint union of several connected SDSE, we can restrict our study to connected SDSE. We introduce three operations on Hopf SDSE:

• Change of variables, which replaces h i by λ i h i for all i ∈ I, where λ i = 0 for all i. This operation replaces H (S) by an isomorphic Hopf algebra and does not change G (S) .

• Dilatation, which replaces each vertex of G (S) by several vertices. This operation increases the number of vertices. For example, consider:

(S) :

X 1 = B + 1 (f (X 1 , X 2 )), X 2 = B + 2 (g(X 1 , X 2 
)), where f, g ∈ K[[h 1 , h 2 ]]; then the following SDSE is a dilatation of (S):

(S ′ ) :

           X 1 = B + 1 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 2 = B + 2 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 3 = B + 3 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 4 = B + 4 (g(X 1 + X 2 + X 3 , X 4 + X 5 )), X 5 = B + 5 (g(X 1 + X 2 + X 3 , X 4 + X 5 )),
• Extension, which adds a vertex 0 to G (S) with an affine formal series. This operation increases the number of vertices by 1. For example, consider:

(S) :

X 1 = B + 1 (f (X 1 , X 2 )), X 2 = B + 2 (f (X 1 , X 2 )), where f ∈ K[[h 1 , h 2 ]
] and a, b ∈ K; then the following SDSE is an extension of (S):

(S ′ ) :    X 0 = B + 0 (1 + aX 1 + bX 2 ), X 1 = B + 1 (f (X 1 , X 2 )), X 2 = B + 2 (f (X 1 , X 2 )),
We then introduce two families of Hopf SDSE:

• Cycles, which are SDSE such that the associated graph is an oriented graph and all the formal series of the system are affine; see theorem 30. For example, the following system is a 4-cycle:

       X 1 = B + 1 (1 + X 2 ), X 2 = B + 2 (1 + X 3 ), X 3 = B + 3 (1 + X 4 ), X 4 = B + 4 (1 + X 1
). The associated oriented graph is:

1 G G 2 4 y y 3 o o
• Fundamental SDSE, described in theorem 32. Here is an example of a fundamental SDSE:

                                     X 1 = B + 1 f β 1 (X 1 )f β 2 1+β 2 ((1 + β 2 )h 2 )(1 -h 3 ) -1 (1 -h 4 ) -1 , X 2 = B + 2 f β 1 1+β 1 (X 1 )f β 2 (h 2 )(1 -h 3 ) -1 (1 -h 4 ) -1 , X 3 = B + 3 f β 1 1+β 1 ((1 + β 1 )X 1 )f β 2 1+β 2 ((1 + β 2 )h 2 )(1 -h 4 ) -1 , X 4 = B + 4 f β 1 1+β 1 ((1 + β 1 )X 1 )f β 2 1+β 2 ((1 + β 2 )h 2 )(1 -h 3 ) -1 , X 5 = B + 5 f β 1 1+β 1 ((1 + β 1 )X 1 )f β 2 1+β 2 ((1 + β 2 )h 2 )(1 -h 3 ) -1 (1 -h 4 ) -1 ,
where β 1 , β 2 ∈ K -{-1} and, for all β ∈ K, f β is the following formal series:

f β (h) = ∞ k=0 (1 + β) • • • (1 + (k -1)β) k! h k .
The associated oriented graph is: 

1 Õ Õ o o G G y y g g 9 9 x x x x x x x x x x x x x x
d d Ð Ð Ð Ð Ð Ð Ð
The main result of this paper is theorem 14, which says that any connected Hopf SDSE is obtained by a dilatation and a finite number of iterated extensions of a cycle or a fundamental SDSE.

Let us now give a few explanations on the way this result is obtained. An important tool is given by a family indexed by I 2 of scalar sequences λ (i,j) n n≥1 associated to any Hopf SDSE.

They allow to reconstruct the coefficients of the formal series of (S), as explained in proposition 19. Particular cases of possible sequence λ (i,j) n n≥1

are affine sequences, up to a finite number of terms: this leads to the notion of level of a vertex. It is shown that level decreases along the oriented paths of G (S) (proposition 23), and this implies the following alternative if (S) is connected: any vertex is of finite level or no vertex is of finite level. In particular, any vertex of a fundamental SDSE is of finite level, whereas no vertex of a cycle is of finite level.

We then consider two special families of SDSE:

• We first assume that the graph associated to (S) does not contain any vertex related to itself. This case includes cycles and their dilatations (called multicycles), and a special case of fundamental SDSE called quasi-complete SDSE. We show, using graph-theoretical considerations and the coefficients λ

(i,j)
n , that under an hypothesis of symmetry, they are the only possibilities.

• We then assume that any vertex of (S) has an ascendant related to itself. We then prove that (S) is fundamental.

This results are then unified in corollary 50. It says that any Hopf SDSE with a connected graph contains a multicycle or a a fundamental SDSE (S 0 ) and is obtained from (S 0 ) by adding repeatedly a finite number of vertices. This result is precised for the multicycle case in theorem 51 and for the fundamental case in theorem 52. The compilation of these results then proves theorem 14.

The end of the paper is devoted to the description of the Hopf algebras H (S) . By the Cartier-Quillen-Milnor-Moore theorem, they are dual of enveloping algebra U (g (S) ), and it turns out that g (S) is a pre-Lie algebra [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad, Internat[END_REF], that is to say it has a bilinear product ⋆ such that for all f, g, h ∈ g (S) :

(f ⋆ g) ⋆ h -f ⋆ (g ⋆ h) = (g ⋆ f ) ⋆ h -g ⋆ (f ⋆ h).
This relation implies that the antisymmetrisation of ⋆ is a Lie bracket. In our case, g (S) has a basis (f i (k)) i∈I,k≥1 and by proposition 21 its pre-Lie product is given by:

f j (l) ⋆ f i (k) = λ (i,j) k f i (k + l).
The product ⋆ can be associative, for example in the multicyclic case. Then, up to a change of variables, f j (l) ⋆ f i (k) = f i (k + l) if there is an oriented path of length k from i to j in the oriented graph associated to (S), or 0 otherwise; see proposition 57.

The fundamental case is separated into two subcases. In the non-abelian case, the Lie algebra g (S) is described as an iterated semi-direct product of the Faà di Bruno Lie algebra by infinite dimensional modules. Similarly, the character group of H (S) is an iterated semi-direct product of the Faà di Bruno group of formal diffeomorphisms by modules of formal series:

Ch(H (S) ) = G m ⋊ (G m-1 ⋊ (• • • G 2 ⋊ (G 1 ⋊ G 0 ) • • • ),
where G 0 is the Faà di Bruno group and G 1 , . . . , G m-1 are isomorphic to direct sums of (tK[[t]], +) as groups; see theorem 65. The second subcase is similar, replacing the Faà di Bruno Lie algebra by an abelian Lie algebra; see theorem 72. This text is organised as follows: the first section gives some recalls on the structure of Hopf algebra of H D and on the pre-Lie product on g (S) = P rim H * (S) . In the second section are given the definitions of SDSE and their different operations: change of variables, dilatation and extension. The main theorem of the text is also stated in this section. The following section introduces the coefficients λ (i,j) n and their properties, especially their link with the pre-Lie product of g (S) . The level of a vertex is defined in the fourth section, which also contains lemmas on vertices of level 0, 1 or ≥ 2, before that fundamental and multicyclic SDSE are introduced in the fifth section. The next section contains preliminary results about graphs with no selfdependent vertices or such that any vertex is the descendant of a self-dependent vertex, and the main theorem is finally proved in the seventh section. The next three sections deals with the description of the Lie algebra g (S) and the group Ch H (S) when g (S) is associative, in the non-abelian, fundamental case and finally in the abelian, fundamental case. The last section gives a functorial way to characterise pre-Lie algebra from the operation of dilatations of Hopf SDSE.

Notations. We denote by K a commutative field of characteristic zero. All vector spaces, algebras, coalgebras, Hopf algebras, etc. will be taken over K.

Preliminaries

Decorated rooted trees

Definition 1 [START_REF] Stanley | Enumerative combinatorics[END_REF][START_REF]Enumerative combinatorics[END_REF] 1. A rooted tree t is a finite graph, without loops, with a special vertex called the root of t.

The weight of t is the number of its vertices. The set of rooted trees will be denoted by T .

2. Let D be a non-empty set. A rooted tree decorated by D is a rooted tree with an application from the set of its vertices into D. The set of rooted trees decorated by D will be denoted by T D .

3. Let i ∈ D. The set of rooted trees decorated by D with root decorated by i will be denoted by

T (i) D .
Examples.

1. Rooted trees with weight smaller than 5:

q ; q q ; q ∨ q q , q q q ; q ∨ q q q , q ∨ q q q , q ∨ q q q , q q q q ; q ∨ q q r q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q∨ q q , q ∨ q q q q , q ∨ q q q q , q ∨ q q q q , q q q ∨ q q , q q q q q .

2. Rooted trees decorated by D with weight smaller than 4:

q a ; a ∈ D, q q a b (a, b) ∈ D 2 ; q ∨ q q a c b = q ∨ q q a b c , q q q a b c , (a, b, c) ∈ D 3 ; q ∨ q q q a d c b = q ∨ q q q a c d b = q ∨ q q q a d b c = q ∨ q q q a b d c = q ∨ q q q a c b d = q ∨ q q q a b c d , q ∨ q q q a d b c = q ∨ q q q a b d c , q ∨ q q q a b d c = q ∨ q q q a b c d , q q q q a b c d , (a, b, c, d) ∈ D 4 .

Definition 2

1. We denote by H D the polynomial algebra generated by T D .

2. Let t 1 , . . . , t n be elements of T D and let d ∈ D. We denote by B + d (t 1 . . . t n ) the rooted tree obtained by grafting t 1 , . . . , t n on a common root decorated by d. This map

B + d is extended in an operator from H D to H D . For example, B + d ( q q a b q c ) = q ∨ q q q d c a b .

Hopf algebras of decorated rooted trees

In order to make H D a bialgebra, we now introduce the notion of cut of a tree t ∈ T D . A non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes t into a forest denoted by W c (t). The cut c is admissible if any oriented path in the tree meets at most one cut edge. For such a cut, the tree of W c (t) which contains the root of t is denoted by R c (t) and the product of the other trees of W c (t) is denoted by P c (t). We also add the total cut, which is by convention an admissible cut such that R c (t) = 1 and P c (t) = W c (t) = t. The set of admissible cuts of t is denoted by Adm * (t). Note that the empty cut of t is admissible; we put Adm(t) = Adm * (t) -{empty cut, total cut}. example. Let a, b, c, d ∈ D and let us consider the rooted tree t = q ∨ q q q d c b a . As it as 3 edges, it has 2 3 non-total cuts. cut c 

q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c b a q ∨ q q q d c
W c (t) q ∨ q q q d c b a q q b a q q d c q a q ∨ q q d c b q q q d b a q c q a q b q q d c q q b a q c q d q a q q d b q c q a q b q c q d q ∨ q q q d c b a R c (t) q ∨ q q q d c b a q q d c q ∨ q q d c b q q q d b a × q d q q d b × 1 P c (t) 1 q q b a q a q c × q q b a q c q a q c × q ∨ q q q d c b a
The coproduct of H D is defined as the unique algebra morphism from H D to H D ⊗ H D such that for all rooted tree t ∈ T D :

∆(t) = c∈Adm * (t) P c (t) ⊗ R c (t) = t ⊗ 1 + 1 ⊗ t + c∈Adm(t) P c (t) ⊗ R c (t).
As H D is the free associative commutative unitary algebra generated by T D , this makes sense. This coproduct makes H D a Hopf algebra. Although it won't play any role in this text, we recall that the antipode S is the unique algebra automorphism of H D such that for all t ∈ T D :

S(t) = - c cut of t (-1) nc W c (t),
where n c is the number of cut edges of c.

Example.

∆(

q ∨ q q q d c b a ) = q ∨ q q q d c b a ⊗ 1 + 1 ⊗ q ∨ q q q d c b a + q q b a ⊗ q q d c + q a ⊗ q ∨ q q d c b + q c ⊗ q q q d b a + q q b a q c ⊗ q d + q a q c ⊗ q q d b .
A study of admissible cuts shows the following result:

Proposition 3 For all d ∈ D, for all x ∈ H D : ∆ • B + d (x) = B + d (x) ⊗ 1 + (Id ⊗ B + d ) • ∆(x).
Remarks.

1. In other words, B + d is a 1-cocycle for a certain cohomology of coalgebras, see [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF].

2. If t ∈ T (i) D , then ∆(t) -t ⊗ 1 ∈ H D ⊗ T (i) D .

Gradation of H D and completion

We grade H D by declaring the forests with n vertices homogeneous of degree n. We denote by H D (n) the homogeneous component of H D of degree n. Then H D is a graded bialgebra, that is to say:

• For all i, j ∈ N, H D (i)H(j) ⊆ H D (i + j). • For all k ∈ N, ∆(H D (k)) ⊆ i+j=k H D (i) ⊗ H D (j).
We define, for all x ∈ H D :

val(x) = max    n ∈ N | x ∈ k≥n H D (k)    .
We then put, for all x, y ∈ H D , d(x, y) = 2 -val(x-y) , with the convention 2 -∞ = 0. Then d is a distance on H D . The metric space (H D , d) is not complete; its completion will be denoted by H D . As a vector space:

H D = n∈N H D (n).
The elements of H D will be denoted by x n , where x n ∈ H D (n) for all n ∈ N. The product m : H D ⊗ H D -→ H D is homogeneous of degree 0, so is continuous: it can be extended from H D ⊗ H D to H D , which is then an associative, commutative algebra. Similarly, the coproduct of H D can be extended as a map:

∆ : H D -→ H D ⊗H D = i,j∈N H D (i) ⊗ H D (j). Let f (h) = p n h n ∈ K[[h]
] be any formal series, and let X = x n ∈ H D , such that x 0 = 0. The series of H D of terms p n X n is Cauchy, so converges. Its limit will be denoted by f (X). In other words, f (X) = y n , with:

     y 0 = p 0 , y n = n k=1 a 1 +•••+a k =n p k x a 1 • • • x a k if n ≥ 1.
1.4 Pre-Lie structure on the dual of H D By the Cartier-Quillen-Milnor-Moore theorem [START_REF] Milnor | On the structure of Hopf algebras[END_REF], the graded dual H * D of H D is an enveloping algebra. Its Lie algebra P rim(H * D ) has a basis (f t ) t∈T D indexed by T D :

f t :    H D -→ K t 1 . . . t n -→ 0 if n = 1, δ t,t 1 if n = 1.
Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra) is a couple (A, ⋆), where ⋆ is a bilinear product on A such that for all x, y, z ∈ A:

(x ⋆ y) ⋆ z -x ⋆ (y ⋆ z) = (y ⋆ x) ⋆ z -y ⋆ (x ⋆ z).
Pre-Lie algebras are Lie algebras, with bracket given by [x, y] = x ⋆ yy ⋆ x.

The Lie bracket of P rim(H * D ) is induced by a pre-Lie product ⋆ given in the following way:

if f, g ∈ P rim(H * D ), f ⋆ g is the unique element of P rim(H * D ) such that for all t ∈ T D , (f ⋆ g)(t) = (f ⊗ g) • (π ⊗ π) • ∆(t),
where π is the projection on V ect(T D ) which vanishes on the forests which are not trees. In other words, if t, t ′ ∈ T D :

f t ⋆ f t ′ = t ′′ ∈T D n(t, t ′ ; t ′′ )f t ′′ ,
where n(t, t ′ ; t ′ ) is the number of admissible cuts c of t ′′ such that P c (t ′′ ) = t and R c (t ′′ ) = t ′ . It is proved that (prim(H * D ), ⋆) is the free pre-Lie algebra generated by the q d 's, d ∈ D: see [START_REF] Chapoton | Algèbres pré-lie et algèbres de Hopf liées à la renormalisation[END_REF][START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad, Internat[END_REF]. Note that H * D is isomorphic to the Grossman-Larson Hopf algebra of rooted trees [START_REF] Grossman | Hopf-algebraic structure of families of trees[END_REF][START_REF]Hopf-algebraic structure of combinatorial objects and differential operators[END_REF][START_REF]Differential algebra structures on families of trees[END_REF].

2 Definitions and properties of SDSE 

F i ∈ K[[h j , j ∈ I]
] be a non-constant formal series for all i ∈ I. The system of Dyson-Schwinger combinatorial equations (briefly, the SDSE) associated to (F i ) i∈I is:

∀i ∈ I, X i = B + i (f i (X j , j ∈ I)),
where X i ∈ H I for all i ∈ I.

In order to ease the notation, we shall often assume that I = {1, . . . , N } in the proofs, without loss of generality.

Notations. We assume here that I = {1, . . . , N }.

1. Let (S) be an SDSE. We shall denote, for all i ∈ I:

F i = p 1 ,••• ,p N a (i) (p 1 ,••• ,p N ) h p 1 1 • • • h p N N . 2. Let 1 ≤ j ≤ N . We put ε j = (0, • • • , 0, 1, 0, • • • , 0)
where the 1 is in position j. We shall denote, for all i ∈ I, a

(i) j = a (i) ε j ; for all j, k ∈ I, a (i) j,k = a (i)
ε j +ε k , and so on.

Remark. We assume that there is no constant F i . Indeed, if F i ∈ K, then X i is a multiple of q i . We shall always avoid this degenerated case in all this text. Proposition 5 Let (S) be an SDSE. Then it admits a unique solution (X i ) i∈I ∈ H I I .

Proof. We assume here that I = {1, . . . , N }. If (X 1 , • • • , X N ) is a solution of S, then X i is a linear (infinite) span of rooted trees with a root decorated by i. We denote:

X i = t∈T (i) I a t t.
These coefficients are uniquely determined by the following formulas: if

t = B + i t p 1,1 1,1 • • • t p 1,q 1 1,q 1 • • • t p N,1 N,1 • • • t p N,q N N,q N
, where the t i,j 's are different trees, such that the root of t i,j is decorated by i for all i ∈ I, 1 ≤ j ≤ q i , then:

a t = N i=1 (p i,1 + • • • + p i,q i )! p i,1 ! • • • p i,q i ! a (i) (p 1,1 +•••+p 1,q 1 ,••• ,p N,1 +•••+p N,q N ) a p 1,1 t 1,1 • • • a p N,q N t N,q N . (1) 
So (S) has a unique solution. 2

Definition 6 Let (S) be an SDSE and let X = (X i ) i∈I be its unique solution. The subalgebra of H I generated by the homogeneous components X i (k)'s of the X i 's will be denoted by H (S) . If H (S) is Hopf, the system (S) will be said to be Hopf.

Graph associated to an SDSE

We associate a oriented graph to each SDSE in the following way: Definition 7 Let (S) be an SDSE.

1. We construct an oriented graph G (S) associated to (S) in the following way:

• The vertices of G (S) are the elements of I.

• There is an edge from i to j if, and only if, ∂F i ∂h j = 0.

If

∂F i ∂h i = 0, the vertex i will be said to be self-dependent. In other words, if i is selfdependent, there is a loop from i to itself in G (S) .

3. If G (S) is connected, we shall say that (S) is connected.

Remark. If (S) is not connected, then (S) is the union of SDSE (S 1 ), • • • , (S k ) with disjoint sets of indeterminates , so

H (S) ≈ H (S 1 ) ⊗ • • • ⊗ H (S k
) . As a corollary, (S) is Hopf if, and only if, for all j, (S j ) is Hopf.

Let (S) be an SDSE and let G (S) be the associated graph. Let i and j be two vertices of G (S) . We shall say that j is a direct descendant of i (or i is a direct ascendant of j) if there is an oriented edge from i to j; we shall say that j is a descendant of i (or i is an ascendant of j) if there is an oriented path from i to j. We shall write "i -→ j" for "j is a direct descendant of i".

Operations on Hopf SDSE

Proposition 8 (change of variables) Let (S) be the SDSE associated to (F i (h j , j ∈ I)) i∈I . Let λ i and µ i be non-zero scalars for all i ∈ I. The system (S) is Hopf if, and only if, the SDSE system (S ′ ) associated to (µ i F i (λ j h j , j ∈ J)) i∈I is Hopf.

Proof. We assume that I = {1, . . . , N }. We consider the following morphism:

φ : H I -→ H I F ∈ F -→ (µ 1 λ 1 ) n 1 (F ) • • • (µ N λ N ) n N (F ) F,
where n i (F ) is the number of vertices of F decorated by i. Then φ is a Hopf algebra automorphism and for all i, φ 

• B + i = µ i λ i B + i • φ. Moreover, if we put Y i = 1 λ i φ(X i ) for all i: Y i = 1 λ i φ • B + i (F i (X 1 , • • • , X N )) = 1 λ i µ i λ i B + i (F i (φ(X 1 ), • • • , φ(X N ))) = µ i B + i (F i (λ 1 Y 1 , • • • , λ N Y N )). So (Y 1 , • • • , Y N )
Remark. A change of variables does not change the graph associated to (S).

