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ABSTRACT. We consider systems of combinatorial Dyson-Schwinger equations (briefly,

SDSE) X; = Bf (Fi(X1,...,XN)), ..o, XNy = By(Fn(X1,...,Xn)) in the Connes-Kreimer
Hopf algebra H; of rooted trees decorated by I = {1,..., N}, where B;r is the operator of graft-
ing on a root decorated by ¢, and F1, ..., Fjy are non-constant formal series. The unique solution

X = (Xq,...,Xy) of this equation generates a graded subalgebra H(s) of Hy. We characterise
here all the families of formal series (Fy,..., Fiv) such that H gy is a Hopf subalgebra. More
precisely, we define three operations on SDSE (change of variables, dilatation and extension)
and give two families of SDSE (cyclic and fundamental systems), and prove that any SDSE (5)
such that Hg) is Hopf is the concatenation of several fundamental or cyclic systems after the
application of a change of variables, a dilatation and iterated extensions.

We also describe the Hopf algebra H gy as the dual of the enveloping algebra of a Lie algebra
g(s) of one of the following types:

1. g(s) is a Lie algebra of paths associated to a certain oriented graph.
2. Or g(g) is an iterated extension of the Faa di Bruno Lie algebra.

3. Or g(g) is an iterated extension of an abelian Lie algebra.

KEYWORDS: Systems of combinatorial Dyson-Schwinger equations; Hopf algebras of dec-
orated rooted trees; pre-Lie algebras.
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Introduction

The Connes-Kreimer Hopf algebra of rooted trees is introduced in [[f] and studied in [g, B, B, [,
B, @ [[4, [d. This graded, commutative, non-cocommutative Hopf algebra is generated by the
set of rooted trees. We shall work here with a decorated version Hp of this algebra, where D
is a finite, non-empty set, replacing rooted trees by rooted trees with vertices decorated by the



elements of D. This algebra has a family of operators (B;)de'p indexed by D, where B:{ sends
a forest I’ to the rooted tree obtained by grafting the trees of F' on a common root decorated
by d. These operators satisfy the following equation: for all x € Hp,

AoBj(z)=Bf(z)®1+ (Id® BJ)o A(x).

As explained in [[f], this means that BC}L is a 1-cocycle for a certain cohomology of coalgebras,
dual to the Hochschild cohomology.

We are interested here in systems of combinatorial Dyson-Schwinger equations (briefly,
SDSE), that is to say, if the set of decorations is {1,..., N}, a system (5) of the form:

X, = Bf (Fi(Xy,...,XnN)),

XN = B]—i\_[(FN(XhaXN)%

where Fi,...,Fn € K[[h1,...,hy]] are formal series in N indeterminates. These systems (in a
Feynman graph version) are used in Quantum Field Theory, as it is explained in [, {6, [7]. They
possess a unique solution, which is a family of IV formal series in rooted trees, or equivalently
elements of a completion of Hp. The homogeneous components of these elements generate a
subalgebra Hg) of Hp. Our problem here is to determine Hopf SDSE, that is to say SDSE
(S) such that H(g) is a Hopf subalgebra of Hp. In the case of a single combinatorial Dyson-
Schwinger equation, this question has been answered in [[I(].

In order to answer this, we first associate an oriented graph to any SDSE, reflecting the
dependence of the different X;’s; more precisely, the vertices of Gy are the elements of I, and
there is an edge from i to j if F; depends on h;. We shall say that (S) is connected if G(s)
is connected. Noting that any SDSE is the disjoint union of several connected SDSE, we can
restrict our study to connected SDSE. We introduce three operations on Hopf SDSE:

e Change of variables, which replaces h; by A\;h; for all ¢ € I, where A; # 0 for all <. This
operation replaces H gy by an isomorphic Hopf algebra and does not change G g).

e Dilatation, which replaces each vertex of G(g) by several vertices. This operation increases
the number of vertices. For example, consider:

[ X1 = B (f(X1,X2)),
(S)'{XQ B} (9(X1, X)),

where f,g € K|[[h1, h2]]; then the following SDSE is a dilatation of (5):

X1 = B (f(X1+ Xy + X3, X4 + X5)),
Xy = By (f(X1i+ X2+ X3, X4+ X5)),
(8):q Xz = Bi(f(Xi+ X2+ X3, X4+ X5)),
Xy = Bf(9(X1+ X2+ X3,X4 + X5)),
X5 = B (9(X1+ X2+ X3, X4 + X5)),

e Extension, which adds a vertex 0 to G(g) with an affine formal series. This operation
increases the number of vertices by 1. For example, consider:

X1 = Bf(f(X1,X2)),
© {5 2 B

where f € K[[h1, h2]] and a,b € K; then the following SDSE is an extension of (5):

Xo = Bji(l1+aX;+0bXs),
(8):4 X1 = B (f(X1,X2)),
Xo = By (f(X1, X)),



We then introduce two families of Hopf SDSE:

e Cycles, which are SDSE such that the associated graph is an oriented graph and all the
formal series of the system are affine; see theorem BJ. For example, the following system
is a 4-cycle:

X; = Bf(1+X),
Xy = Bi(1+X3),
X3 = Bi(1+Xy),
X4 = Bf(1+X))

The associated oriented graph is:
1
4

e Fundamental SDSE, described in theorem B3. Here is an example of a fundamental SDSE:

-

X0 = BE (50,00 2y (1 B0~ he) (1= B ).

X, = B (fL (X1) faa (o) (1 — h)~1(1 — h4>-1> ,

1481

1481

)

X, = B} (fL«Hﬁl)Xl)f%((l+/32>h2><1—h4>—1),

X, = B} (fL«Hﬁl)Xl)fﬁ_Q((l+5z>h2><1—h3>—1

1+81 1482

Xs = B <fﬂl((1+ﬁ1)X1)fﬂ2((1+52)h2)(1—h3)_1(1—h4)‘1>,

1+81 1482

where 31,82 € K — {—1} and, for all 5 € K, fz is the following formal series:

oty = 