Proposition 9 (restriction) Let (S) be the SDSE associated to (F i (h j , j ∈ I)) i∈I and let I ′ ⊆ I, non-empty. Let (S ′ ) be the SDSE associated to F i (h j , j ∈ I)

|h j =0, ∀j / ∈I ′ i∈I ′ . If (S) is Hopf, then (S ′ ) also is.
Proof. We consider the epimorphism φ of Hopf algebras from H I to H I ′ , obtained by sending the forests with at least a vertex decorated by an element which is not in I ′ to zero. Then φ sends H (S) to H (S ′ ) . As φ is a morphism of Hopf algebras, if H (S) is a Hopf subalgebra of H I , H (S ′ ) is a Hopf subalgebra of H I ′ . 2

Remark. The restriction to a subset of vertices I ′ changes G (S) into the graph obtained by deleting all the vertices j / ∈ I ′ and all the edges related to these vertices.

Proposition 10 (dilatation) Let (S) be the system associated to (F i ) i∈I and (S ′ ) be a system associated to a family (F ′ j ) j∈J , such that there exists a partition J = i∈I J i , with the following property: for all i ∈ I, for all x ∈ I i ,

F ′ x = F i   y∈I j h y , j ∈ I   .
Then (S) is Hopf, if, and only if, (S ′ ) is Hopf. We shall say that (S ′ ) is a dilatation of (S).

Proof. We assume here that I = {1, . . . , N }. =⇒. Let us assume that (S) is Hopf. For all i ∈ I, we can then write:

∆(X i ) = n≥0 P (i) n (X 1 , • • • , X N ) ⊗ X i (n),
with the convention X i (0) = 1. Let φ : H I -→ H I ′ be the morphism of Hopf algebras such that, for all 1 ≤ i ≤ N :

φ • B + i = j∈I i B + j • φ.
Then, immediately, for all 1 ≤ i ≤ N :

φ(X i ) = j∈I i X ′ j .
As a consequence:

j∈I i ∆(X ′ j ) = j∈I i n≥0 P (i) n   k∈I 1 X ′ k , • • • , k∈I N X ′ k   ⊗ X ′ j (n).
Conserving the terms of the form F ⊗ t, where t is a tree with root decorated by j, for all j ∈ I i :

∆(X ′ j ) = n≥0 P (i) n   k∈I 1 X ′ k , • • • , k∈I N X ′ k   ⊗ X ′ j (n).
So (S ′ ) is Hopf.

⇐=. By restriction, choosing an element in each I i , if (S ′ ) is Hopf, then (S) is Hopf. 2

Remark. If (S ′ ) is a dilatation of (S), then the set of vertices J of the graph G (S ′ ) associated to (S ′ ) admits a partition indexed by the vertices of G (S) , and there is an edge from x ∈ J i to y ∈ J j in G (S ′ ) if, and only if, there is an edge from i to j in G (S) .

Example. Let f, g ∈ K[[h 1 , h 2 ]
]. Let us consider the following SDSE: (S) :

X 1 = B + 1 (f (X 1 , X 2 )), X 2 = B + 2 (g(X 1 , X 2 )), (S ′ ) :            X 1 = B + 1 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 2 = B + 2 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 3 = B + 3 (f (X 1 + X 2 + X 3 , X 4 + X 5 )), X 4 = B + 4 (g(X 1 + X 2 + X 3 , X 4 + X 5 )), X 5 = B + 5 (g(X 1 + X 2 + X 3 , X 4 + X 5 )).
Then (S ′ ) is a dilatation of (S).

Proposition 11 (extension) Let (S) be the SDSE associated to (F i ) i∈I . Let 0 / ∈ I and let (S ′ ) be associated to (F i ) i∈I∪{0} , with:

F 0 = 1 + i∈I a (0) i h i .
Then (S ′ ) is Hopf if, and only if, the two following conditions hold:

1. (S) is Hopf. 2. For all i, j ∈ I (0) = j ∈ I / a (0) j = 0 , F i = F j .
If these two conditions hold, we shall say that (S ′ ) is an extension of (S).

Proof. We assume here that I = {1, . . . , N }. =⇒. Let us assume that (S ′ ) is Hopf. By restriction, (S) is Hopf. Moreover:

X 0 = B + 0 1 + N i=1 a (0) i X i = q 0 + N i=1 a (0) i B + 0 • B + i (f i (X 1 , • • • , X N )).
As H (S ′ ) is a graded Hopf subalgebra, the projection on

H {0,••• ,N } ⊗ H {0,••• ,N } (2) gives: N i=1 a (0) i F i (X 1 , • • • , X N ) ⊗ q q 0 i ∈ H (S ′ ) ⊗H (S ′ ) .
So this is of the form:

P ⊗ X 0 (2) = P ⊗ N i=1 a (0) i q q 0 i
, for a certain P ∈ H (S ′ ) . As the q q 0 i 's, i ∈ I, are linearly independent, we obtain that for all i, j, a

i F i (X 1 , • • • , X N ) = a (0) 
i P for all i, and this implies the second item.

⇐=. As (S) is Hopf, we can put for all 1 ≤ i ≤ N :

∆(X i ) = X i ⊗ 1 + +∞ k=1 P (i) k ⊗ X i (k),
where

P (i)
n is an element of the completion of H (S) . By the second hypothesis, if i, j ∈ I, as

F i = F j , P (i) n = P (j)
n . We then denote by P n the common value of P (i) n for all i ∈ I. So:

∆(X 0 ) = q 0 ⊗ 1 + 1 ⊗ q 0 + N i=1 a (0) i ∆ • B + 0 (X i ) = X 0 ⊗ 1 + 1 ⊗ X 0 + N i=1 a (0) i (1 + X i ) ⊗ q 0 + N i=1 ∞ j=1 a (0) i P (i) j ⊗ B + 0 (X i (j)) = X 0 ⊗ 1 + 1 ⊗ X 0 + N i=1 a (0) i (1 + X i ) ⊗ q 0 + N i=1 ∞ j=1 a (0) i P j ⊗ B + 0 (X i (j)) = X 0 ⊗ 1 + 1 ⊗ X 0 + N i=1 a (0) i (1 + X i ) ⊗ q 0 + N i=1 P j ⊗ B + 0   ∞ j=1 a (0) i X i (j)   = X 0 ⊗ 1 + 1 ⊗ X 0 + N i=1 a (0) i (1 + X i ) ⊗ q 0 + N i=1 P j ⊗ X 0 (j + 1).
This belongs to the completion of H (S ′ ) ⊗ H (S ′ ) , so (S ′ ) is Hopf. 2

Remarks.

1. If (S) is an extension of (S ′ ), then G (S) is obtained from G (S ′ ) by adding a non-selfdependent vertex with no ascendant.

2. If I (0) is reduced to a single element, then condition 2 is empty.

Definition 12 Let (S) a Hopf SDSE and let i ∈ I. We shall say that i is an extension vertex if, denoting by J the set of descendants of i, the restriction of (S) to J ∪ {i} is an extension of the restriction of (S) to J.

Constant terms of the formal series

Lemma 13 Let (S) be an Hopf SDSE. If F i (0, • • • , 0) = 0, then X i = 0.

Proof. If F i (0, • • • , 0) = 0, then the homogeneous component of degree 1 of X i is zero, so

q i / ∈ H (S)
. Considering the terms of the form F ⊗ q i in ∆(X i ), we obtain:

F i (X j , j ∈ I) ⊗ q i ∈ H (S) ⊗ H (S) .
As

q i / ∈ H (S) , necessarily F i (X j , j ∈ I) = 0, so X i = 0. 2 As a consequence, if F i (0, • • • , 0) = 0, then H (S) = H (S ′ )
, where (S ′ ) is the restriction of (S) to I -{i}. Using a change of variables, we shall always suppose in the sequel that for all i,

F i (0, • • • , 0) = 1.

Main theorem

Notations. For all β ∈ K, we put:

f β (h) = +∞ k=0 (1 + β) • • • (1 + β(k -1)) k! h k = (1 -βh) -1 β if β = 0, e h if β = 0.
The main aim of this text is to prove the following result: Theorem 14 Let (S) be a connected SDSE. It is Hopf if and only if one of the following assertion holds:

(Extended multicyclic SDSE). The set I admits a partition

I = I 1 ∪ • • • ∪ I N indexed by
the elements of Z/N Z, N ≥ 2, with the following conditions:

• For all i ∈ I k :

F i = 1 + j∈I k+1 a (i) j h j .
• If i and i ′ have a common direct ascendant in G (S) , then F i = F i ′ (so i and i ′ have the same direct descendants).

(Extended fundamental SDSE

). There exists a partition:

I =   i∈I 0 J i   ∪   i∈J 0 J i   ∪ K 0 ∪ I 1 ∪ J 1 ∪ I 2 ,
with the following conditions:

• K 0 , I 1 , J 1 , I 2 can be empty.

• The set of indices I 0 ∪ J 0 is not empty.

• For all i ∈ I 0 ∪ J 0 , J i is not empty.

Up to a change of variables:

(a) For all i ∈ I 0 , there exists β i ∈ K, such that for all x ∈ J i :

F x = f β i   y∈J i h y   j∈I 0 -{i} f β j 1+β j   (1 + β j ) y∈J j h y   j∈J 0 f 1   y∈J j h y   .
(b) For all i ∈ J 0 , for all x ∈ J i :

F x = j∈I 0 f β j 1+β j   (1 + β j ) y∈J j h y   j∈J 0 -{i} f 1   y∈J j h y   .
(c) For all i ∈ K 0 :

F i = j∈I 0 f β j 1+β j   (1 + β j ) y∈J j h y   j∈J 0 f 1   y∈J j h y   .
(d) For all i ∈ I 1 , there exist ν i ∈ K and a family of scalars a (i) j j∈I 0 ∪J 0 ∪K 0 , with

(ν i = 1) or (∃j ∈ I 0 , a (i) 
j = 1 + β j ) or (∃j ∈ J 0 , a (i) j = 1) or (∃j ∈ K 0 , a (i) j = 0). Then, if ν i = 0: F i = 1 ν i j∈I 0 f β j ν i a (i) j   ν i a (i) j y∈J j h y   j∈J 0 f 1 ν i a (i) j   ν i a (i) j y∈J j h y   j∈K 0 f 0 ν i a (i) j h j +1- 1 ν i .
If ν i = 0:

F i = - j∈I 0 a (i) j β j ln   1 - y∈J j h y   - j∈J 0 a (i) j ln   1 - y∈J j h y   + j∈K 0 a (i) j h j + 1.
(e) For all i ∈ J 1 , there exists ν i ∈ K -{0} and a family of scalars a

(i) j j∈I 0 ∪J 0 ∪K 0 ∪I 1 ,
with the three following conditions:

• I (i) 1 = {j ∈ I 1 / a (i) j = 0} is not empty. • For all j ∈ I (i) 1 , ν j = 1. • For all j, k ∈ I (i) 1 , F j = F k . In particular, we put b (i) t = a (j) t for any j ∈ I (i) 1 , for all t ∈ I 0 ∪ J 0 ∪ K 0 .
Then:

F i = 1 ν i j∈I 0 f β j b (i) j -1-β j   b (i) j -1 -β j y∈J j h y   j∈J 0 f β j b (i) j -1   b (i) j -1 y∈J j h y   j∈K 0 f 0 b (i) j h j + j∈I (i) 1 a (i) j h 1 + 1 - 1 ν i .
(f ) I 2 = {x 1 , . . . , x m } and for all 1 ≤ k ≤ m, there exist a set:

I (x k ) ⊆   i∈I 0 J i   ∪   i∈J 0 J i   ∪ K 0 ∪ I 1 ∪ J 1 ∪ {x 1 , . . . , x k-1 }
and a family of non-zero scalars a

(x k ) j j∈I (x k ) such that for all i, j ∈ I (x k ) , F i = F j . Then: F x k = 1 + j∈I (x k ) a (x k ) j h j .
Here is the graph of a system of an extended multicyclic SDSE, with N = 5. The different subset of the partition are indicated by the different colours. the multicycle corresponds to the five boxes. An arrow between two boxes means that all vertices of the boxes are related by an arrow.

Here is the graph of an extended fundamental SDSE. The vertices in J i , with i ∈ I 0 , are green. There are two elements in I 0 , one with β i = -1 (light green vertices) and one with β i = -1 (dark green vertex). There are two elements in J 0 , corresponding to light blue and dark blue vertices. The unique element of K 0 is red; the unique element of I 1 is yellow; the unique element of J 1 is orange; the dark vertices are the elements of I 2 . An arrow between two boxes means that all vertices of the boxes are related by an arrow.

For example, the SDSE associated to the following formal series has such a graph:

F 1 = f β (h 1 )f 1 (h 4 + h 5 )f 1 (h 6 + h 7 + h 8 ) F 2 = F 3 = (1 + h 2 + h 3 )f β 1+β ((1 + β)h 1 )f 1 (h 4 + h 5 )f 1 (h 6 + h 7 + h 8 ) F 4 = F 5 = f β 1+β ((1 + β)h 1 )f 1 (h 6 + h 7 + h 8 ) F 6 = F 7 = F 8 = f β 1+β ((1 + β)h 1 )f 1 (h 4 + h 5 ) F 9 = f β 1+β ((1 + β)h 1 )f 1 (h 4 + h 5 )f 1 (h 6 + h 7 + h 8 ) F 10 = 1 ν f β νa (10) 1 νa (10) 1 h 1 f -1 νa (10) 2 νa (10) 2 (h 2 + h 3 ) f 1 νa (10) 4 νa (10) 4 (h 4 + h 5 ) f 1 νa (10) 6 νa (10) 6 (h 6 + h 7 + h 8 ) f 0 νa (10) 9 h 9 + 1 - 1 ν , F 11 = 1 ν ′ f β a (10) 1 -1-β a (10) 1 -1 -β h 1 f -1 a (10) 2 a (10) 2 (h 2 + h 3 ) f 1 a (10) 4 -1 a (10) 4 -1 (h 4 + h 5 ) f 1 a (10) 6 -1 a (10) 6 -1 (h 6 + h 7 + h 8 ) f 0 a (10) 9 h 9 + a (11) 10 h 10 + 1 - 1 ν ′ , F 12 = F 13 = 1 + a (12) 10 h 10 , F 14 = 1 + a (14) 13 h 13 , F 15 = 1 + a (15) 12 h 12 + a (15) 13 h 13 , F 16 = 1 + a (16) 15 h 15 , F 17 = 1 + a (17) 2 h 2 , F 18 = 1 + a (18) 17 h 17 , F 19 = 1 + a (19) 17 h 17 ,
where β = -1, ν, ν ′ = 0, and the coefficients a Lemma 15 Let V be a subspace of V ect(T D ) and let us consider the subalgebra A of H D generated by V . Recall that for all d ∈ D, f q d is the following linear map:

f q d : H D -→ K t 1 • • • t n -→ δ t 1 •••tn, q d .
Then A is a Hopf subalgebra if, and only if, the two following assertions are both satisfied:

1. For all d ∈ D, (f q d ⊗ Id) • ∆(V ) ⊆ V + K. 2. For all d ∈ D, (Id ⊗ f q d ) • ∆(V ) ⊆ A. Proof. =⇒. If A is Hopf, then ∆(V ) ⊆ A ⊗ A. As V ⊆ V ect(T D ), ∆(V ) ⊆ H ⊗ (V ect(T D ) + K). So: ∆(V ) ⊆ (A ⊗ A) ∩ (H ⊗ (V ect(T D ) + K)) = A ⊗ (V ⊕ K).
This implies both assertions.

⇐=. We use here Sweedler's notations:

∆(a) = a ′ ⊗ a ′′ and (∆ ⊗ Id) • ∆(a) = a ′ ⊗ a ′′ ⊗ a ′′′ for all a ∈ A.
First step. Let us consider the following subspace of P rim(H * D ):

B = {f ∈ P rim(H * D ) / (f ⊗ Id) • ∆(V ) ⊆ V + K}.
By hypothesis 1, f q d ∈ B for all d ∈ D. We recall here that ⋆ is the pre-Lie product of P rim(H * D ). Let f and g ∈ B. For all v ∈ V :

(f ⋆ g ⊗ Id) • ∆(v) = f • π(v ′ )g • π(v ′′ )v ′′′ . As f ∈ B, f • π(v ′ )v ′′ ∈ V + K. As g ∈ B, f • π(v ′ )g • π(v ′′ )v ′′′ ∈ V + K. So f ⋆ g ∈ B,
and B is a sub-pre-Lie algebra of P rim(H * D ). As P rim(H * D ) is generated as a pre-Lie algebra by the f q d 's, B = P rim(H * D ).

Second step. Let us consider the following subspace of H * D :

B ′ = {f ∈ H * D / (f ⊗ Id) • ∆(A) ⊆ A}. Let f ∈ P rim(H * D ). By the first step, for all v 1 , • • • , v n ∈ V : (f ⊗ Id) • ∆(v 1 • • • v n ) = f (v ′ 1 • • • v ′ n )v ′′ 1 • • • v ′′ n = n i=1 v 1 • • • f (v ′ i )v ′′ i • • • v n ∈ A, so P rim(H * D ) ⊆ B ′ . Let f, g ∈ B ′
. For all a ∈ A:

(f g ⊗ Id) • ∆(a) = f (a ′ )g(a ′′ )a ′′′ . As f ∈ B ′ , f (a ′ )a ′′ ∈ A. As g ∈ B ′ , f (a ′ )g(a ′′ )a ′′′ ∈ A. So B ′ is a subalgebra of H * D . As it contains P rim(H * D ), it is equal to H * D . So: ∆(A) ⊆ H D ⊗ A + f ∈H * D Ker(f ) ⊗ H D = H D ⊗ A.
Third step. Let us consider the following subspace of P rim(H * D ):

C = {f ∈ P rim(H * D ) / (Id ⊗ f ) • ∆(V ) ⊆ A}.
By the second hypothesis, f q d ∈ B for all d ∈ D. Let us take f and g ∈ C. For all v ∈ V :

(Id ⊗ (f ⋆ g)) • ∆(v) = v ′ f • π(v ′′ )g • π(v ′′′ ). As g ∈ C, v ′ g • π(v ′′ ) ∈ A. Let us denote: v ′ • π(v ′′ ) = v 1 • • • v n ,
where v 1 , . . . , v n are elements of V . Then:

v ′ f • π(v ′′ )g • π(v ′′′ ) = v ′ 1 • • • v ′ n f • π(v ′′ 1 • • • v ′′ n )g • π(v ′′′ ).
By the second step, as V ⊆ V ect(T D ):

∆(V ) ⊆ (H D ⊗ A) ∩ (H D ⊗ (V ect(T D ) + K)) = H D ⊗ (V + K).
So:

v ′ 1 • • • v ′ n ⊗ π(v ′′ 1 • • • v ′′ n ) = n i=1 v 1 • • • v ′ i • • • v n ⊗ π(v ′′ i ).
Finally:

(Id ⊗ (f ⋆ g)) • ∆(v) = n i=1 v 1 • • • v ′ i • • • v n ⊗ f • π(v ′′ i ). As f ∈ B ′ , this belongs to A. So f ⋆ g ∈ B ′ .
As at the end of the first step, we conclude that

B ′ = P rim(H * D ).
Last step. As in the second step, we conclude that for all f ∈ H * D , (

Id ⊗ f ) • ∆(A) ⊆ A. So ∆(A) ⊆ A ⊗ H D , and ∆(A) ⊆ (H D ⊗ A) ∩ (A ⊗ H D ) = A ⊗ A. So A is a Hopf subalgebra. 2

Definition of the structure coefficients

Proposition 16 Let (S) be an SDSE. It is Hopf if, and only if, for all i, j ∈ I, for all n ≥ 1, there exists a scalar λ (i,j) n such that for all t ′ ∈ T i (n):

t∈T i (n+1) n j (t, t ′ )a t = λ (i,j) n a t ′ ,
where n j (t, t ′ ) is the number of leaves l of t decorated by j such that the cut of l gives t ′ .

Proof. =⇒. Let us assume that (S) is Hopf. Then H (S) is a Hopf subalgebra of H I . Let us use lemma 15, with V = V ect(X i (n), i ∈ I, n ≥ 1). So (f q j ⊗ Id) • ∆(X i (n + 1)) belongs to H (S)
, and is a linear span of trees of degree n with a root decorated by i, so is a multiple of X i (n). We then denote:

(f q j ⊗ Id) • ∆(X i (n + 1)) = λ (i,j) n X i (n) = t ′ ∈T (n) λ (i,j) n a t ′ t ′ .
By definition of the coproduct ∆:

(f q j ⊗ Id) • ∆(X i (n + 1)) = t∈T (n+1), t ′ ∈T (n) n j (t, t ′ )a t t ′ .
The result is proved by identifying the coefficients in the basis T (n) of these two expressions of (f

q j ⊗ Id) • ∆(X i (n + 1)).
⇐=. Let us prove that both conditions of lemma 15 are satisfied, with the same V as before. By hypothesis, for all i, j ∈ I, for all n ≥ 2, (f

q j ⊗ Id) • ∆(X i (n)) = λ (i,j) n-1 X i (n -1) ∈ V . Moreover, (f q j ⊗ Id) • ∆(X i (1)) = δ i,j ∈ K,
so the first condition is satisfied. For the second one:

(Id ⊗ f q j ) • ∆(X i ) = (Id ⊗ f q j ) • ∆(B + i (F i (X j , j ∈ I))) = F i (X j , j ∈ I) ∈ H (S) . So H (S) is a Hopf subalgebra of H I . 2 3.3 Properties of the coefficients λ (i,j) n
The coefficients λ

(i,j)
n 's are entirely determined by the a 

For all sequence

i = i 1 -→ • • • -→ i n of vertices of G (S) : λ (i,j) n = a (in) j + n-1 p=1 (1 + δ j,i p+1 ) a (ip) j,i p+1 a (ip) i p+1
.

In particular, λ

(i,j) 1 = a (i) j . 2. For all p 1 , • • • , p N ∈ N: a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) = 1 p j + 1 λ (i,j) p 1 +•••+p N +1 - l∈I p l a (l) j a (i) (p 1 ,••• ,p N ) . Proof. 1. Let us consider a sequence i 1 , • • • , i n of elements of I, such that i 1 = i and for all 1 ≤ p ≤ n -1, a (ip) i p+1 = 0. By definition of λ (i,j) n : λ (i,j) n a q q . . . q q i 1 i 2 i n-1 in = a q q . . . q q q i 1 i 2 i n-1 in j + (1 + δ j,in )a q q . . . q ∨ q q i 1 i 2 i n-1 in j + n-2 p=1 a q . . . q ∨ q q . . . q i 1 ip i p+1 in j , λ (i,j) n a (i 1 ) i 2 • • • a (i n-1 ) in = a (i 1 ) i 2 • • • a (i n-1 ) in a (in) j + (1 + δ j,in )a (i 1 ) i 2 • • • a (i n-1 ) in,j + n-2 p=1 (1 + δ j,i p+1 )a (i 1 ) i 2 • • • a (ip) j,i p+1 a (i p+1 ) i p+2 • • • a (i n-1 ) in , λ (i,j) n = a (in) j + n-1 p=1 (1 + δ j,i p+1 ) a (ip) j,i p+1 a (ip) i p+1
.

This proves the first point of the lemma.

Let us now fix

p 1 , • • • , p N ∈ N. By definition, for t ′ = B + i ( q 1 p 1 • • • q N p N ): λ (i,j) p 1 +•••+p N +1 a B + i ( q 1 p 1 ••• q N p N ) = (p j + 1)a B + i ( q 1 p 1 ••• q j p j +1 ••• q N p N ) + N l=1 a B + i ( q 1 p 1 ••• q l p l -1 ••• q N p N q q l j ) , λ (i,j) p 1 +•••+p N +1 a (i) (p 1 ,••• ,p N ) = (p j + 1)a (i) (p 1 ,••• ,p j +1,••• ,p N ) + N l=1 p l a (i) (p 1 ,••• ,p N ) a (l) j .
This proves the second point of the lemma.

1. As a consequence of the second point, if (S) is Hopf and if a

(i) (p 1 ,••• ,p N ) = 0, then a (i) (l 1 ,••• ,l N ) = 0 if l 1 ≥ p 1 , • • • , l N ≥ p N .
In particular, as there is no constant F i , for all i, there exists a j such that a (i)

j = 0.
2. So the sequences considered in the first point of lemma 17 always exist.

3. Moreover, for all vertices i, j of G (S) , i → j if and only if a

(i) j = 0.
4. Finally, for all i ∈ I, for all p ≥ 1, X i (p) = 0.

Proposition 18 Let (S) be a Hopf SDSE.

1. Let i, j be vertices of G (S) , such that j is not a descendant of i. Then for all n ≥ 1:

λ (i,j) n = 0.
2. Let (S) be a Hopf SDSE with set of vertices I and let (S ′ ) be a Hopf SDSE with set of vertices J. Then (S ′ ) is a dilatation of (S) if, and only if, J admits a partition indexed by the elements of I and for all i, j ∈ I, for all x ∈ J i , y ∈ J j , for all n ≥ 1:

λ (i,j) n = λ (x,y) n .
3. Let i ∈ I such that:

F i = 1 + j∈I a (i) j h j .
Then for all direct descendant i ′ of i, for all j, for all n ≥ 1:

λ (i,j) n+1 = λ (i ′ ,j) n . As a consequence, if i ′ , i ′′′ are two direct descendants of i, F i ′ = F i ′′ . Proof. 1. Let us consider a sequence i = i 1 , • • • , i n of elements of I such that a (i k ) i k+1 = 0 for all 1 ≤ k ≤ n -1. Then j is not a direct descendant of i 1 , • • • , i n , so a (in) j = 0 and a (i k ) j,i k+1 = 0 for all k. By lemma 17, λ (i,j) n = 0.
2. =⇒. From lemma 17-1, choosing an element x i in J i for all i ∈ I. ⇐=. Let us consider the dilatation (S ′′ ) of (S) corresponding to the partition of J. Then the coefficients λ (i,j) n of (S ′ ) and (S ′′ ) are equal, so by lemma 17-2, (S ′ ) = (S ′′ ).

Let us consider a sequence i, i

′ = i 1 , • • • , i n of elements of I such that a (i k ) i k+1 = 0 for all 1 ≤ k ≤ n -1. By hypothesis on i, a (i) j,i ′ = 0. By lemma 17-1: λ (i,j) n+1 = a (in) j + 0 + n-1 k=1 (1 + δ j,i k+1 ) a (i k ) j,i k+1 a (i k ) i k+1 = λ (i ′ ,j) n .
So, if i ′ and i ′′ are two direct descendants of i, for all k ∈ I, for all n ≥ 1, λ

(i ′ ,k) n = λ (i ′′ ,k) n . By lemma 17-2, F i ′ = F i ′′ . 2 
Proposition 19 Let (S) be an SDSE, with I = {1, . . . , N }. It is Hopf if, and only if, the two following conditions are satisfied:

1. There exist scalars λ

(i,j) n satisfying, for all 1 ≤ i, j ≤ N , for all (p 1 , • • • , p N ) ∈ N N : a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) = 1 p j + 1 λ (i,j) p 1 +•••+p N +1 - l∈I p l a (l) j a (i) (p 1 ,••• ,p N ) .
2. For all p ≥ 1, for all i, j,

d 1 , • • • , d p ∈ I, such that a (i) (p 1 ,••• ,p N ) = 0 where p i is the number of d p 's equal to i, for all n 1 , • • • , n p ≥ 1: λ (i,j) n 1 +•••+np+1 -a (i) j = λ (i,j) p+1 -a (i) j + l∈I λ (d l ,j) n l -a (d l ) j .
Proof. Preliminary step. Let us assume the first point and let t ′ ∈ T (i) D . We use the following notations:

t ′ = B + i   s∈T D s rs   .
We also denote, for all j ∈ I:

p j = s∈T (j) D r s .
Then, by (1):

a t ′ = N j=1 p j ! s∈T D r s ! a (i) (p 1 ,••• ,p N ) s∈T D a rs s .
Hence:

t∈T (i) D n j (t, t ′ )a t = n j   B + i   q j s∈T D s rs   , t ′   a B + i ( q j s rs ) + s 1 ,s 2 ∈T D rs 2 ≥1 (r s 1 + 1)n j (s 1 , s 2 )a B + i s 1 s 2 s rs = (r q j +1 ) (p j + 1) N j=1 p j ! (r q j +1 ) s∈T D r s ! a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) a q j s∈T D a rs s + s 1 ,s 2 ∈T D (r s 1 + 1)n j (s 1 , s 2 ) r s 2 r s 1 + 1 a t ′ a s 1 a s 2 = (p j + 1) a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) a (i) (p 1 ,••• ,p N ) a t ′ + s 1 ,s 2 ∈T D n j (s 1 , s 2 )r s 2 a t ′ a s 1 a s 2 =     λ (i,j) p 1 +•••+p N +1 - N l=1 p j a (l) j + s 1 ,s 2 ∈T D rs 2 >0 n j (s 1 , s 2 )r s 2 a s 1 a s 2     a t ′ .
=⇒. Let us assume that (S) is Hopf. We already prove the existence of the scalars λ (i,j)

n . We obtain from the preceding computation:

λ (i,j) weight(t ′ ) a t ′ =   λ (i,j) p 1 +•••+p N +1 - N l=1 p j a (l) j + s 2 ∈T D r s 2 λ (d(s 2 ),j) weight(s 2 )   a t ′ , where d(s 2 ) is the decoration of the root of s 2 . Let us choose p, i, j, d 1 , • • • , d p , n 1 , • • • , n p
as in the hypotheses of the proposition. Let us choose for all 1 ≤ j ≤ p a tree s j with root decorated by d j , of weight n j , such that a s j = 0: this always exists (for example take a convenient ladder). ,j)

Let us take t

′ = B + i (s 1 • • • s p ). Then a t ′ = 0 because a (i) (p 1 ,••• ,p N ) = 0, so: λ (i
n 1 +•••+np+1 = λ (i,j) p+1 + p l=1 λ (d l ,j) n l -a (d l ) j .
⇐=. Let us show the condition of proposition 16 by induction on the weight n of t ′ . For n = 1, then t ′ = q i . Then, by hypothesis on the a

(i) (p 1 ,••• ,p N ) , a (i) j = λ (i,j) 1
. So:

t∈T i (n+1) n j (t, t ′ )a t = q q i j = a (i) j = λ (i,j) 1 a q i .
Let us assume the result for all tree of weight < n. The preceding computation then gives:

t∈T (i) D n j (t, t ′ )a t =     λ (i,j) p 1 +•••+p N +1 - N l=1 p j a (l) j + s 1 ,s 2 ∈T D rs 2 >0 n j (s 1 , s 2 )r s 2 a s 1 a s 2     a t ′ .
The induction hypothesis and the condition on the coefficients λ

(i,j) n
then give that this is equal to λ (i,j)

weight(t ′ )+1 a t ′ . So H (S) is a Hopf subalgebra of H I . 2 3.4 Prelie structure on H * (S)
Let us consider a Hopf SDSE (S). Then H * (S) is the enveloping algebra of the Lie algebra g (S) = P rim H * (S) , which inherits from P rim(H * D ) a pre-Lie product given in the following way: for all f, g ∈ G (S) , for all x ∈ H (S) , f ⋆ g is the unique element of g (S) such that for all

x ∈ vect(X i (n) / i ∈ I, n ≥ 1), (f ⋆ g)(x) = (f ⊗ g) • (π ⊗ π) • ∆(x).
Let (f i (p)) i∈I,p≥1 be the basis of g (S) , dual of the basis (X i (p)) i∈I,p≥1 . By homogeneity of ∆, and as ∆(X i (n)) is a linear span of elements -⊗ X i (p), 0 ≤ p ≤ n, we obtain the existence of coefficients a (i,j) k,l such that, for all i, j ∈ I, k, l ≥ 1:

f j (l) ⋆ f i (k) = a (i,j) k,l f i (k + l).

By duality, a

(i,j) k,l is the coefficient of X j (l) ⊗ X i (k) in ∆(X i (k + l))
, so is uniquely determined in the following way: for all t ′ ∈ T (j)

D (l), t ′′ ∈ T (i) D (k), t∈T (i) D (k+l) n(t ′ , t ′′ ; t)a t = a (i,j) k,l a t ′ a t ′′ .
Lemma 20 For all t ′ ∈ T (j)

D (l), t ′′ ∈ T (i) D (k): t∈T (i) D (k+l) n(t ′ , t ′′ ; t)a t = λ (i,j) k a t ′ a t ′′ .
Proof. By induction on k. If k = 1, then t ′′ = q i , so:

t∈T (i) D (k+l) n(t ′ , t ′′ ; t)a t = a B + i (t ′′ ) = a (i) j a t ′ = λ (i,j) 1 a t ′ a t ′′ ,
as a t ′′ = 1. Let us assume the result at all rank ≤ k -1. We put t ′′ = B + i ( s∈T D s rs ). We put

p j = s∈T (j) D
r s for all j ∈ I. Then:

t∈T (i) D (k+l) n(t ′ , t ′′ ; t)a t = n   t ′ , t ′′ , B + i   q j s∈T D s rs     a B + i (t ′ s rs ) + s 1 ,s 2 ∈T D rs 2 ≥1 (r s 1 + 1)n(t ′ , s 2 ; s 1 )a B + i s 1 s 2 s rs = (r t ′ +1 ) (p j + 1) N j=1 p j ! (r t ′ +1 ) s∈T D r s ! a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) a t ′ s∈T D a rs s + s 1 ,s 2 ∈T D (r s 1 + 1)n j (s 1 , s 2 ) r s 2 r s 1 + 1 a t ′′ a s 1 a s 2 = (p j + 1) a (i) (p 1 ,••• ,p j+1 ,••• ,p N ) a (i) (p 1 ,••• ,p N ) a t ′ a t ′′ + s 1 ,s 2 ∈T D n j (s 1 , s 2 )r s 2 a s 1 a s 2 a t ′′ =     λ (i,j) p 1 +•••+p N +1 - N l=1 p j a (l) j + s 1 ,s 2 ∈T D rs 2 >0 n j (s 1 , s 2 )r s 2 a s 1 a s 2     a t ′ a t ′′ =   λ (i,j) p 1 +•••+p N +1 - N l=1 p j a (l) j + s 2 ∈T D r s 2 λ (r(s 2 ),j) |s 2 |   a t ′ a t ′′ ,
using the induction hypothesis on s 2 , denoting by r(s 2 ) the decoration of the root of s 2 . By proposition 19-2, if a t ′ = 0, then a

(i) (p 1 ,••• ,pn) = 0, so: λ (i,j) 1+ rs|s| = λ (i,j) 1+ rs + s r s λ (r(s),j) |s| -a (r(s)) j λ (i,j) |t ′′ | = λ (i,j) p 1 +•••+p N +1 + s r s λ (r(s),j) |s| - l p l a (l) j .
So the induction hypothesis is proved at rank n. 2

Combining this lemma with the preceding observations:

Proposition 21 Let (S) be a Hopf SDSE. The pre-Lie algebra g (S) = P rim H * (S) has a basis (f i (k)) i∈I,k≥1 , and the pre-Lie product of two elements of this basis is given by:

f j (l) ⋆ f i (k) = λ (i,j) k f i (k + l).

Level of a vertex

The second item of proposition 19-2 is immediately satisfied if there exist scalars b j and a

(i) j such that λ (i,j) n = b j (n -1) + a (i)
j for all n ≥ 1 and all i, j ∈ I. This motivates the definition of the level of a vertex.

Definition of the level

Definition 22 Let (S) be a Hopf SDSE, and let i be a vertex of G (S) . It will be said to be of level ≤ M if for all vertex j, there exist scalar b

(i) j ,
ã(i) j , such that for all n > M :

λ (i,j) n = b (i) j (n -1) + ã(i) j .
The vertex i will be said to be of level M if it is of level ≤ M and not of level ≤ M -1.

Remark. In order to prove that i is of level ≤ M , it is enough to consider the j's which are descendants of i. Indeed, if j is not a descendant of i, by proposition 18-1, λ

(i,j) n = 0 for all n ≥ 1.
Proposition 23 Let (S) be a Hopf SDSE, i a vertex of G (S) and j a direct descendant of G (S) .

1. i has level 0 or 1 if, and only if, j as level 0.

2. Let M ≥ 2. Then i has level M if, and only if, j has level M -1.

Moreover, if this holds, then for all

k ∈ I, b (i) k = b (j) k .
Proof. Let i ∈ G (S) and j be a direct descendant of i. As (S) is Hopf, let us use the second point of proposition 19, with k = 1 and d 1 = j. Then for all l, for all n ≥ 1, as a

(i) j = 0: λ (i,l) n+1 = λ (i,l) 2 + λ (j,l) n -a (j) l . So for all M ≥ 1, i is of level ≤ M if, and only if, j is of level ≤ M -1. Moreover, if this holds, then b (i) k = b (j) k for all k.
The first point is a reformulation of the preceding result for M = 1. Let us assume that

M ≥ 2. If i is of level M , then j is of level ≤ M -1. If j is of level ≤ M -2, then i is of level ≤ M -1: contradiction. So j is of level M -1.
The converse is proved in the same way.

2

Corollary 24 Let (S) be a connected Hopf SDSE. Then if one of the vertices of G (S) is of finite level, then all vertices of G (S) are of finite level. Moreover, the coefficients b (i) j depend only of j. They will now be denoted by b j .

Proposition 18-1 immediately implies the following result:

Lemma 25 Let (S) be a connected Hopf SDSE and let j be a vertex of G (S) of finite level. If there exists a vertex i in G (S) which is not a descendant of j, then b j = 0.

Vertices of level 0

Let (S) be a Hopf SDSE with I = {1, . . . , N }, and let us assume that i is a vertex of level 0. In this case, the coefficients a

(i) (p 1 ,••• ,p N ) satisfy an induction of the following form:        a (i) (0,••• ,0) = 1, a (i) (p 1 ,••• ,p j +1,••• ,p N ) = 1 p j + 1 λ j + N l=1 µ (l) j p l a (i) (p 1 ,••• ,p N ) .
In order to ease the notation, we shall write

a (p 1 ,••• ,p N ) instead of a (i) (p 1 ,••• ,p N ) and F instead of F i in this section.
Lemma 26 Under the preceding hypothesis:

1. Let us denote J = {j ∈ I / λ j = 0}. There exists a partition

I = I 1 ∪ • • • ∪ I M ∪ J, and scalars β 1 , • • • , β M , such that for all i, j ∈ I \ J = I 1 ∪ • • • ∪ I M : µ (j) i = 0 if i, j do not belong to the same I l , λ i β l if i, j ∈ I l . 2. Moreover F (h 1 , • • • , h N ) = M p=1 f βp   l∈Ip λ l h l   .
Proof. Let us fix i = j. Then:

a (p 1 ,••• ,p i +1,••• ,p j +1,••• ,p N ) = 1 p i + 1 λ i + µ (j) i + N l=1 µ (l) i p l a (p 1 ,••• ,p j +1,••• ,p N ) = 1 (p i + 1)(p j + 1) λ i + µ (j) i + N l=1 µ (l) i p l λ j + N l=1 µ (l) j p l a (p 1 ,••• ,p N ) , = 1 (p i + 1)(p j + 1) λ j + µ (i) j + N l=1 µ (l) j p l λ i + N l=1 µ (l) i p l a (p 1 ,••• ,p N ) . For (p 1 , • • • , p N ) = (0, • • • , 0), as a (0,••• ,0) = 1: µ (j) i λ j = µ (i) j λ i . (2) 
For (p 1 , • • • , p N ) = ε k , we obtain:

λ i + µ (j) i + µ (k) i λ j + µ (k) j λ k = λ j + µ (i) j + µ (k) j λ i + µ (k) i λ k . So, if λ k = 0: µ (j) i µ (k) j = µ (i) j µ (k) i . (3) 
If

λ k = 0, it is not difficult to prove inductively that a (p 1 ,••• ,p N ) = 0 if p k > 0, so F is an element of K[[h 1 , • • • , h k-1 , h k+1 , • • • , h N ]].
Hence, up to a restriction to I \ J, we can suppose that all the λ k 's are non-zero. We then put ν

(j) i = µ (j) i
λ i for all i, j. Then (2) and (3) become: for all i, j, k, ν

(j) i = ν (i) j , (4) 
ν (j) i ν (k) i -ν (k) j = 0. ( 5 
)
Let 1 ≤ i, j ≤ N . We shall say that i R j if i = j or if ν (j) i = 0. Let us show that R is an equivalence. By (4), it is clearly symmetric. Let us assume that i R j and j R k.

If i = j or j = k or i = k, then i R k. If i, j, k are distinct, then ν (j) i = 0 and ν (k) j = 0. By (5), ν (k) i = ν (k) j = 0, so i R k. We denote by I 1 , • • • , I M the equivalence classes of R .
Let us assume that i R j, i = j. Then ν (j) i = 0, so for all k, ν

(k) j = ν (k) i . In particular, ν (i) j = ν (i) i = ν (j) i = ν (j)
j . So, finally, there exists a family of scalars (β i ) 1≤i≤M , such that:

• If i, j ∈ I l , then ν (j) i = β l , and µ (j) i = λ i β l .
• If i and j are not in the same I l , then ν

(j) i = µ (j) i = 0.
An easy induction then proves:

a (p 1 ,••• ,p N ) = λ p 1 1 • • • λ p N N p 1 ! • • • p N ! M p=1 (1 + β p ) • • •   1 + β p   l∈Ip p l -1     .
This implies the assertion on F . 2

Vertices of level 1

Let us now assume that i is of level 1. Then, up to a restriction to i and its direct descendants, the coefficients a

(i) (p 1 ,••• ,p N ) = a (p 1 ,••• ,p N ) satisfy an induction of the form:            a (i) (0,••• ,0) = 1, a (i) ε j = a (i) j , a (i) 
(p 1 ,••• ,p j +1,••• ,p N ) = 1 p j + 1 λ j + N l=1 µ (l) j p l a (i) (p 1 ,••• ,p N ) if (p 1 , • • • , p N ) = (0, • • • , 0).
In order to ease the notation, we shall write

a (p 1 ,••• ,p N ) instead of a (i) (p 1 ,••• ,p N )
and F instead of F i in this section.

Lemma 27 Under the preceding hypothesis, one of the following assertions holds:

1. There exists a partition

I = I 1 ∪ • • • ∪ I M ∪ J, scalars β 1 , • • • , β M ,
a non-zero scalar ν such that:

F (h 1 , • • • , h N ) = 1 ν M p=1 f βp   l∈Ip νa l h l   + l∈J a l h l + 1 - 1 ν .

There exists a partition

{1, • • • , N } = I 1 ∪ • • • ∪ I M ∪ J, scalars ν p for 1 ≤ p ∈ M , such that: F (h 1 , • • • , h N ) = 1 - M p=1 1 ν p ln   1 -ν p l∈Ip a l h l   + l∈J a l h l .
Proof. Let us compute a j,k in two different ways:

λ j + µ (k) j a k = λ k + µ (j) k a j .
In other words:

λ j + µ (k) j a j λ k + µ (j) k a k = 0. ( 6 
)
Let us take J = {j / ∀k, λ j + µ (k) j = 0}. Let us consider an element j ∈ J. Then an easy induction proves that for all (p 1 ,

• • • , p N ) such that p 1 + • • • + p N ≥ 2 and p j ≥ 1, a (p 1 ,••• ,p N ) = 0.
As a consequence:

F (h 1 , • • • , h N ) = F (h 1 , • • • , h j-1 , 0, h j+1 , • • • , h N ) + a j h j . So: F = F (h i , i / ∈ J) + j∈J a j h j .
We now assume that, up to a restriction, J = ∅. Let us choose an i and let us put

b (p 1 ,••• ,p N ) = (p i + 1)a (p 1 ,••• ,p i +1,••• ,p N ) . Then, for all j ∈ I, for all (p 1 , • • • , p N ): b (p 1 ,••• ,p j +1,••• ,p N ) = 1 p j + 1 λ j + µ (i) j + N l=1 µ (l) j p l b (p 1 ,••• ,p N ) .
We deduce from lemma 26 that there exist a partition

I = I 1 ∪ • • • ∪ I M and scalars β 1 , . . . , β M , such that: µ (l) j = 0 if j, l are not in the same I k , λ j + µ (i) j β k if j, l ∈ I k .
So µ (i) j does not depend on i such that µ (i) j = 0. So there exist scalars µ j such that:

µ (l) j = 0 if j, l are not in the same I k , (λ j + µ j ) β k if j, l ∈ I k . 1. Let us assume that M ≥ 2. Let us choose j ∈ I 1 . Then for all k ∈ I 2 ∪ • • • ∪ I M , (6) gives 
:

λ j a j λ k a k = 0.
We denote

I 2 ∪ • • • ∪ I k = {i 1 , • • • , i M }.
We proved that the vectors (λ j , λ i 1 , • • • , λ i M ) and (a j , a i 1 , • • • , a i M ) are colinear. Choosing then a j ∈ I 2 , we obtain that there exists a scalar ν, such that (λ i ) i∈I = ν(a i ) i∈I . Two cases are possible.

(a

) If ν = 0, putting a ′ (p 1 ,••• ,p N ) = νa (p 1 ,••• ,p N ) if (p 1 , • • • , p N ) = (0, • • • , 0) and a ′ (0,••• ,0) , then the family a ′ (p 1 ,••• ,p N )
satisfies the hypothesis of lemma 26. As a consequence,

F (h 1 , • • • , h N ) satisfies the first case.
(b) If ν = 0, then we put, for all j, µ j = ν ′ j a j . By [START_REF] Chryssomalakos | Normal coordinates and primitive elements in the Hopf algebra of renormalization[END_REF], for j and k in the same I l , ν ′ j = ν ′ k if j and k are in the same I l : this common value is now denoted ν l . It is then not difficult to prove that:

F (h 1 , • • • , h N ) = 1 - M p=1 1 ν p ln   1 -ν p l∈Ip a l h l   .
This is a second case.

Let us assume that

M = 1. Then (λ j + µ j )β 1 = µ (i)
j for all i, j ∈ I.

(a) Let us suppose that β 1 = 1. Then, for all j, k ∈ I µ j = β 1 1-β 1 λ j . So, for all j, λ j + µ j = 1 1-β 1 λ j . So [START_REF] Chryssomalakos | Normal coordinates and primitive elements in the Hopf algebra of renormalization[END_REF] implies that (λ j ) j∈I and (a j ) j∈I are colinear. As in 1.(a), this is a first case.

(b) Let us assume that β 1 = 1. So λ j = 0 for all j. As in 1.(b), this is a second case. Lemma 28 Let (S) be a Hopf SDSE and let i be a vertex of G (S) . We suppose that there exists a vertex j, such that:

• j is a descendant of i.

• All oriented path from i to j are of length ≥ 3.

Then F i = 1 + i-→l a (i) l h l .
Proof. We assume here that I = {1, . . . , N }. Let L be the minimal length of the oriented paths from i to j. By hypothesis, L ≥ 3. Then the homogeneous component of degree L + 1 of X i contains trees with a leave decorated by j, and all these trees are ladders (that is to say trees with no ramification). By proposition 16, if t ′ ∈ T (i)

D (L): λ (i,j) L a t ′ = t∈T (i) D (L+1) n j (t, t ′ )a t .
For a good-chosen ladder t ′ , the second member is non-zero, so λ (i,j) L is non-zero. If t ′ is not a ladder, the second member is 0, so a t ′ = 0. As a conclusion, X i (L) is a linear span of ladders. Considering its coproduct, for all p ≤ L, X i (p) is a linear span of ladders. In particular, X i (3) is a linear span of ladders. But:

X i (3) = l,m a (i) l a (l) m q q q i l m + l≤m a (i) l,m q ∨ q q i m l , so a (i)
l,m = 0 for all l, m. Hence, F i contains only terms of degree ≤ 1.

2

Remark. This lemma can be applied with i = j, if i is not a self-dependent vertex.

Proposition 29 Let (S) be a Hopf SDSE and let i be a vertex of G (S) of level ≥ 2. Then i is an extension vertex.

Proof. We denote by M the level of i. By proposition 23, all the descendants of i are of level ≤ M -1, so i is not a descendant of itself.

Let M be the level of i and let us assume that M ≥ 3. Let j be a direct descendant of i, k be a direct descendant of j, l be a direct descendant of k. Then j has level M -1, k has level M -2, l has level M -3. So in the graph of the restriction to {i, j, k, l} is:

i G G j G G k G G l or i G G j G G k G G l
The result is then deduced from lemma 28.

Let us now assume that i is of level 2 and is not an extension vertex. Let j be a direct descendant of i and k be a direct descendant of j. By proposition 23, j is of level 1 and k is of level 0, so k is not a direct descendant of i. The graph of the restriction of (S) to {i, j, k} is:

i G G j G G k or i G G j G G k e e
First step. Let us first prove that there exists a direct descendant j of i such that a (i) j,j = 0. Let us assume that this is not true. As i is not an extension vertex, there exist j, j ′ ∈ I such that a (i) j,j ′ = 0, j = j ′ . Let k be a direct descendant of j. Considering the different levels, the graph associated to the restriction to {i, j, j ′ , k} is:

i 0 0 a a a a a a a a Ð Ð Ò Ò Ò Ò Ò Ò Ò Ò j 0 0 `j′ Ð Ð Ñ Ñ Ñ Ñ Ñ Ñ Ñ k or i 0 0 a a a a a a a a Ð Ð Ò Ò Ò Ò Ò Ò Ò Ò j 0 0 `j′ Ð Ð Ñ Ñ Ñ Ñ Ñ Ñ Ñ k e e or i 0 0 a a a a a a a a Ð Ð Ò Ò Ò Ò Ò Ò Ò Ò j 0 0 `j′ k or i 0 0 a a a a a a a a Ð Ð Ò Ò Ò Ò Ò Ò Ò Ò j 0 0 `j′ k e e
Up to a change of variables, we put:

F i (0, • • • , 0, h j , 0, • • • , 0, h j ′ , 0, • • • , 0) = 1 + h j + h j ′ + bh j h j ′ + O(h 3 ).
Then by proposition 16, λ (i,j) 2 a q q i j = 2a q ∨ q q i j j + a q q q i j j = 0, so λ (i,j) 2 = 0. On the other hand,

λ (i,j) 2 a q q i j ′ = a q ∨ q q i j ′ j + a q q q i j ′ j = b, so 0 = b: this contradicts a (i) j,j ′ = 0.
Second step. Let us consider a vertex j such that a (i) j,j = 0. Up to a change of variables, we can assume that a (i) j = 1 and that for all direct descendant k of j, a (j) k = 1. By lemma 25, b i = b j = 0. So, as i is of level 2, there exist scalars a, b, such that:

λ (i,j) n =    1 if n = 1, a if n = 2, b if n ≥ 3.
Then proposition 19-1 implies:

F i (0, • • • , 0, h j , 0, • • • , 0) = 1 + h j + a 2! h 2 j + ab 6 h 3 j + O(h 4 j ).
By hypothesis, a = 0. Moreover, by proposition 16, b = λ (i,j) 3 a q q q i j k = a q ∨ q q q i j j k = a. So:

F i (0, • • • , 0, h j , 0, • • • , 0) = 1 + h j + a 2! h 2 j + a 2 6 h 3 j + O(h 4 j ).
As j has level 1, we put:

λ (j,k) n = a (j) k = 1 if n = 1, c(n -1) + d if n ≥ 2,
where c(= b k ) and d are scalars. From proposition 19-1:

F j (0, • • • , 0, h k , 0, • • • , 0) = 1 + h k + c + d 2! h 2 k + (c + d)(2c + d) 6 h 3 k + O(h 4 k ).
Moreover, λ

(i,k) 3 a q ∨ q q i j j = a q ∨ q q q i j j k , so λ (i,k) 3 a 2 = a and λ (i,k) 3 = 2. Then λ (i,k) 3 a q q q i j k = 2a q ∨ q q q i j k k
, so c + d = 2. Similarly, using q ∨ q q q i j j j , we obtain λ

(i,k) 4 = 3. Using q ∨ q q q i j k k
, we obtain:

3 c + d 2 = 3 (c + d)(2c + d) 6 .
As c + d = 2, 2c + d = 3, so c = d = 1 and λ (j,k) n

= n for all n ≥ 2. As λ

(j,k) 1 = 1, λ (j,k) n
= n for all n ≥ 1.

Let now l ∈ I which is not a direct descendant of j and let k be a direct descendant of j. For all n ≥ 1:

λ (j,l) n = λ (j,l) n a B + j ( q k n-1 ) = a B + j ( q k n-1 q q k l ) = (n -1)a (k) l .
We proved that for any vertex l of G (S) , for all n ≥ 1:

λ (j,l) n = n if l is a direct descendant of j, a (k) l (n -1) if l is not a direct descendant of j,
where k is any direct descendant of j. This proves that j has level 0, so i has level 1: contradiction. So i is an extension vertex. 2

5 Examples of Hopf SDSE

cycles and multicycles

Notation. We denote by l(i 1 , • • • , i n ) the ladder with decorations, from the root to the leave,

i 1 , • • • , i n .
In other words:

l(i 1 , • • • , i p ) = B + i 1 • • • • • B + in (1) = q q . . . q q i 1 i 2 i n-1 in . Theorem 30 Let N ≥ 2.
The SDSE associated to the following formal series is Hopf:

         F 1 = 1 + h 2 , . . . F N -1 = 1 + h N , F N = 1 + h 1 .
Proof. We identify {1, • • • , N } and Z/N Z, via the bijection i -→ i. Then, for all n ≥ 1 and for all 1

≤ i ≤ N , X i (n) = l(i, • • • i + n -1). As a consequence: ∆(X i ) = X i ⊗ 1 + 1 ⊗ X i + +∞ p=1 X i+p ⊗ X i (p). So H (S) is Hopf. 2 
Note that the graph G (S) associated to such a system is an oriented cycle of length N , with only non-self-dependent vertices.

Definition 31 Let (S) be a Hopf SDSE. It will be said to be multicyclic if, up to change of variable, it is a dilatation of a system described in theorem 30.

The graph of a multicyclic SDSE will be called a multicycle. In other term, a N -multicycle (N ≥ 2) is such that the set I of its vertices admits a partition I = I 1 ∪ • • • ∪ I N indexed by the elements of Z/N Z, such that the direct descendants of a vertex i in I j are the elements of I j+1 for all j ∈ Z/N Z. Moreover, up to a change of variables, for all i ∈ G (S) :

F i = 1 + i-→l h l .
Here is an example of a 5-multicycle: Note that if N = 2, G (S) is a complete bipartite graph, that is to say that the set of vertices of G (S) admits a partition into two parts, and for all vertices i and j, there is an edge from i to j if, and only if, i and j are not in the same part of the partition.

Fundamental SDSE

Theorem 32 Let I be a set with a partition I = I 0 ∪ J 0 ∪ K 0 ∪ I 1 ∪ J 1 , such that:

• I 0 , J 0 , K 0 , I 1 , J 1 can be empty.

• I 0 ∪ J 0 is not empty.

The SDSE defined in the following way is Hopf:

1. For all i ∈ I 0 , there exists β i ∈ K, such that:

F i = f β i (h i ) j∈I 0 -{i} f β j 1+β j ((1 + β j )h j ) j∈J 0 f 1 (h j ).
2. For all i ∈ J 0 :

F i = j∈I 0 f β j 1+β j ((1 + β j )h j ) j∈J 0 -{i} f 1 (h j ).
3. For all i ∈ K 0 :

F i = j∈I 0 f β j 1+β j ((1 + β j )h j ) j∈J 0 f 1 (h j ).
4. For all i ∈ I 1 , there exist ν i ∈ K, a family of scalars (a

(i) j ) j∈I 0 ∪J 0 ∪K 0 , such that (ν i = 1) or (∃j ∈ I 0 , a (i) j = 1 + β j ) or (∃j ∈ J 0 , a (i) j = 1) or (∃j ∈ K 0 , a (i) j = 0). Then, if ν i = 0: F i = 1 ν i j∈I 0 f β j ν i a (i) j ν i a (i) j h j j∈J 0 f 1 ν i a (i) j ν i a (i) j h j j∈K 0 f 0 ν i a (i) j h j + 1 - 1 ν i .
If ν i = 0:

F i = - j∈I 0 a (i) j β j ln(1 -h j ) - j∈J 0 a (i) j ln(1 -h j ) + j∈K 0 a (i) j h j + 1.
5. For all i ∈ J 1 , there exists ν i ∈ K -{0}, a family of scalars (a (i) j ) j∈I 0 ∪J 0 ∪K 0 ∪I 1 , with the following conditions:

• I (i) 1 = {j ∈ I 1 / a (i) j = 0} is not empty. • For all j ∈ I (i) 1 , ν j = 1.
• For all j, k ∈ I (i) 1 , F j = F k . In particular, we put b

(i) t = a (j) t for any j ∈ I (i) 1 , for all t ∈ I 0 ∪ J 0 ∪ K 0 .
Then:

F i = 1 ν i j∈I 0 f β j b (i) j -1-β j b (i) j -1 -β j h j j∈J 0 f 1 b (i) j -1 b (i) j -1 h j j∈K 0 f 0 b (i) j h j + j∈I (i) 1 a (i) j h 1 + 1 - 1 ν i .
Proof. In order to simplify the notation, we assume that I = {1, . . . , N }. We shall use proposition 19 with, for all i, j ∈ I:

λ (i,j) n = a (i) j if n = 1, ã(i) j + b j (n -1) if n ≥ 2,
the coefficients being given in the following arrays:

1. a (j)

i : i \ j ∈ I 0 ∈ J 0 ∈ K 0 ∈ I 1 ∈ J 1 ∈ I 0 (1 + β i ) -δ i,j β i 1 + β i 1 + β i a (j) i b (j) i -1-β i ν j ∈ J 0 1 1 -δ i,j 1 a (j) i b (j) 
i -1

ν j ∈ K 0 0 0 0 a (j) i b (j) i ν j ∈ I 1 0 0 0 0 a (j) i ∈ J 1 0 0 0 0 0 2. ã(j) i : i \ j ∈ I 0 ∈ J 0 ∈ K 0 ∈ I 1 ∈ J 1 ∈ I 0 (1 + β i ) -δ i,j β i 1 + β i 1 + β i ν j a (j) i b (j) i -1 -β i ∈ J 0 1 1 -δ i,j 1 ν j a (j) i b (j) i -1 ∈ K 0 0 0 0 ν j a (j) i b (j) i ∈ I 1 0 0 0 0 0 ∈ J 1 0 0 0 0 0 3. b j : j ∈ I 0 ∈ J 0 ∈ K 0 ∈ I 1 ∈ J 1 b j 1 + β j 1 0 0 0
The second item of proposition 19 is immediate. Let us prove for example the first item for i ∈ J 1 and j ∈ I 0 . Let us fix (p 1 , . . . , p N ) ∈ N N -{(0, . . . , 0)}.

λ (i,j) p 1 +...+p N +1 - l a (l) j p l = b (i) j -1 -β j -(1 + β j ) N l=1 p l - l∈I 0 ∪J 0 ∪K 0 (1 + β j )p l + β j p j - l∈I 1 ∪J 1 a (l) j p l = b (i) j -1 -β j + β j p j + l∈I 1 ∪J 1 1 + β j -a (l) j p l .
If there exists l ∈ (I 1 ∪ J 1 ) -

I (i)
1 , such that p l = 0, then a

(p 1 ,...,p j +1,...,p N ) = a

(p 1 ,...,p N ) = 0 and then the result is immediate. We now suppose that p l = 0 for all l ∈ (I 1 ∪ J 1 ) -

I (i) 1 . Then: λ (i,j) p 1 +...+p N +1 - l a (l) j p l = b (i) j -1 -β j + β j p j + l∈I (i) 1 1 + β j -a (l) j p l = b (i) j -1 -β j + β j p j + 1 + β j -b (i) j l∈I (i) 1 p l . 1. If l∈I (i) 1
p l = 0, then:

a (i) (p 1 ,...,p j +1,...,p N ) = b (i) j -1 -β j p j a (i) (p 1 ,...,p N ) p j + 1 .
The first item of proposition 19 is immediate.

If

l∈I (i) 1 p l = 1, then a (i) 
(p 1 ,...,p j +1,...,p N ) = 0 and λ (i,j)

p 1 +...+p N +1 -l a (l)
j p l = 0. So the first item of proposition 19 holds.

If

l∈I (i) 1 p l ≥ 2, then a (i) 
(p 1 ,...,p j +1,...,p N ) = a (i) (p 1 ,...,p N ) = 0, so the result is immediate.

The other cases are proved in the same way, so this SDSE is Hopf. 2

Remarks.

1. For all λ = 0:

f β λ (λh) = ∞ k=0 λ(λ + β) • • • (λ + (k -1)β) k! h k .
The second side of this formula is equal to 1 if λ = 0. So, formulas defining the SDSE of theorem 32 are always defined.

2. The vertices of I 0 ∪ J 0 ∪ K 0 are of level 0. A vertex i of I 1 is of level 0 if ν i = 1; otherwise, it is of level 1. The vertices of J 1 are of level 1.

Definition 33

1. A Hopf SDSE will be said to be fundamental if, up to a change of variables, it is the dilatation of a system of theorem 32.

2. A fundamental Hopf SDSE (S) will be said to be abelian if for any vertex i ∈ I, b i = 0.

Remark. In other words, (S) is abelian if J 0 = ∅ and if for any i ∈ I 0 , β i = -1. Then, for all i ∈ K 0 , F i = 1. As there is no constant F i , we obtain K 0 = ∅.

A particular case is obtained when I = J 0 . Then we obtain the following systems:

Theorem 34 Let I be a finite subset which is not a singleton. The SDSE associated to the following formal series is Hopf:

F i = j =i (1 -h j ) -1 , for all i ∈ I.
The graph associated to such an SDSE is a complete graph with only non-self-dependent vertices, that is to say that there is an edge from i to j in G (S) if, and only if, i = j. In particular, if N = 2, G (S) is 1 ←→ 2, as for the SDSE of theorem 30 with N = 2.

Definition 35 Let (S) be a Hopf SDSE. It will be said to be quasi-complete if, up to change of variable, it is a dilatation of one of the systems described in theorem 34.

The graphs associated to quasi-complete SDSE shall be called quasi-complete. A quasicomplete graph G has only non-self-dependent vertices; there exists a partition I = I 1 ∪ • • • ∪ I M of the set I of vertices of G (S) such that, for all x, y ∈ I, there is an edge from x to y if, and only if, x and i are not in the same I i . In particular, quasi complete graphs with M = 2 are complete bipartite graphs. Moreover, if (S) is quasi-complete, up to a change of variables, for all x ∈ I i :

F x = j =i   1 - y∈I j h y   -1 .
Here is an example of a 2-quasi-complete graph and a 3-quasi-complete graph:

Another particular case is the following: assume that I = I 0 and that β x = -1 for all x ∈ I 0 . Then, for all x ∈ I, F x = 1 + h x . Note that G (S) is not connected if |I| ≥ 2, and this is the only case where G (S) is not connected. The dilatation of such an SDSE will be called a non-connected fundamental SDSE. For such an SDSE, the set of indices I admits a partition

I = I 1 ∪ • • • ∪ I M (M ≥ 2)
and up to a change of variables, for all 1 ≤ i ≤ M , for all x ∈ I i :

F x = 1 + y∈I i h y .
Remark. Note that a dilatation replacing x ∈ K 0 ∪ I 1 ∪ J 1 by a set J x in a system of theorem 32 also gives a system of theorem 32. The same remark applies when the dilatation replaces x ∈ I 0 , with β x = 0, by a set J x . So we shall always assume that the dilatation giving a fundamental SDSE from an SDSE of theorem 32 satisfies J x = {x} for any x ∈ K 0 ∪ I 1 ∪ J 1 and for any x ∈ I 0 such that β x = 0.

Two families of Hopf SDSE

We here first give characterisations of multicyclic and quasi-complete SDSE. We then consider Hopf SDSE such that any vertex is a descendant of a self-dependent vertex. We prove that such an SDSE is fundamental. The results of this section will be used to prove the main theorem 14.

A lemma on non-self-dependent vertices

Lemma 36 Let (S) be a Hopf SDSE and let i ∈ I such that a

(i) i = 0. Let j, k and l ∈ I such that a (i) j = 0, a (j) k = 0 and a (i) l = 0. Then a (i) k = 0 or a (l) k = 0.
Proof. Let us assume that a

(i) k = 0. As a (i) j = 0, j = k. As a (i) k = 0, a q ∨ q q i k j = a (i) j,k = 0. Then, from proposition 16, a (i) j λ (i,k) 2 = λ (i,k) 2 a q q i j = a q q q i j k + a q ∨ q q i k j = a (i) j a (j) k + 0; hence, λ (i,k) 2 = a (j) k .
Moreover, As a (i) l = 0, l = k. Then, by proposition 16, a

(i) l λ (i,k) 2 = λ (i,k) 2 a q q i l = a q q q i l k + a q ∨ q q i k l = a (i) l a (l) k + 0, so λ (i,k) 2 = a (l) k . Hence, a (l) k = a (j) k = 0. 2 
Remark. In other words, if (S) is Hopf, then, in G (S) :

i G G j l k =⇒ i G G j l G G k or i G G 0 0 `j l k .
A special case is given by i = k:

i o o G G j l =⇒ i o o G G y y j l .

Symmetric Hopf SDSE

Proposition 37 Let (S) be a Hopf SDSE, such that G (S) is a N -multicycle with N ≥ 3. Then (S) is a multicyclic SDSE.

Proof. Let I = I 1 ∪ • • • ∪ I N be the partition of the set of vertices of the multicycle G (S) . As N ≥ 3, for all i ∈ I, by lemma 28 with i = j:

F i = 1 + i-→j a (i) j h j .
Let j, j ′ ∈ I m . Then any i ∈ I m-1 is a direct ascendant of j and j ′ . By proposition 18-3,

F j = F j ′ . In particular, for k ∈ I m+1 , a (j) k = a (j ′ )
k . We apply the change of variables sending h k to 1 a (j) k h k if k ∈ I m+1 , where j is any element of I m . Then, for any j ∈ I m :

F j = 1 + k∈I m+1 h k .

So (S) is multicyclic. 2

Proposition 38 Let (S) be a Hopf SDSE, such that G (S) is M -quasi-complete graph (M ≥ 2). Then (S) is a 2-multicyclic or a quasi-complete SDSE.

Proof. First, let us choose two vertices x → y in G (S) . Then y → x in G (S) , and by proposition 16, λ (y,y) 2 a q q y x = a q q q y x y + a q ∨ q q y x y , so λ y 's are equal to 0 or 1. We first study three preliminary cases.

First preliminary case.

Let us assume that G (S) = 1 ←→ 2. We put:

F 1 (h 2 ) = ∞ i=0 a i h i 2 , F 2 (h 1 ) = ∞ i=0 b i h i 1 , with a 1 = b 1 = 1. Then λ (1,1) 3 = λ (1,1) 3 a q q q 1 2 1 = 2a q ∨ q q q 1 2 1 1 = 2b 2 . On the other hand, λ (1,1) 3 a q ∨ q q 1 2 2 = 2a q ∨ q q q 1 2 2 1 , so 2a 2 b 2 = 2a 2 : a 2 = 0 or b 2 = 1.
Similarly, b 2 = 0 or a 2 = 1. So a 2 = b 2 = 0 or 1. In the first case, F 1 (h 2 ) = 1 + h 2 and F 2 (h 1 ) = 1 + h 1 . In the second case, let us apply lemma 17-1

with (i 1 , • • • , i n ) = (1, 2, 1, 2, • • • ). If n = 2k is even, we obtain λ (1,2) n = 2 + 2(k -1) = 2k = n. If n = 2k + 1 is odd, λ (1,2) n = 1 + 2k = n. So λ (1,2) n
= n for all n ≥ 1. By proposition 19-1, for all n ≥ 1, a n+1 = a n . So for all n ≥ 0, a n = 1 and

F 1 (h 2 ) = (1 -h 2 ) -1 . Similarly, F 2 (h 1 ) = (1 -h 1 ) -1 .
Second preliminary case. Let us suppose that G (S) is the following graph (which is 3-quasicomplete):

1 o o b b 2 d d Ð Ð Ð Ð Ð Ð Ð Ð Ð 3 
We put:

   F 1 (h 2 , h 3 ) = 1 + h 2 + h 3 + a 2 h 2 2 + a 3 h 2 3 + a ′ h 2 h 3 + O(h 3 ), F 2 (h 1 , h 3 ) = 1 + h 1 + h 3 + b 1 h 2 1 + b 3 h 2 3 + b ′ h 1 h 3 + O(h 3 ), F 3 (h 1 , h 2 ) = 1 + h 1 + h 2 + c 1 h 2 1 + c 2 h 2 2 + c ′ h 1 h 2 + O(h 3 )
. By restriction, using the first preliminary case, restricting to {1, 2}, {1, 3} and {2, 3},a 2 = b 1 , a 3 = c 1 and b 3 = c 2 and all these elements are in {0, 1}. Moreover, by proposition 16, λ

(1,2) 2 a q q 1 2 = 2a q ∨ q q 1 2 2 , so λ (1,2) 2 = 2a 2 . On the other hand, λ (1,2) 2 a q q 1 3 = a q q q 1 3 2 + a q ∨ q q 1 3 2 , so λ (1,2) 2 = 1 + a ′ . Hence, 1 + a ′ = 2a 2 . By symmetry, we obtain 1 + a ′ = 2a 3 , so a 2 = a 3 . Similarly, b 1 = b 3 and c 1 = c 2 , so a 2 = a 3 = b 1 = b 3 = c 1 = c 2 = 0 or 1.
If they are all equal to 0, then a ′ = -1. Then λ

(3,1) 3 a q q q 3 1 2 = a q q q q 3 1 2 1 , so λ (3,1) 3 = 1. Moreover, λ (3,1) 3 a q q q 3 2 1 = a q ∨ q q q 3 2 1 1 , so λ (3,1) 3 = -1: this is a contradiction, so a 2 = a 3 = b 1 = b 3 = c 1 = c 2 = 1,
and a ′ = 1. Similarly, b ′ = 1 and c ′ = 1. As in the first preliminary case, using lemma 17-1, we prove that λ

(i,j) n = n if i = j for all n ≥ 1, and then that F 1 (h 2 , h 3 ) = (1 -h 2 ) -1 (1 -h 3 ) -1 . Similarly, F 2 (h 1 , h 3 ) = (1 -h 1 ) -1 (1 -h 3 ) -1 and F 3 (h 1 , h 2 ) = (1 -h 1 ) -1 (1 -h 2 ) -1 .
Third preliminary case. We now consider the 2-quasi-complete graph with three vertices 1 ←→ 2 ←→ 3. Then I 1 = {1, 3} and I 2 = {2}. We put:

F 2 (h 1 , h 3 ) = 1 + h 1 + h 3 + a (2,0) h 2 1 + a (0,2) h 2 3 + a (1,1) h 1 h 3 + O(h 3 ).
Restricting to {1, 2}, by the first preliminary case, we obtain

F 1 (h 2 ) = 1 + h 2 or F 1 (h 2 ) = (1 -h 2 ) -1 .
1. Let us assume that F 1 (h 2 ) = 1+h 2 . Then by the first case, F 2 (h 1 , 0) = 1+h 1 , so a (2,0) = 0.

Moreover, λ

(2,1) 2

a q q 2 1 = 0, so λ (2,1) 2 a q q 2 3 = a q ∨ q q 2 3 1 : a (1,1) = 0. Then λ (2,3) 2 a q q 2 1 = a q ∨ q q 2 3 1 , so λ (2,3) 2 = a (1,1) = 0, and λ (2,3) 2 a q q 2 3 = 2a q ∨ q q 2 3 3 : a (0,2) = 0. As a consequence, F 2 (h 1 , h 3 ) = 1 + h 2 + h 3 . Restricting to 2 ←→ 3, by the first point, F 3 (h 2 ) = 1 + h 2 .

Let us assume that F

1 (h 2 ) = (1 -h 2 ) -1 . Then F 2 (h 1 , 0) = (1 -h 2 ) -1
by the first point, so a (0,2) = 1. By the first preliminary case, this implies that F 2 (0, h 3 ) = (1h 3 ) -1 and

F 3 (h 2 ) = (1 -h 2 ) -1 .
Similarly with the first case, we prove that λ

(2,i) n

= n if i = 1 or 3 for all n ≥ 1. By proposition 19-1:

a (m+1,n) = m + n + 1 m + 1 a (m,n) , a (m,n+1) = m + n + 1 n + 1 a (m,n) .
An easy induction proves that a (m,n) = m+n m for all m, n, so

F 2 (h 1 , h 3 ) = (1 -h 1 -h 3 ) -1 .
We separate the proof of the general case into two subcases.

General case, first subcase. M = 2. We put

I 1 = {x 1 , • • • , x r } and I 2 = {y 1 , • • • , y s }. For x i ∈ I 1 , we put: F xp = (q 1 ,••• ,qs) a (xp) (q 1 ,••• ,qs) h q 1 y 1 • • • h qs ys .
Restricting to the vertices x p and y q , by the first preliminary case, two cases are possible.

a (xp)

yq,yq = 0. Then, by the third preliminary case, restricting to x p , y q and y q ′ , for all y q , y q ′ , a

yq,y q ′ = 0. So:

F xp = 1 + q h yq .

λ (xp,yq) n

= n for all n ≥ 1. Using proposition 19-1, we obtain:

a (xp) (q 1 ,••• ,qm+1,••• ,qs) = 1 + q 1 + • • • + q s q m + 1 a (xp) (q 1 ,••• ,qs) .
An easy induction proves:

a (xp) (q 1 ,••• ,qs) = (q 1 + • • • + q s )! q 1 ! • • • q s ! .
So:

F xp = 1 - q h yq -1
.

A similar result holds for the y q 's. So, we prove that for any vertex i of G (S) , one of the following holds:

1.

F i = 1 + i-→j h j . 2. F i =   1 - i-→j h j   -1
.

Moreover, by the first preliminary case, if i and j are related, they satisfy both (a) or both (b).

As the graph is connected, every vertex satisfies (a) or every vertex satisfies (b).

General case, second subcase. M ≥ 3. Let us fix i ∈ G and let us denote y 1 , • • • , y q its direct descendants. Restricting to the vertices i and y j , two cases are possible.

a (i)

y j ,y j = 0. As M ≥ 3, with a good choice of y j ′ , we can restrict to the second preliminary case, and we obtain a (i) y j ,y j = 1: contradiction. So this case is impossible.

λ (x,y j ) n

= n for all n ≥ 1. Using proposition 19-1, we obtain, similarly with the case M = 2, if i ∈ I p :

F i = q =p   1 - l∈hq h l   -1 . So (S) is quasi-complete. 2 
Definition 39

1. Let G be a graph. We shall say that G is symmetric if it has only non-self-dependent vertices and if, for i = j, there is an edge from i to j if, and only if, there is an edge from j to i.

2. Let (S) be an SDSE. We shall say that (S) is symmetric if G (S) is symmetric.

Theorem 40 Let (S) be a connected symmetric Hopf SDSE. Then (S) is 2-multicyclic or quasi-complete.

Proof. By proposition 38, it is enough to prove that G (S) is a M -quasi-complete graph, with M ≥ 2. Let us consider a maximal quasi-complete subgraph G ′ of G (S) . This exists, as G (S) contains quasi-complete subgraphs (for example, two related vertices). Let us assume that G ′ = G (S) . As G (S) is connected, there exists a vertex i ∈ G (S) , related to a vertex of G ′ . Let us put

I ′ = I ′ 1 ∪ • • • I ′ M be the partition of the set of vertices of G ′ . First, if i is related to a vertex j of I ′
p , it is related to any vertex of I ′ p . Indeed, let j ′ be another vertex of I ′ p and let k ∈ I ′ q , q = p. By lemma 36, j ′ is related to i. As G (S) is symmetric, i is related to j ′ .

Let us assume that i is not related to at least two I p 's. Let us take k, l in G ′ , in two different I p 's, not related to i. By the first step, j, k and l are in different I p 's, so are related. By lemma 36, k or l is related to i. As G (S) is symmetric, then i is related to k or l: contradiction. So i is not related to at most one I p 's.

As a conclusion:

1. If i is related to every I p 's, by the first step i is related to every vertices of G ′ , so G ′ ∪ {i} is an M + 1-quasi-complete graph, with partition

I 1 ∪ • • • ∪ I M ∪ {x}: this contradicts the maximality of G ′ .
2. If i is related to every I p 's but one, we can suppose up to a reindexation that i is not related to I M . Then, by the first step, i is related to every vertices of

I 1 ∪ • • • ∪ I M -1 . So G ′ ∪{x} is an M -quasi-complete graph, with partition I 1 ∪• • •∪(I M ∪{x}): this contradicts the maximality of G ′ .
In both cases, this is a contradiction, so G (S) = G ′ is quasi-complete. 2

Formal series of a self-dependent vertex

Let (S) be a Hopf SDSE, and let us assume that i is a self-dependent vertex of G (S) . Up to a change of variables, we can suppose that a (i) j = 0 or 1 for all j. In particular, we assume that a

(i) i = 1.
Lemma 41 Under these hypotheses, i is of level 0 and for all j ∈ I, b j = (1 + δ i,j )a

(i) i,j .
Proof. We apply lemma 17-1, with i k = i for all i. We obtain, for all n ≥ 1:

λ (i,j) n = a (i) j + (1 + δ i,j )(n -1) a (i) i,j a (i) i .

So this proves the assertion. 2

Remark. So all the descendants of i are also of level 0.

Lemma 42 Under the former hypotheses, there exists a partition I = I 1 ∪ • • • ∪ I M ∪ J (J eventually empty), with i ∈ I 1 , such that the coefficients a (k) j are given in the following array: 

j \ k I 1 I 2 I 3 • • • I M J I 1 1 β 1 + 1 • • • • • • β 1 + 1 * I 2 . . . 1 -β 2 1 • • • 1 . . . I 3 . . .
I M 1 1 • • • 1 1 -β M . . . J 0 • • • • • • • • • 0 *
Moreover, for all j ∈ I 1 :

F j = M p=1 f βp   l∈Ip h l   .
Finally, the coefficients λ

(j,k) n
are given by λ

(j,k) n = b k (n -1) + a (j)
k for all n ≥ 1 with:

k I 1 I 2 • • • I M J b k β 1 + 1 1 • • • 1 0
Proof. We can apply lemma 26 with λ j = a (i) j and µ

(l) j = -a (l) j + (1 + δ i,j ) a (i) i,j . Then I = I 1 ∪ • • • I M ∪ J, such that -a (k) j + (1 + δ i,j ) a (i)
i,j is given for all j, k by the array: 

j \ k I 1 I 2 • • • I M J I 1 β 1 0 • • • 0 * I 2 0 β 2 . .
I M 0 • • • 0 β M . . . J 0 • • • • • • 0 *
We assume that i ∈ I 1 , without loss of generality. For the row j ∈ J, the result comes from the following observation: let j, k ∈ I such that a (i) j = 0 and a (i) k = 0, then, by proposition 19-1:

a (i) j,k = a (i) j -a (k) j + a (i) i,j a (i) k = 0.
As a

(i) j = 0, then a (i)
i,j = 0, so a (k) j = 0. Lemma 26 also gives:

F i = k p=1 f βp   l∈Ip h l   . So (1 + δ i,j )a (i) i,j = β 1 + 1 if j ∈ I 1 , 1 if j ∈ I 2 ∪ • • • ∪ I M , and 0 if j ∈ J. So a (k) j
is given by for all j, k by the indicated array. We obtain in lemma 41 that:

b k =    β 1 + 1 if k ∈ I 1 , 1 if k ∈ I 2 ∪ • • • ∪ I M , 0 if k ∈ J.
As a conclusion, if j ∈ I 1 , then for all 1 ≤ k ≤ N , a

(j) k = a (i) k and λ (j,k) n = λ (i,k) n for all n ≥ 1. By proposition 19, F i = F j . 2 

Hopf SDSE generated by self-dependent vertices

Proposition 43 Let (S ′ ) be a Hopf SDSE, and let i be a self-dependent vertex of G (S ′ ) . Let (S) be the restriction of (S ′ ) to i and all its descendants. Then (S) is fundamental, with

K 0 = I 1 = J 1 = ∅.
Proof. We use the notations of lemma 42. Note that if i, j are in the same I k , then λ

(i,k) n = λ (j,k) n
for all n ≥ 1, for all k ∈ I. So, by proposition 18-2 the Hopf SDSE formed by i and its descendant is the dilatation of a system with the following coefficients λ

(j,k) n : j \ k 1 2 3 • • • M 1 (β 1 + 1)(n -1) + 1 n • • • • • • n 2 (β 1 + 1)n n -β 2 n • • • n 3 . . . n n -β 3 . . . . . . . . . . . . . . . . . . . . . n M (β 1 + 1)n n • • • n n -β M with i = 1.
We already proved in lemma 42 that:

F 1 = M j=1 f β j (h j ). If j = 1, for all (k 1 , • • • , k M ): a (j) (k 1 +1,••• ,k M ) = (β 1 + 1) M l=1 k l + β 1 + 1 -(β 1 + 1) M l=1 k l -k 1 a (j) (k 1 ,••• ,k M ) k 1 + 1 = (β 1 + 1 + β 1 k 1 ) a (j) (k 1 ,••• ,k M ) k 1 + 1 , a (j) (k 1 ,••• ,k j +1,••• ,k M ) = M l=1 k l + 1 -β j - M l=1 k l + β j k j a (j) (k 1 ,••• ,k M ) k j + 1 = (1 -β j + β j k j ) a (j) (k 1 ,••• ,k M ) k j + 1 .
If l = 1 and l = j:

a (j) (k 1 ,••• ,k l +1,••• ,k M ) = M l=1 k l - M l=1 k l + β l k l a (j) (k 1 ,••• ,k M ) k l + 1 = (1 + β l k l ) a (j) (k 1 ,••• ,k M ) k l + 1 .
So, if j = 1:

F j = f β 1 1+β 1 ((1 + β 1 )h 1 )f β j 1-β j ((1 -β j )h j ) k =1,j f β k (h k ).
Let us put I ′ 0 = {j ≥ 2 / β j = 1} and J ′ 0 = {j ≥ 2 / β j = 1}. Then, after the change of variables

h j -→ 1 1-β j h j for all j ∈ I ′ 0 :                      F 1 = f β 1 (h 1 ) j∈I ′ 0 f β j 1 1 -β j h j j∈J ′ 0 f 1 (h j ), F j = f β 1 1+β 1 ((1 + β 1 )h 1 )f β j 1-β j (h j ) j∈I ′ 0 -{j} f β j 1 1 -β j h j j∈J ′ 0 f 1 (h j ) if j ∈ I ′ 0 , F j = f β 1 1+β 1 ((1 + β 1 )h 1 ) j∈I ′ 0 f β j 1 1 -β j h j j∈J ′ 0 -{j} f 1 (h j ) if j ∈ J ′ 0 .
Putting γ j = β j 1-β j for all j ∈ I 0 , then, as β j = γ j 1+γ j and 1 -

β j = 1 1+γ j :                  F 1 = f β 1 (h 1 ) j∈I ′ 0 f γ j 1+γ j ((1 + γ j )h j ) j∈J ′ 0 f 1 (h j ), F j = f β 1 1+β 1 ((1 + β 1 )h 1 )f γ j (h j ) j∈I ′ 0 -{j} f γ j 1+γ j ((1 + γ j )h j ) j∈J ′ 0 f 1 (h j ) if j ∈ I ′ 0 , F j = f β 1 1+β 1 ((1 + β 1 )h 1 ) j∈I ′ 0 f γ j 1+γ j ((1 + γ j )h j ) j∈J ′ 0 -{j} f 1 (h j ) if j ∈ J ′ 0 .
So this a fundamental system, with

I 0 = {1} ∪ I ′ 0 and J 0 = J ′ 0 . 2 
Corollary 44 Let (S) be a connected Hopf SDSE such that any vertex of G (S) is the descendant of a self-dependent vertex. Then (S) is fundamental, with K 0 = I 1 = J 1 = ∅.

Proof. Let x be a self-dependent vertex of (S). Then the system formed by x and its descendants is fundamental. We then put I (x) 0 and J (x) 0 the partition of the set formed by x and its descendants. We separate I (x) 0 into two parts:

I 0,1 = y ∈ I (x) 0 /β y = -1 , I 0,2 = y ∈ I (x) 0 /β y = -1 .
Then, after elimination of an eventual dilatation by restriction, the direct descendants of x ∈ I 1. We denote by

G (i) (S)
is the subgraph of G (S) formed by i and all its descendants.

The vertex

i is a connecting vertex of G (S) if G (i) (S) -{i} is not connected.
Lemma 46 Let (S) be a Hopf SDSE and let i ∈ G (S) be a connecting vertex. Then (i is the descendant of a self-dependent vertex) or (i belongs to a symmetric subgraph of G (S) ) or (i is not self-dependent and relates several components of a non-connected fundamental SDSE).

Proof. First step. If i is self-dependent, it is a descendant of itself and the conclusion holds. Let us assume that i is not self-dependent. Let G 1 , • • • , G M be the connected components of G (i) (S) -{i} (M ≥ 2). Let x p ∈ G p be a direct descendant of i for all p. Let x ′ p be a direct descendant of x p . Then x ′ p ∈ G p . Choosing q = j and applying lemma 36, there is an edge from i to x ′ p . Iterating this process, we deduce that any vertex of

G (i) (S) -{i} is a direct descendant of i. If i is the direct descendant of a vertex j ∈ G (i) (S) -{i}, then i is included in the symmetric subgraph i ←→ j of G (i) (S)
, so the conclusion holds.

Second step. Let us now assume that i is not the direct descendant of any j ∈ G

(i) (S) -{i}. Let n ≥ 2, j ∈ G p , and let i → x 2 → • • • → x n in G (i) (S) , where x 2 , • • • , x n ∈ G q , p = q. Then, as i is not related to any x l , λ (i,j) n a (i) l(i,x 2 ,••• ,xn) = a B + i ( q j l(x 2 ,••• ,xn)) , so λ (i,j) n = a (i) j,x 2 a (i) x 2
, and λ (i,j) n does not depend on n: we put λ

(i,j) n = λ j for all j ∈ G -{i}, n ≥ 2.
In other words, i has level ≤ 1, and b j = 0 for all j.

Third step. In order to simplify the writing of the proof, up to a reindexation, we shall suppose that i = 0 and the vertices of G (0) (S) -{0} are the elements of {1, • • • , N }. By a change of variables, we can suppose that a (0) j = 1 for all 1 ≤ j ≤ N . By the second step, we can use lemma 27, with µ

(l) j = -a (l) j for all 1 ≤ j, l ≤ N and λ j = a (0) j,k for all j, k in two different connected components of G (0) (S) -{0}.
1. In the first case, we obtain the following values for a (k) j and λ j : 

j \ k I 1 I 2 • • • I M J I 1 -νβ 1 0 • • • 0 -ν I 2 0 -
I M 0 • • • 0 -νβ M -ν J 0 • • • • • • 0 0 j I 1 • • • I M J λ j ν • • • ν 0
As there are no vertices with no descendants, necessarily ν = 0 and β p = 0 for all p. For the same reason,

I 1 ∪ • • • ∪ I M = ∅ is impossible. If J = ∅, then any vertex of J is related to every vertex of I 1 ∪ • • • ∪ I M , so G (0) 
(S) -{0} is connected: impossible, as 0 is a connected vertex. So J = ∅, and 0 connects several totally self-dependent subgraphs.

2. In the second case, we obtain the following values for a (k) j and λ j :

j \ k I 1 I 2 • • • I M J I 1 -ν 1 0 • • • 0 0 I 2 0 -ν 2 . . . . . . . . . . . . . . . . . . . . . 0 . . . I M 0 • • • 0 -ν M 0 J 0 • • • • • • 0 0 j I 1 • • • I M J λ j 0 • • • 0 0
As there are no vertices with no descendants, J = ∅ and ν l = 0 for all l.

Moreover, as b j = 1 + β j = 0 for all j ≥ 1, 0 connects several components of a non-connected fundamental SDSE. 2

Structure of connected Hopf SDSE

Lemma 47 Let (S) be a Hopf SDSE containing a multicycle with set of vertices I = I 1 ∪ • • • ∪ I M , Then any non-self-dependent vertex of G (S) has direct descendants in at most one I k .

Proof. Let us assume that the vertex 0 of G (S) have a direct descendant x ∈ I k and y ∈ I l with k = l. Then lemma 36 implies that any direct descendant of x is a direct descendant of 0, so 0 has also a direct descendant in I k+1 . Similarly, 0 has a direct descendant in I l+1 . Iterating this process, 0 has direct descendants in all the I i 's. Up to a restriction, the situation is the following:

0 0 0 a a a a a a a 9 9 x x x x x x x x x x x x x x C C 1 G G 2 G G 3 G G • • • G G N f f Moreover, for all 1 ≤ i ≤ k, F i (h i+1 ) = 1 + h i+1 , with the convention h N +1 = h 1 .
We first assume M ≥ 3. In order to ease the notation, we do not write the index (0) in the sequel of the proof. By proposition 16, λ (0,2) 2

a q q 0 1 = a q q q 0 1 2 + a q ∨ q q 0 2 1 , so λ (0,2) 2 = 1 + a 1,2 a 1 . On the other hand, λ (0,2) 2 a q q 0 2 = 2a q ∨ q q 0 2 2 , so λ (0,2) 2 = 2 a 2,2 a 2 . Hence: 1 + a 1,2 a 1 = 2 a 2,2 a 2 . Moreover, λ (0,2) 3 a 
q q q 0 2 3 = a q ∨ q q q 0 2 2 3 , so λ (0,2) 3 = 2 a 2,2
a 2 . On the other hand, λ (0,2) 3

a q q q 0 1 2 = a q ∨ q q q 0 1 2 2 , so λ (0,2) 3 = a 1,2 a 1 . Hence: a 1,2 a 1 = 2 a 2,2 a 2 = 1 + a 1,2 a 1 .
This is a contradiction.

Let us now prove the result for N = 2. We assume that there exists a Hopf SDSE with the graph: 0

0 0 b b b b b b b Ð Ð Ð Ð Ð Ð Ð Ð Ð 1 o o G G 2
and such that F 1 = 1 + h 2 and F 2 = 1 + h 1 . We write:

F 0 = i,j a (i,j) h i 1 h j 2 ,
with a (1,0) and a (0,1) non-zero. Then λ (0,1) 2

a q q 0 1 = 2a q ∨ q q 0 1 1 , so λ (0,1) 2 = 2a (2,0)
a (1,0) . On the other hand, λ (0,1) 2

a q q 0 2 = a q ∨ q q 0 2 1 + a q q q 0 2 1 , so λ (0,1) 2 = a (1,1) a (0,1) + 1. We obtain: 2a (2,0) a (1,0) = a (1,1) a (0,1) + 1. Moreover, λ (0,1) 3 a 
q q q 0 1 2 = a q ∨ q q q 0 1 1 2 +a q q q q 0 1 2 1 , so λ (0,1) 3 = 2a (2,0)
a (1,0) +1. On the other hand, λ (0,1) 3

a q q q 0 2 1 = 2a q ∨ q q q 0 2 1 1 , so λ (0,1) 3 = a (1,1) a (0,1)
. So:

a (1,1) a (0,1) + 1 = 2a (2,0) a (1,0) = a (1,1) a (0,1) -1. 
This is a contradiction. 2

Lemma 48 Let (S) be a Hopf SDSE, such that any vertex of G (S) has a direct ascendant. Let i be a vertex of G (S) . Then (i is a descendant of a self-dependent vertex) or (i belongs to a multicycle of G (S) ) or (i belongs to a symmetric subgraph of G (S) ).

Proof. Let us first prove that i is the descendant of a vertex of a cycle of G (S) . As any vertex has a direct ascendant, it is possible to define inductively a sequence (x l ) l≥0 of vertices of G (S) , such that x 0 = i and x l+1 is a direct ascendant of x l for all l. As G (S) is finite, there exists 0 ≤ l < m, such that

x l = x m . Then x l ← x l+1 ← • • • ← x m-1 ← x m = x l is a cycle of G (S)
, and i is a descendant of any vertex of this cycle.

Let

G ′ = x 1 → • • • → x s →
x 1 be a cycle such that i is a descendant of a vertex of G ′ , chosen with a minimal s. As s is minimal, there are no edges from x l to x m in G (S) if m = l + 1, with the convention x s+1 = x 1 . The situation is the following:

x 1 G G • • • G G x s v v y 1 G G • • • G G y t-1 G G i
Three cases are possible:

1. If s = 1, then i is the descendant of a self-dependent vertex.
2. If s = 2, the situation is the following:

x 1 o o G G x 2 y 1 G G • • • G G y t-1 G G i
By minimality of s, there are no self-dependent vertex in {x 1 , x 2 , y 1 , • • • , y t-1 , i}. Applying repeatedly lemma 36, there is an edge from y 1 to x 1 , then from y 2 to y 1 , • • • , then from i to y t-1 . So i belongs to a symmetric subgraph of G (S) .

3. If s ≥ 3, then the subgraph formed by x 1 , • • • , x s is a multicycle. Let G ′ be a maximal multicycle of length s of G, such that i is a descendant of a vertex of G ′ . We denote by I ′ the set of vertices of G ′ . Let us assume that i / ∈ G ′ . There exists

x 1 → y 1 → • • • → y t-1 → y t = i in G, with t ≤ 1,
and x 1 ∈ I ′ . Up to a reindexation, we can assume that x 1 ∈ I ′ 1 . By lemma 36, y 1 is the direct descendant of any vertex of I 1 and the direct ascendant of any vertex of I 3 . By lemma 47, y 1 is not the direct ascendant of any vertex of

I ′ k if k = 3. So I ′ ∪ {x} = I ′ 1 ∪ I ′ 2 ∪ {i} ∪ • • • ∪ I ′ s gives a multicycle of length s, such that i is a descendant of a vertex of I ′ ∪ {i}: this contradicts the maximality of G ′ . So i ∈ I ′ .
2 By the preceding study of Hopf symmetric SDSE:

Corollary 49 Let (S) be connected Hopf SDSE, such that any vertex of G (S) has a direct ascendant. Then (any vertex of G (S) is the descendant of a self-dependent vertex, so (S) is fundamental) or ((S) is quasi-complete, so (S) is fundamental) or ((S) is multicyclic).

Corollary 50 Let (S) be a connected Hopf SDSE. Then there exists a sequence (G i ) 0≤i≤k of subgraphs of G (S) , such that:

• The system (S 0 ) associated to the F i 's, i ∈ G 0 , is fundamental or is multicyclic.

• G k = G (S) .
• For all 0 ≤ i ≤ k -1, G i+1 is obtained from G i by adding a non-self-dependent vertex without any ascendant in G i .

If G 0 is fundamental, any vertex is of finite level. If G 0 is multicyclic, no vertex is of finite level.

Proof. First step. Let us first prove the following (weaker) result: if (S) is a Hopf SDSE, there exists a sequence (G i ) 0≤i≤k of subgraphs of G (S) , such that:

• G 0 is the disjoint union of several fundamental systems or is multicyclic.

• G k = G (S) .
• For all 0 ≤ i ≤ k -1, G i+1 is obtained from G i by adding a non-self-dependent vertex without any ascendant in G i .

Let us proceed by induction on N . If N = 1, then G (S) = G 0 is formed by a single vertex which is necessarily self-dependent, so (S) is fundamental. Let us assume the induction hypothesis at rank ≤ N -1. If any vertex of G (S) has an ascendant, then by corollary 49, we can take G (S) = G 0 . If it is not the case, let us take i being a vertex with no ascendant. The induction hypothesis can be applied to the components of G (S) -{i}. We complete the sequence

(G 0 , • • • , G k ) given in this way by G k+1 = G (S) .
As a consequence, the set of descendants of any self-dependent vertex, every symmetric subgraph, every multicycle of G (S) is included in G 0 .

Second step. Let us assume that G (S) is connected. If G 0 is connected, then it is fundamental or multicyclic. If it is not, let us assume that it is not a non-connected abelian fundamental SDSE. So one of the components H of G 0 is not a fundamental abelian SDSE with I = I 0 . Then for a good choice of i, the vertex added to G i-1 to obtain G i is a connecting vertex, connecting a subgraph containing H and other subgraphs. By the first step, as it does not belong to G 0 , this vertex is not the descendant of a self-dependent vertex and does not belong to a symmetric subgraph. By construction, it does not connect several components of a nonconnected fundamental SDSE: this is a contradiction with lemma 46. So G 0 is of the announced form. 2

Connected Hopf SDSE with a multicycle

Let us precise the structure of connected Hopf SDSE containing a multicycle.

Theorem 51 Let (S) be a connected Hopf SDSE containing a N -multicyclic SDSE. Then I admits a partition I = I 1 ∪ • • • ∪ I N , with the following conditions:

1. If x ∈ I k , its direct descendants are all in I k+1 .

2. If x and x ′ have a common direct ascendant, then they have the same direct descendants.

Moreover, for all x ∈ I:

F x = 1 +
x-→y a (x) y h y .

If x and x ′ have a common direct ascendant, then F x = F x ′ . Such an SDSE will be called an extended multicyclic SDSE.

Proof. We use the notations of corollary 50. We proceed by induction on k. If k = 0, (S) is a multicycle and the result is immediate. Let us assume the result at rank k -1 and let (S ′ ) be the restriction of (S) to all the vertices except the last one, denoted by x. By the induction hypothesis, the set of its vertices admits a partition

I ′ = I ′ 1 ∪• • •∪I ′ N ,
with the required conditions. Let us first prove that all the direct descendants of x are in the same I ′ m . Let y ∈ I k and z ∈ I l be two direct descendants of x, with k = l. Let y ′ ∈ I k+1 be a direct descendant of y and z ′ ∈ I l+1 be a direct descendant of z. Lemma 36 implies that x is a direct ascendant of z ′ and y ′ , as y can't be a direct ascendant of z ′ and z can't be a direct ascendant of y ′ because k = l. So we can replace y by y ′ and z by z ′ . Iterating the process, we can assume that y and z are in the multicycle: this contradicts lemma 47. So the direct descendants of x are all in I m for a good m. We then take I l = I ′ l if l = m -1 and I m-1 = I ′ m-1 ∪ {x} and this proves the first assertion on G (S) .

We now prove the assertion on F x . We separate the proof into two subcases. Let us first assume M ≥ 3. There is an oriented path

x → x m → • • • → x m+M -1 , with x i ∈ I ′
i for all i. Moreover, there is no shorter oriented path from x to x m+M -1 . As M ≥ 3, from lemma 28:

F x = 1 + x-→y a (x) y h y .
Let us secondly assume that M = 2. Let 1, . . . , p be the direct descendants of x and let 0 be a direct descendant of 1. Then as 1, . . . , p are in the same part of the partition of I ′ , they are not direct descendants of 1. Let us first restrict to {x, 1, 0}. By proposition 16, λ (x,0) 3 a q q q

x 1 0 = 0 as a

0,0 = 0 by the induction hypothesis, λ

(x,0) 3 = 0. Moreover, 0 = λ (x,0) 3 a q ∨ q q x 1 1 = a q ∨ q q q x 1 1 0 , so a (x) 1,1 = 0. Similarly, a (x) 2,2 = • • • = a (x) p,p = 0. Let us now take 1 ≤ i < j ≤ p. Then λ (x,i) 2 a q q x i = 0, so λ (x,i) 2 = 0 and 0 = λ (x,i) 2 a q q x j = a q q q x j i , so a (x)
i,j = 0. As a conclusion, F x is of the required form. Proposition 18-3 implies that F x = F x ′ if x and x ′ have a common ascendant, and this implies the second assertion on G (S) .

2

Remark. In particular, the vertex added to G i in order to obtain G i+1 is an extension vertex. By proposition 11, any such SDSE is Hopf.

Connected Hopf SDSE with finite levels

We now prove the following theorem:

Theorem 52 Let (S) be a connected Hopf SDSE, such that any vertex of (S) has a finite level. Then (S) is obtained from a fundamental system by a finite number (possibly 0) of extensions. Such an SDSE will be called an extended fundamental SDSE.

Proof. Let (S) be a connected Hopf SDSE, such that any vertex of (S) is of finite level. We use notations of corollary 50. We shall proceed by induction on k. If k = 0, then S = S 0 and the result is obvious. Let us now assume the result at rank k -1. By the induction hypothesis, the system (S ′ ) associated to G k-1 is a dilatation of a system of theorem 32. Moreover, G is obtained from G k-1 by adding a vertex with all its direct descendants in G k-1 . Let us denote by 0 this vertex. We separate the proof into three cases.

First case. Let us assume that 0 is of level 0. Then all the direct descendants of 0 are of level 0, so are in I 0 ∪ J 0 ∪ I 1 , and ν x = 1 for all direct descendants of x in J i with i ∈ I 1 . Moreover, for all x ∈ I, λ

(0,x) n = b x (n -1) + a (0)
x . Let us take x, y ∈ I. Using proposition 19-1 into two different ways:

a (0) x,y = b y + a (0) y -a (x) y a (0) x = b x + a (0)
xa (y)

x a (0) y .

So, for all x, y ∈ I:

b y -a (x) y a (0) x = b x -a (y)
x a (0) y .

If x and y are in the same I i with i ∈ I 0 ∪ J 0 , then b ya

(x) y = b x -a (y) 
x = 0, so a

(0) x = a (0)
y and for all n ≥ 1, λ (0,x) n = λ (0,y) n . Hence, up to a restriction, we can assume that there is no dilatations on (S ′ ).

Let i ∈ I 1 . If ν i = 1, we already know that a (0) i = 0. Let us assume ν i = 1 and let us choose j ∈ I 0 ∪ J 0 ∪ K 0 , such that a (i) j = b j . Then b i = a (j) i = 0, so [START_REF] Connes | Renormalization and Noncommutative geometry[END_REF] gives b ja (i) j a (0) i = 0. So a (0) i = 0 for all i ∈ I 1 . So the direct descendants of 0 are all in I 0 ∪ J 0 ∪ K 0 . Using proposition 19-1 with i ∈ I 0 ∪ J 0 ∪ K 0 :

a (0) (p 1 ,••• ,p i+1 ,••• ,p N ) =   a (0) i + b i (p 1 + • • • + p N ) - j∈I 0 ∪J 0 ∪K 0 -{i} b i p j -a (i) i p i   a (0) (p 1 ,••• ,p N ) p i + 1 = a (0) i + b i -a (i) i p i a (0) (p 1 ,••• ,p N ) p i + 1 .
So:

F 0 = i∈I 0 f β i a (0) i a (0) i h i i∈J 0 f 1 a (0) i a (0) i h i i∈K 0 f 0 a (0) i h i .
So (S) is a system of theorem 32, with 0 ∈ K 0 ∪ I 1 .

Second case. Let us assume that 0 is of level 1 and is not an extension vertex. Then all the direct descendants of 0 are of level 0, so are in I 0 ∪ J 0 ∪ I 1 , and ν x = 1 for all direct descendants of x in I 1 . Moreover, for all i ∈ I, λ 

(0,i) 1 = a (0) i and λ (0,i) n = b i (n -1) + ã(0) i if n ≥ 2.
a (0) (p 1 ,••• ,1,••• ,p N ) =   ã(0) i + b i (p 1 + • • • + p N ) - N j=1 a (j) i p j   a (0) (p 1 ,••• ,0,••• ,p N ) 0 =   ã(0) i - j∈I 1 a (j) i p j   a (0) (p 1 ,••• ,0,••• ,p N ) .
If there is a j ∈ I 0 ∪ J 0 ∪ K 0 , such that a (0) j = 0, then for (p 1 , • • • , p N ) = ε j , we obtain ã(0) i = 0. If it is not the case, as 0 is not an extension vertex, there exists j, k ∈ I 1 , a (0) j,k = 0 (so a (0) j = 0 and a 

(0) k = 0). Then, for (p 1 , • • • , p N ) = ε j , (p 1 , • • • , p N ) = ε k , and (p 1 , • • • , p N ) = ε j + ε k , we obtain: ã(0) i + a (j) i = ã(0) i + a (k) i = ã(0) i + a (j) i + a (k) i = 0. So ã(0) i = 0. So in all cases, ã (0) 
a (0) i,j = b j + ã(0) j -a (i) j a (0) i = b i + ã(0) i -a (j) i a (0) j . (8) 
Let us take i, j ∈ I 1 . Then a [START_REF] Figueroa | On the antipode of Kreimer's Hopf algebra[END_REF] gives:

(i) j = a (j) i = b i = b j = 0, so
ã(0) j a (0) i = ã(0) i a (0) j . So ã(0) i i∈I 1 and a (0) i i∈I 1
are colinear. By the first item, we deduce that there exists a scalar ν ∈ K, such that for all i ∈ I 1 , ã(0

) i = νa (0) 
i . Let us now take i, j ∈ I 0 ∪ J 0 ∪ K 0 , with i = j. Then b i = a (j) i and b j = a (i) j , so [START_REF] Figueroa | On the antipode of Kreimer's Hopf algebra[END_REF] gives:

ã(0) j a (0) i = ã(0) i a (0) j .

So ã(0)

i i∈I 0 ∪J 0 ∪K 0 and a (0) i i∈I 0 ∪J 0 ∪K 0 are colinear. By the first item, we deduce that there exists a scalar ν ′ ∈ K, such that for all i ∈ I 0 ∪ J 0 ∪ K 0 , ã(0

) i = ν ′ a (0) 
i . Let us now take i ∈ I 0 ∪ J 0 ∪ K 0 and j ∈ I 1 . Then b j = a (i) j = 0, so νa

(0) j a (0) i = b i + ν ′ a (0) i -a (j) i a (0) j . In other words: ∀i ∈ I 0 ∪ J 0 ∪ K 0 , ∀j ∈ I 1 , (ν -ν ′ )a (0) i a (0) j = (b i -a (j) i )a (0) j . ( 9 
)
Third item. Let us assume that I (0) 1 = ∅. Then all the direct descendants of 0 are in

I 0 ∪ J 0 ∪ K 0 . Moreover, if i ∈ I 0 ∪ J 0 ∪ K 0 : a (0) (p 1 ,••• ,p i+1 ,••• ,p N ) =   νa (0) i + b i (p 1 + • • • + p N ) - j∈I 0 ∪J 0 ∪K 0 -{i} b i p j -a (i) i p i   a (0) (p 1 ,••• ,p N ) p i + 1 = νa (0) i + b i -a (i) i p i a (0) (p 1 ,••• ,p N ) p i + 1 .
It is then not difficult to show that (S) is a system of theorem 32, with 0 ∈ I 1 .

Fourth item. Let us assume that ν = ν ′ . Let j ∈ I 1 . If ν j = 1, then we already know that a By [START_REF] Foissy | Finite-dimensional comodules over the Hopf algebra of rooted trees[END_REF], for all i ∈ I 0 ∪ J 0 ∪ K 0 , a

(j) i = b i -(ν -ν ′ )a (0) i does not depend of j. As a consequence, F j = F k for all j, k ∈ I (0) 1 . We put b (0) i = a (j)
i for all i ∈ I 0 ∪ J 0 ∪ K 0 , where j is any element of

I (0) 1 . Let us use proposition 19-1. For all i ∈ I 0 ∪ J 0 ∪ K 0 , if (p 1 , • • • , p N ) = (0, • • • , 0): a (0) (p 1 ,••• ,p i +1,••• ,p N ) =   ν ′ a (0) i + b i -a (i) i p i + (ν -ν ′ )a (0) i j∈I (0) 1 p j    a (0) (p 1 ,••• ,p N ) p i + 1 . For all j ∈ I (0) 1 , if (p 1 , • • • , p N ) = (0, • • • , 0): a (0) (p 1 ,••• ,p i +1,••• ,p N ) = νa (0) i a (0) (p 1 ,••• ,p N ) p i + 1 .
Let us fix i ∈ I 0 ∪ J 0 ∪ K 0 and j ∈ I (0)

1 . Then:

a (0) i,i = ν ′ a (0) i + b i -a (i) i a (0) i , a (0) 
i,i,j = νa

(0) i a (0) j ν ′ a (0) i + b i -a (i) i , a (0) 
i,j = νa (0) i a (0) j , a (0) i,i,j = νa (0) i a (0) j ν ′ a (0) i + b i -a (i) i + (ν -ν ′ )a (0) i .
Identifying the two expressions of a (0) i,i,j , as ν = ν ′ and a (0) j = 0, we obtain ν a

(0) i 2 = 0. If for all i ∈ I 0 ∪ J 0 ∪ K 0 , a (0) 
i = 0, then by the second item, for all j ∈ I (0) 1 , a (j) i = 0, then F j = 1; this is impossible. So there is an i ∈ I 0 ∪ J 0 ∪ K 0 , such that a (0) i = 0. As a consequence, ν = 0. So ν ′ = 0, and we then easily obtain that:

F 0 = 1 ν ′ i∈I 0 f β i b (0) i -1-β i b (0) i -1 -β i h i i∈J 0 f 1 b (0) i -1 b (0) i -1 h i i∈I 0 f 0 b (0) i h i + i∈I (0) 1 a (0) i h i + 1 - 1 ν ′ .
So (S) is a system of theorem 32, with 0 ∈ J 1 .

Third case. 0 is a vertex of level ≥ 2. By proposition 29, it is an extension vertex. 2

8 Lie algebra and group associated to H (S) , associative case

Let us consider a connected Hopf SDSE (S). We now study the pre-Lie algebra g (S) of proposition 21. We separate this study into three cases:

• Associative case: the pre-Lie algebra g (S) is associative. This holds in particular if (S) is an extended multicyclic SDSE.

• Abelian case: (S) is an extended fundamental, abelian SDSE (see definition 33).

• Non-abelian case: (S) is an extended fundamental, non-abelian SDSE.

We first treat the associative case.

Characterization of the associative case

Proposition 53 Let (S) be a Hopf SDSE. Then the pre-Lie algebra g (S) is associative if, and only if, for all i ∈ I:

F i = 1 + i-→j a (i) j h j .
Proof. =⇒. Let us assume that ⋆ is associative. Let i, j, k ∈ I, let us show that a

(i) j,k = 0. If a (i) j = 0 or a (i) k = 0, then a (i) j,k = 0. Let us suppose that a (i) j = 0 and a (i) k = 0. Then: 0 = (f k (1) ⋆ f j (1)) ⋆ f i (1) -f k (1) ⋆ (f j (1) ⋆ f i (1)) = λ (j,k) 1 λ (i,j) 1 -λ (i,j) 1 λ (i,k) 2 f i (3) = λ (i,j) 1 λ (j,k) 1 -λ (i,k) 2 f i (3) = a (i) j a (j) k -λ (i,k) 2 f i (3). So λ (i,k) 2 = a (j)
k . Moreover, by proposition 16:

a (i) j a (j) k = λ (i,k) 2 a q q i j = a q q q i j k + (1 + δ j,k )a q ∨ q q i k j = a (i) j a (j) k + (1 + δ j,k )a (i) j,k .
So a (i) j,k = 0. As a consequence:

F i = 1 + i-→j a (i) j h j .
Proposition 57 Let G be an oriented graph.

1. The following conditions are equivalent:

(a) The family (P i (n)) i∈I,n≥1 is a basis of A G .

(b) All the P i (n) are non-zero.

(c) The graph G satisfies the following conditions:

• Any vertex of G has a direct descendant.

• If two vertices of G have a common direct ascendant, then they have the same direct descendants.

(d) The SDSE associated to the following formal series is Hopf:

∀i ∈ I, F i = 1 + i→j h j .

If this holds, then

A G is generated by P i (1), i ∈ I, and the following relations:

• If j is not a direct descendant of i in G, P j (1)P i (1) = 0.

• If i → j and i → k in G, then P j (1)P i (1) = P k (1)P i (1).

The product of A G is given by: Then for all i ∈ I, P i (2) = 0, so there exists a j such that i → j in G: any vertex of G has a direct descendant. Let us assume i → j and i → j ′ in G. Let k be a direct descendant of j. Then P i (2) = P j (1)P i (i) = P j ′ (1)P i (1) and P i (3) = P k (1)P j (1)P i (1) = P k (1)P i (2) = 0, so P k (1)P i (2) = P k (1)P j ′ (1)P i (1) = 0. As a consequence, P k (1)P j ′ (1) = 0 and k is a direct descendant of j ′ . By symmetry, the direct descendants of j ′ are also direct descendants of j: two direct descendants of a same vertex have the same direct descendants.

P j (n)P i (m) = P i (m + n) if i m -→ j, 0 if not. Moreover, if (S) is the system of condition (d), g (S)
(c) =⇒ (d). Then for all i ∈ I, for all n ≥ 1:

X i (n) = l(i, i 2 , • • • , i n ),
where the sum runs on all oriented paths i →

i 2 → • • • -→ i n in G (S) . So: ∆(X i (n)) = n k=0 l(i k+1 , . . . , i n ) ⊗ l(i, i 2 , • • • , i k ). If i → i 2 • • • → i k → i k+1 and i → i ′ 2 • • • → i ′ k → i ′ k+1
, the second condition on G implies that i 3 and i ′ 3 are direct descendants of i 2 and i ′ 2 ,. . ., i k+1 and i ′ k+1 are direct descendants of i k and i ′ k . So:

∆(X i (n)) = n k=0 i→•••→i k , i k -→i k+1 , i k+1 →•••→in l(i k+1 , . . . , i n ) ⊗ l(i, i 2 , • • • , i k ) = n k=0 i k -→j X j (n -k) ⊗ X i (k).
Second step. Then, for all i ∈ I, for all n ≥ 1:

X i (n) = a (i) i 1 • • • a (i n-1 ) in l(i, i 2 , • • • , i n ),
where the sum runs on all oriented paths i →

i 2 → • • • -→ i n in G (S) . The first step implies that a (i) i 1 . . . a (i n-1
) in depends only of i and n: we denote it by a (i) n . Then:

X i (n) = a (i) n l(i, i 2 , • • • , i n ), ∆(X i (n)) = k+l=n i l -→j a (i) n a (i) l a (j) k X j (k) ⊗ X i (l). Dually, putting p i (n) = a (i) n f i (n) for all 1 ≤ i ≤ N , n ≥ 1, the pre-Lie product of g (S)
is given by:

f j (n) ⋆ f i (m) =      a (i) m+n a (i) m a (j) n f i (m + n) if i m -→ j, 0 otherwise; p j (n) ⋆ p i (m) = p i (m + n) if i m -→ j, 0 otherwise.
Last step. It is then clear that the associative algebra g (S) is generated by the p i (1), i ∈ I, and that these elements satisfy the relations defining A G (S) . So there is an epimorphism of algebras:

Θ : A G (S) -→ g (S) P i (1) -→ p i (1). 
This morphism sends P i (n) to p i (n) for all n ≥ 1. As the p i (n)'s are a basis of A G (S) , the P i (n)'s are linearly independent in A G (S) , so the graph G (S) satisfies condition (c) of proposition 57. Moreover, Θ is an isomorphism. 2

Group of characters

The non-unitary, associative algebra g (S) is graded, with p i (k) homogeneous of degree k for all k ≥ 1. Moreover, g (S) (0) = (0). The completion g (S) is then an associative non-unitary algebra. We add it a unit and obtain an associative unitary algebra K ⊕ g (S) . It is then not difficult to show that the following set is a subgroup of the units of K ⊕ g (S) :

G =    1 + k≥1 x k | ∀k ≥ 1, x k ∈ g (S) (k)    .
Proposition 59 The group of characters Ch H (S) is isomorphic to G.

Proof. We put V = V ect(X i (k)|i ∈ I, k ≥ 1). Let g ∈ V * . Then g can be uniquely extended in a map g from H (S) to K by g((1) + Ker(ε) 2 ) = (0), where ε is the counit of H (S) . Moreover, g ∈ g (S) . This construction implies a bijection:

Ω : Ch H (S) -→ G f -→ 1 + f |V .
Proposition 61 Let g be the following Lie algebra:

W c 1 ,υ (1) ⊕ . . . ⊕ W c N ,υ (N) ⊳ V M 0 ⊳ g F dB .
It has a basis:

g (j) (k) 1≤j≤N, k≥1 ∪ f (i) (k) 1≤i≤M, k≥1
∪ (e(k)) k≥1 , and its bracket is given by: 

                [e(k), e(l)] = (l -k)e(k + l), [e(k), f (i) (l)] = lf (i) (k + l), [e(k), g (i) (l)] = (l + c ′ i )g (i) (k + l), [f (i) (k), f (j) (l)] = 0, [f (i) (k), g (j) (l)] = υ (j) i g (j) (k + l), [g (i) (k), g (j) (l)] = 0.
Let us take g as in this proposition. We define three families of modules over g:

1. Let ν = (ν 1 , . . . , ν M ) ∈ K M . The module W ′
ν,0 has a basis (h(k)) k≥1 , and the action of g is given by:

       e(k).g(l) = (l -1)h(k + l), f (i) (k).h(1) = ν i h(k + 1), f (i) (k).h(l) = 0 if l ≥ 2, g (i) (k).h(l) = 0. 2. Let ν = (ν 1 , . . . , ν M ) ∈ K M . The module W ′
ν,1 has a basis (h(k)) k≥1 , and the action of g is given by: 

          e(k).h(1) = h(k + 1), e(k).h(l) = (l -1)h(k + l) if l ≥ 2, f (i) (k).h(1) = ν i h(k + 1), f (i) (k).h(l) = 0 if l ≥ 2, g (i) (k).h(l) = 0. 3. Let c ∈ K, ν = (ν 1 , . . . , ν M ) ∈ K M , µ = (µ 1 , . . . , µ N ) ∈ K N . The module W ′′
c,ν,µ has a basis (h(k)) k≥1 , and the action of g is given by: 

      e(k).h(l) = (l + c)h(k + l), f (i) (k).h(l) = ν i h(k + l), g (i) (k).h(1) = µ i h(k + 1), g (i) (k).h(l) = 0 if l ≥ 2.

Description of the Lie algebra

Theorem 62 Let us consider a connected, fundamental non-abelian SDSE. Then g (S) has the following form:

g (S) ≈ W ⊳ W c 1 ,υ (1) ⊕ . . . ⊕ W c N ,υ (N) ⊳ V M 0 ⊳ g F dB ,
where W is a direct sum of W ′ ν,0 , W ′ ν,1 and W ′′ c,ν,µ .

Proof. First step. We first consider a Hopf SDSE (S), dilatation of a system of theorem 32, such that I = I 0 ∪ J 0 ∪ K 0 . The set J of the vertices of G (S) admits a partition J = (J x ) x∈I 0 ∪ (J x ) x∈J 0 ∪ (J x ) x∈K 0 . We put:

A = {j ∈ J / b j = 0}, B = {j ∈ J / b j = 0}.
In other terms, i ∈ A if, and only if, (i ∈ J x , with x ∈ I 0 such that b x = -1) or (i ∈ J x , with x ∈ J 0 ). As we are in the non-abelian case, A = ∅. Let us choose i x ∈ J x for all x ∈ I, and i x 0 ∈ A. In order to enlighten the notations, we put i 0 = i x 0 . We define, for all k ≥ 1:

                             p i 0 (k) = 1 b x 0 f i 0 (k), p i (k) = 1 b x 0 (f i (k) -f i 0 (k)) if i ∈ J x 0 -{i 0 }, p ix (k) = 1 b x f i (k) - 1 b x 0 f i 0 (k) if x = x 0 and x ∈ A, p ix (k) = f i (k) if x ∈ B, p i (k) = 1 b x (f i (k) -f ix (k)) if i ∈ J x -{i x }, x = x 0 and x ∈ A, p i (k) = f i (k) -f ix (k) if i ∈ J x -{i x }, x ∈ B.
Then direct computations show that the Lie bracket of g (S) is given in the following way: for all k, l ≥ 1,

• [p i 0 (k), p i 0 (l)] = (l -k)p i 0 (k + l).
• For all i ∈ I,

[p i 0 (k), p i (l)] = (l + d x 0 )p i (k + l) if i ∈ J x 0 -{i 0 }, lp i (k + l) if i / ∈ J x 0 . • For all i ∈ J x 0 -{i 0 }, for all x = x 0 , [p ix (k), p i (l)] = -d x 0 p i (k + l) if x ∈ A, 0 if x ∈ B. • For all x, x ′ ∈ I -{x 0 }, [p ix (k), p i x ′ (l)] = 0. • For all x, x ′ ∈ I -{x 0 }, i ∈ J x ′ -{i x ′ }, [p ix (k), p i (l)] = 0 if x = x ′ , d x p i (k + l) if x = x ′ . • For all x, x ′ ∈ I -{x 0 }, i ∈ J x -{i x }, j ∈ J x ′ -{i x ′ }, [p i (k), p j (l)] = 0.
We used the following notations:

d x =            -β x 1 + β x if x ∈ I 0 , β x = -1, 1 if x ∈ I 0 , β x = -1, -1 if x ∈ J 0 , 0 if x ∈ K 0 .
So the Lie algebra g (S) is isomorphic to:

  W |Jx 0 |-1 dx 0 ,(-dx 0 ,••• ,-dx 0 ,0,••• ,0) ⊕ x∈I-{x 0 } W |Ix|-1 0,(0,••• ,0,dx,0,••• ,0)   ⊳ V |I|-1 0 ⊳ g F dB .
A basis adapted to this decomposition is:

(p i (k)) i∈Jx 0 -{i 0 },k≥1 ∪   x∈I-{x 0 } (p i (k)) i∈Jx-{ix},k≥1   ∪   x∈I-{x 0 } (p ix (k)) k≥1   ∪ (p i 0 (k)) k≥1 .
Second step. We now assume that I 1 = ∅. Then the descendants of j ∈ I 1 form a system of the first step, so: g (S) = W I 1 ⊳ g (S 0 ) , where W I 1 = V ect(f j (k) / j ∈ I 1 , k ≥ 1} and (S 0 ) is a restriction of (S) as in the first step. Let us fix j ∈ I 1 and let us consider the g (S 0 ) -module W j = V ect(f j (k) / k ≥ 1). With the notations of the preceding step:

• [p i 0 (k), f j (l)] = l -1 + a (j) i 0 bx 0 f j (k + l) if l = 1.
• [p i 0 (k), f j (l)] = l -1 + ν j a (j) i 0 bx 0

f j (k + l) if l ≥ 2. • [p ix (k), f j (l)] = a (j) ix bx - a (j) i 0 bx 0 f j (k + l) if l = 1, x ∈ A. • [p ix (k), f j (l)] = ν j a (j) ix bx - a (j) i 0 bx 0 f j (k + l) if l ≥ 2, x ∈ A. • [p ix (k), f j (l)] = a (j) ix f j (k + l) if l = 1, x ∈ B.
• [p ix (k), f j (l)] = ν j a (j)

ix f j (k + l) if l ≥ 2, x ∈ B.
• [p i (x), f j (l)] = 0 if i is not a i x .

If ν j = 0, we put p j (k) = f j (k) if k ≥ 2 and p j (1) = ν j f j (1). Then, for all l:

• [p i 0 (k), p j (l)] = l -1 + ν j a (j) i 0 bx 0 p j (k + l).

• [p ix (k), p j (l)] = ν j a (j) ix bx -a (j) i 0 bx 0 p j (k + l) if x ∈ A.

• [p ix (k), p j (l)] = ν j a (j)

ix p j (k + l) if x ∈ B.
• [p i (x), p j (l)] = 0 if i is not a i x . So W j is a module W c,υ . If ν j = 0 and a (j) i 0 = 0, we put p j (k) = f j (k) if k ≥ 2 and p j (1) = bx 0 a (j) i 0 f j (1). Then:

• [p i 0 (k), p j (l)] = p j (k + l) if l = 1.

• [p i 0 (k), p j (l)] = (l -1)p j (k + l) if l ≥ 2.

• [p ix (k), f j (l)] = a (j) ix bx - a (j) i 0 bx 0 f j (k + l) if l = 1, x ∈ A. • [p ix (k), f j (l)] = 0 if l ≥ 2, x ∈ A. • [p ix (k), f j (l)] = a (j) ix f j (k + l) if l = 1, x ∈ B. • [p ix (k), f j (l)] = 0 if l ≥ 2, x ∈ B.
• [p i (x), p j (l)] = 0 if i is not a i x . So W j is a module W ′ ν,1 . If ν j = 0 and a (j) i 0 = 0, we put p j (k) = f j (k) for all k ≥ 1. Then:

• [p i 0 (k), p j (l)] = (l -1)p j (k + l).

• [p ix (k), f j (l)] = a (j) ix bx - a (j) i 0 bx 0 f j (k + l) if l = 1, x ∈ A.
• [p ix (k), f j (l)] = 0 if l ≥ 2, x ∈ A.

• [p ix (k), f j (l)] = a (j)

ix f j (k + l) if l = 1, x ∈ B.
• [p ix (k), f j (l)] = 0 if l ≥ 2, x ∈ B.

• [p i (x), p j (l)] = 0 if i is not a i x .

So W j is a module W ′ ν,0 .

Last step. We now consider vertices in J 1 . If j ∈ J 1 , then its descendants are vertices of the first step and i elements of I 1 such that ν i = 1. As before:

g (S) = W J 1 ⊳ g (S 1 ) ,
where W J 1 = V ect(f j (k) / j ∈ J 1 , k ≥ 1} and (S 1 ) is a restriction of (S) as in the second step. Let us fix j ∈ J 1 and let us consider the g (S 1 ) -module W j = V ect(f j (k) / k ≥ 1). As ν j = 0, putting p j (k) = f j (k) if k ≥ 2 and p j (1) = ν j f j (1):

• [p i 0 (k), p j (l)] = l -1 + ν j a (j) i 0 bx 0 p j (k + l).

• [p ix (k), p j (l)] = ν j a (j) ix bx -a (j) i 0 bx 0 p j (k + l) if x ∈ A.

• [p ix (k), p j (l)] = ν j a (j)

ix p j (k + l) if x ∈ B.
• [p i (k), p j (l)] = ν j a (j) i p j (k + l) if l = 1, i ∈ I 1 , with ν i = 1.

• [p i (k), p j (l)] = 0 if l ≥ 2, i ∈ I 1 .

• [p i (x), p j (l)] = 0 if i / ∈ I 1 and is not a i x .

So W j is a module W ′′ c,ν,µ . 2

Theorem 63 Let (S) be a connected, extended, fundamental, non-abelian SDSE. Then the Lie algebra g (S) is of the form:

g m ⊳ (g m-1 ⊳ (• • • g 2 ⊳ (g 1 ⊳ g 0 ) • • • ),
where g 0 is the Lie algebra associated to the restriction of (S) to the vertices which are not extension vertices (so g 0 is described in theorem 62) and, for j ≥ 1, g j is an abelian (g j-1 ⊳ (• • • g 2 ⊳ (g 1 ⊳ g 0 ) • • • )-module having a basis (h (j) (k)) k≥1 .

Proof. The Lie algebra g j is the Lie algebra V ect(f x j (k) / k ≥ 1), where J 2 = {x 1 , . . . , x m }, with the notations of theorem 14. 2

Associated group

Let us now consider the character group Ch H (S) of H (S) . In the preceding cases, g (S) contains a sub-Lie algebra isomorphic to the Faà di Bruno Lie algebra, so Ch H (S) contains a subgroup isomorphic to the Faà di Bruno subgroup:

G F dB = {x + a 1 x 2 + a 2 x 3 + • • • | ∀i, a i ∈ K},
with the product defined by A(x).B(x) = B • A(x). Moreover, each modules earlier defined on g F dB corresponds to a module over G F dB by exponentiation:

Definition 64

1. The module V 0 is isomorphic to yK[[y]] as a vector space, and the action of G F dB is given by: A(x).P (y) = P • A(y).

10 Lie algebra and group associated to H (S) , abelian case

We now treat the abelian case. Recall that in this case, J 0 = K 0 = ∅ and, for all i ∈ I 0 , β i = -1.

Modules over an abelian Lie algebra

Let g ab be an abelian Lie algebra, with basis e (i) (k) 1≤i≤M,k≥1 . We define a family of modules over this Lie algebra:

Definition 66 Let υ = (υ 1 , • • • , υ M ) ∈ K M .
Then V υ has a basis (f (k)) k≥1 , and the action of g ab is given by: e (i) (k).f (l) = υ i f (k + l).

We can then describe the semi-direct product:

Proposition 67 Let us consider the following Lie algebra:

g = N i=1
V υ (i) ⊳ g ab .

It has a basis:

(e (i) (k)) 1≤i≤M,k≥1 ∪ (f (i) (k)) 1≤i≤N,k≥1 , and the Lie bracket is given by:     

[e (i) (k), e (j) (l)] = 0, [e (i) (k), f (j) (l)] = υ (j) i f (j) (k + l), [f (i) (k), f (j) (l)] = 0.

We now define two families of modules over such a Lie algebra.

Definition 68 Let g be a Lie algebra of proposition 67.

1. Let ν = (ν 1 , . . . , ν M ) ∈ K M . The module W ν has a basis (g(k)) k≥1 , and the action of g is given by:    e (i) (k).g(1) = ν i g(k + 1), e (i) (k).g(l) = 0 if l ≥ 2, f (i) (k).g(l) = 0.

2. Let ν = (ν 1 , . . . , ν M ) ∈ K M and µ = (µ 1 , . . . , µ N ) ∈ K N , such that for all 1 ≤ i ≤ M , for all 1 ≤ j ≤ N , µ j ν iυ (j) i = 0. The module W ′ ν,µ has a basis (g(k)) k≥1 , and the action of g is given by:    e (i) (k).g(l) = ν i g(k + l), f (j) (k).g(1) = µ j g(k + 1), f (j) (k).g(l) = 0 if l ≥ 2.

Remark. The condition µ j ν iυ (j) i = 0 is necessary for W ′ ν,µ to be a g-module. Indeed:

[e (i) (k), f (j) (l)].g(1) = υ (j) i µ j g(k + l + 1), e (i) (k). f (j) (l).g(1)f (j) (l). e (i) (k).g [START_REF] Bergbauer | Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology[END_REF] = µ j ν i g(k + l + 1).

Description of the Lie algebra

We here consider a connected Hopf SDSE (S) in the abelian case.

Theorem 69 Let us consider a Hopf SDSE of abelian fundamental type, with no extension vertices. Then g (S) has the following form:

g (S) ≈ W ⊳ ((V υ (1) ⊕ . . . ⊕ V υ (N) ) ⊳ g ab ) ,
where W is a direct sum of W ν and W ′ ν,µ .

Proof. First step. We first consider a Hopf SDSE such that:

I = x∈I 0 J x .
For all x ∈ I 0 , let us fix i x ∈ J x . We put p ix (k) = f ix (k) and

p i (k) = f i (k)-f ix (k) if i ∈ J x -{i x }.
Then direct computations show that:

• [p ix (k), p i x ′ (l) ] = 0.

• [p ix (k), p j (l)] = δ x,x ′ p j (k + l) if j ∈ J x ′ -{i x ′ }.

• [p i (k), p j (l)] = 0 if i, j are not i x 's.

So:

g (S) ≈   x∈I 0 V ⊕|Jx|-1 (0, 
...,0,1,0,...,0)   ⊳ g ab ,

where g ab = V ect(p ix (k) / x ∈ I 0 , k ≥ 1).

Second step. We now assume that I 1 = ∅. Then the descendants of j ∈ I 1 form a system as in the first step, so:

g (S) = W I 1 ⊳ g (S 0 ) ,
where W I 1 = V ect(f j (k) / j ∈ I 1 , k ≥ 1} and (S 0 ) is the restriction of (S) to the regular vertices. Let us fix j ∈ I 1 and let us consider the g (S 0 ) -module W j = V ect(f j (k) / k ≥ 1). With the notations of the preceding step:

• [p ix (k), f j (l)] = a (j) ix f j (k + l) if l = 1.
• [p ix (k), f j (l)] = ν j a (j) ix f j (k + l) if l ≥ 2.

• [p i (x), f j (l)] = 0 if i is not a i x .

If ν j = 0, we put p j (k) = f j (k) if k ≥ 2 and p j (1) = ν j f j (1). Then, for all l:

• [p ix (k), f j (l)] = ν j a (j) ix f j (k + l).

• [p i (x), f j (l)] = 0 if i is not a i x . So W j is a module V υ . If ν j = 0, we put p j (k) = f j (k) for all k ≥ 1. Then:

• [p ix (k), f j (l)] = a (j) ix f j (k + l) if l = 1.
• [p ix (k), f j (l)] = 0 if l ≥ 2.

• [p i (x), f j (l)] = 0 if i is not a i x .

11 Appendix: dilatation of a pre-Lie algebra Let (S) be a Hopf SDSE with set of indices I. We choose a set J and consider the disjoint union I ′ of several copies J i of J indexed by I. The Lie algebra g (S) has a basis (f i (k)) i∈I, k≥1 and the Lie bracket is given by: [f i (k), f j (l)] = λ (j,i) l f j (k + l)λ (i,j)

k f i (k + l).
Let (S ′ ) be the dilatation of (S) with set of indices I ′ . Then the Lie algebra g (S ′ ) has a basis (f i (k)) i∈J, k≥1 and the Lie bracket is given in the following way: for all x ∈ J i , y ∈ J j , [f i (k), f j (l)] = λ (j,i) l f y (k + l)λ (i,j) k f x (k + l).

We shall say that g (S ′ ) is a dilatation of g (S) . We prove in this section that this construction is equivalent to give a pre-Lie product of g (S) .

Dilatation of a pre-Lie algebra

Definition 73 [START_REF]Un endofoncteur de la catégorie des opérades, Dialgebras and related operads[END_REF] A permutative, associative algebra is a couple (A, •) where A is a vector space and • is a bilinear associative (non-unitary) product on A such that for all a, b, c ∈ A: abc = bac.

Proposition 74 Let (A, •) be a vector space with a bilinear product. For any pre-Lie algebra (g, ⋆), we define a product on g ⊗ A by: (x ⊗ a) ⋆ (y ⊗ b) = (x ⋆ y) ⊗ (ab).

Then g ⊗ A is pre-Lie for any pre-Lie algebra g if, and only if, A is permutative, associative. So g ⊗ A is pre-Lie.

=⇒. Let us assume that g ⊗ A is pre-Lie for any pre-Lie algebra g. Let us choose g as the pre-Lie algebra P rim(H * D ), with D containing three distinct elements i, j, k. Then, for any a, b, c ∈ A:

((f q i ⊗ a) ⋆ (f q j ⊗ b)) ⋆ (f q k ⊗ c) -(f q i ⊗ a) ⋆ ((f q j ⊗ b) ⋆ (f q k ⊗ c)) = f q q q k j i ⊗ (ab)c -f q ∨ q q k j i + f q q q k j i ⊗ a(bc) = f q q q k j i ⊗ ((ab)c -a(bc)) -f q ∨ q q k j i ⊗ a(bc) = ((f q j ⊗ b) ⋆ (f q i ⊗ a)) ⋆ (f q k ⊗ c) -(f q j ⊗ b) ⋆ ((f q i ⊗ a) ⋆ (f q k ⊗ c)) = f q q q k i j ⊗ ((ba)c -b(ac)) -f q ∨ q q k j i
⊗ b(ac).

So:

f q q q k j i ⊗ ((ab)ca(bc))f q ∨ q q k j i ⊗ a(bc) = f q q q k i j ⊗ ((ba)cb(ac))f q ∨ q q k j i ⊗ b(ac).

Applying q q q k j i ⊗ Id A on the two sides of this equality, we obtain (ab)ca(bc) = 0. So A is associative. Applying q ∨ q q k j i ⊗ Id A on the two sides of this equality, we obtain a(bc) = b(ac), so
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  are non-zero.

3

  Characterisation and properties of Hopf SDSE 3.1 Subalgebras of H D generated by spans of trees Let us fix a non-empty set D.

  's, and determine the other coefficients of the F i 's, as shown by the following result: Lemma 17 Let us assume that (S) is Hopf, with I = {1, . . . , N }. Let us fix i ∈ I.

2 4. 4

 24 Vertices of level ≥ 2

  y. So, up to a change of variables, we can suppose that all the a (x)

1 1 . 1 = 2 7

 1112 direct descendants of x ∈ I (x) 0,1 are the elements of I and the elements of J (x) 0 except x. Let us consider the following cases:1. If there exists a vertex x, such that J (x) 0 = ∅, then, as G (S) is connected, for any selfdependent vertex y, J a consequence, for any self-dependent vertex y, I We then deduce that (S) is fundamental, with J 0 = J (x) 0 for any self-dependent vertex x. 2. If for any self-dependent vertex x, J (x) 0 = ∅, and if there is a self-dependent vertex x such that I (x) 0,2 = ∅, then by connectivity of G (S) , for any self-dependent vertex y, I {y}, or I (y) 0,2 is empty if y ∈ I (x) 0,2 . Then (S) is a fundamental, with J 0 = ∅. 3. If for any self-dependent vertex x, J (x) 0 = ∅ = I (x) 0,2 . Then by connectivity, I = I (x) 0,1 for any self-dependent vertex. So (S) is fundamental, with J 0 = ∅. In all cases, (S) is fundamental. The structure theorem of Hopf SDSE 7.1 Connecting vertices Definition 45 Let (S) be an SDSE and let i ∈ G (S) .

  First item. Let us assume that a (0) i = 0. Then by proposition 19-1:

  i = 0. Moreover, for (p 1 , • • • , p N ) = ε j for any j ∈ I 1 , we obtain a Then for i ∈ I, such that a Second item. Let us take i, j ∈ I. Using proposition 19-1 into two different ways:

j

  = 0. If ν j = 1, then for a good choice of i, b ia and the result is proved in the third item.

Fifth item .

 item Let us assume that I (0) 1 = ∅. By the preceding item, ν = ν ′ . Let us take j ∈ I

  is associative and isomorphic to A G . Proof. 1. (a) =⇒ (b) is obvious. (b) =⇒ (c). Let us assume (b).

  Proof. ⇐=. Let g be a pre-Lie algebra, and let x, y, z ∈ g, a, b, c ∈ A. Then:((x ⊗ a) ⋆ (y ⊗ b)) ⋆ (z ⊗ c) -(x ⊗ a) ⋆ ((y ⊗ b) ⋆ (z ⊗ c)) = ((x ⋆ y) ⋆ zx ⋆ (y ⋆ z)) ⊗ abc = ((y ⋆ x) ⋆ zy ⋆ (x ⋆ z)) ⊗ bac = ((y ⊗ b) ⋆ (x ⊗ a)) ⋆ (z ⊗ c) -(y ⊗ b) ⋆ ((x ⊗ a) ⋆ (z ⊗ c)).

  is the solution of the system (S ′ ). Moreover, φ sends H (S) onto H (S ′ ) . As φ is a Hopf algebra automorphism, H (S) is a Hopf subalgebra of H I if, and only if, H (S ′ ) is.

⇐=. Then X i (n) is a linear span of ladders of weight n for all n ≥ 1, for all i ∈ I. As a consequence, if x ∈ V ect(X i (n) / i ∈ I, n ≥ 1), for all f, g ∈ g (S) :

So if f, g, h ∈ G (S) , for all x ∈ V ect(X i (n) / i ∈ I, n ≥ 1):

So (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h): g (S) is an associative algebra.

2

Corollary 54 Let (S) be a connected Hopf SDSE. Then g (S) is associative if, and only if one of the following assertions holds:

1. (S) is an extended multicyclic SDSE.

(S) is an extended fundamental SDSE, with:

• For all i ∈ I 0 , β i = -1.

• J 0 , K 0 , I 1 and J 1 are empty.

If the second assertion holds, then (S) is also an extended fundamental abelian SDSE, and another interpretation of g (S) can be given; see theorem 70.

An algebra associated to an oriented graph

Notations. Let G an oriented graph, i, j ∈ G, and n ≥ 1. We shall denote i n -→ j if there is an oriented path from i to j of length n in G.

Definition 55 Let G be an oriented graph, with set of vertices denoted by I. The associative, non-unitary algebra A G is generated by P i (1), i ∈ I, and the following relations:

• If j is not a direct descendant of i in G, P j (1)P i (1) = 0.

)P i 1 [START_REF] Bergbauer | Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology[END_REF].

Let G be an oriented graph, and let i ∈ I and n ≥ 1. For any oriented path i

. If there is no such an oriented path, we put P i (n) = 0. By definition of A G (second family of relations), this does not depend of the choice of the path.

Lemma 56 Let G be an oriented graph. Then the P i (n)'s, i ∈ I, n ≥ 1, linearly generate A G . Moreover, if P i (m) and P j (n) are non-zero, then:

If this is not the case, then j is not a direct descendant of i m , so P j (1)P im (1) = 0 and P j (n)P i (m) = 0.

2 So (S) is Hopf.

(d) =⇒ (a). Then, for all i ∈ I, for all n ≥ 1:

where the sum runs on all oriented paths i →

. By proposition 53, g (S) is associative. Moreover, it is quite immediate to prove that in g (S) :

So there is a morphism of algebras from A G to g (S) , sending P i (1) to f i (1). This morphism sends P i (n) to f i (n). As the f i (n)'s are linearly independent, so are the P i (n)'s.

2. Let A ′ G be the associative, non-unitary algebra generated by the relations of proposition 57-2. As these relation are immediatly satisfied in A G , there is a unique morphism of algebras:

G by induction on k. For k = 2, this is implied by the second family of relations defining A ′ G . Let us assume the result at rank k. Then, both in A G and A ′ G :

This is equal to P i (k + 1) in A G , so is non-zero. As a consequence, P i k+1 (1)

in A ′ G , so:

So the relations defining A G are also satisfied in A ′ G , so there is a morphism of algebras:

It is clear that Φ and Ψ are inverse isomorphisms of algebras. 2

then there exists vertices of G (S) such that:

9 Lie algebra and group associated to H (S) , non-abelian case

In non-abelian or abelian cases, then any vertex of G (S) is of finite level. By proposition 21, the constant structures of the pre-Lie product satisfy:

where the a

i 's and b j 's are scalars.

Modules over the Faà di Bruno Lie algebra

Let g F dB be the Faà di Bruno Lie algebra. Recall that it has a basis (e(k)) k≥1 , with bracket given by: [e(k), e(l)] = (lk)e(k + l).

The g F dB -module V 0 has a basis (f (k)) k≥1 , and the action of g F dB is given by: e(k).f (l) = lf (k + l).

We can then construct a semi-direct product V M 0 ⊳ g F dB , described in the following proposition:

Proposition 60 Let M ∈ N * . The Lie algebra V M 0 ⊳ g F dB has a basis:

∪ (e(k)) k≥1 , and its Lie bracket given by:

We now take g = V ⊕M 0 ⊳ g F dB . We define a family of g-modules. Let c ∈ K and υ = (υ 1 , . . . , υ M ) ∈ K M . The module W c,υ has a basis (g(k)) k≥1 , and the action of g is given by:

The semi-direct product is given in the following proposition:

as a vector space, and the action of G is given by:

3. Let us consider the following semi-direct product:

] as a vector space, and for all

] as a vector space, and for all

] as a vector space, and for all X = (Q

Direct computations prove that they are indeed modules.

Theorem 65 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then the group Ch H (S) is of the form:

where G 0 is a semi-direct product of the form:

where V is a direct sum of modules V 0 , W a direct sum of modules W c,υ , and

Proof. The group Ch H (S) is isomorphic to the group of characters of U (g) * , where g is described in theorem 63. This implies that this group has a structure of semi-direct product as described in theorem 65. Let us consider the Hopf algebra H of coordinates of G 0 . It is a graded Hopf algebra, and direct computations prove that its graded dual is the enveloping algebra of g 0 of theorem 63. So H is isomorphic to H (S 0 ) .

2

So W j is a module W ν .

Last step. We now consider vertices in J 1 . If j ∈ J 1 , then its descendants are vertices of the first step and vertices in I 1 such that ν i = 1. As before:

where W J 1 = V ect(f j (k) / j ∈ J 1 , k ≥ 1} and (S 1 ) is the restriction of (S) to the regular vertices and the vertices of I 1 . Let us fix j ∈ J 1 and let us consider the g (S 1 ) -module W j = V ect(f j (k) / k ≥ 1). As ν j = 0, putting p j (k) = f j (k) if k ≥ 2 and p j (1) = ν j f j (1):

Theorem 70 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then the Lie algebra g (S) is of the form:

where g 0 is the Lie algebra associated to the restriction of (S) to the non-extension vertices (so is described in theorem 69), and, for j ≥ 1, g j is an abelian

Proof. Similar with the proof of theorem 62. 2

Associated group

Let us now consider the character group Ch H (S) of H (S) . In the preceding cases, g (S) contains an abelian sub-Lie algebra g ab , so Ch H (S) contains a subgroup isomorphic to the group:

with the product defined by (

Note that G ab is isomorphic to the following subgroup of the following group of the units of the ring K

. . .

The isomorphism is given by:

Moreover, each modules earlier defined on g ab corresponds to a module over G ab by exponentiation, as explained in the following definition:

and the action of G ab is given by:

2. Let us consider the following semi-direct product:

] as a vector space, and the action of G is given in the following way: for all X = (P 1 (y), . . . , P N (y),

] as a vector space, and the action of G is given in the following way: for all X = (P 1 (y), . . . , P N (y),

Direct computations prove that they are indeed modules. The condition µ j ν iυ

is necessary for W ′ ν,µ to be a module. Indeed:

Theorem 72 Let (S) be a connected Hopf SDSE in the abelian case. Then the group Ch H (S) is of the form:

where G 0 is a semi-direct product of the form:

where V is a direct sum of modules V υ , and W a direct sum of modules W ν and W ′ ν,µ . Moreover, for all m ≥ 1, G m = (tK[[t]], +) as a group.

Proof. Similar as the proof of theorem 65.

2

A is permutative, associative.

2

Example. Let I a set, and let A I = V ect(e i ) i∈I . Then A is given a permutative, associative product: for all i, j ∈ I, e i .e j = e j .

Let (g, ⋆) be a pre-Lie algebra. The pre-Lie product of g ⊗ A is given by:

The following proposition is immediate:

Proposition 75 Let (S) be a Hopf SDSE with set of indices I and (S ′ ) be a dilatation of (S), with set of indices J being the disjoint union of finite sets J i indexed by i ∈ I. Let J ′ be a set and for all i ∈ I, let φ i : J i -→ J ′ be a map. The following morphism is a morphism of pre-Lie algebras:

It is injective (respectively surjective, bijective) if, and only if, φ i is injective (respectively surjective, bijective) for all i ∈ I.

Dilatation of a Lie algebra

Let Set be the category of sets, Vect be the category of Vector spaces, and Lie the category of Lie algebras.

Definition 76 Let V be a vector space. We define a function F V from Set to Vect in the following way:

1. If I is a set:

The element v ∈ V in the copy of V corresponding to the index i ∈ I will be denoted by v i .

2. If σ : I -→ J is a map:

Definition 77 Let g be a Lie algebra. A dilatation of g is functor F : Set -→ Lie such that F ({1}) = g and making the following diagram commuting: Proposition 78 Let g be a Lie algebra. There is a bijection between the set of dilatations of g and the set of pre-Lie product inducing the Lie bracket of g.

Proof. First step. Let ⋆ be a pre-Lie product inducing the Lie bracket of g. Let I be a set. We identify v ⊗ e i ∈ g ⊗ A I and v i ∈ F g (I). So F g (I) is given a structure of pre-Lie algebra by:

The induced Lie bracket is given by:

It is then easy to prove that this structure of pre-Lie algebra on F g (I) for all I gives a dilatation of g.

Second step. Let F be a dilatation of g. So for any set I, F g (I) is now a Lie algebra. Moreover, if σ : I -→ J is any map, then F g (σ) : F g (I) -→ F g (J) is a Lie algebra morphism. We first consider F g ({1, 2}). Let π 2 be the projection on F g ({2}) which vanishes on F g ({1}) in F g ({1, 2}). We define ⋆ on g in the following way

Let σ : {1, 2} -→ {1, 2}, permuting 1 and 2. Then F g (σ) permutes the two copies of g in

. Moreover, F g (σ) is a morphism of Lie algebras, so for all v, w ∈ V :

So, in F g ({1, 2}):

Let us now consider any set I and i, j ∈ I, not necessarily distinct. Considering τ : {1, 2} -→ {i, j} sending 1 to i and 2 to j, as F g (τ ) is a morphism of Lie algebras, for all v, w ∈ g, in F g (I): So ⋆ is pre-Lie.

Last step. We define in the first step a correspondance sending a pre-Lie product on g to a dilatation of g, and in the second step a correspondance sending a dilatation of g to a pre-Lie product on g. It is clear that they are inverse one from the other.

2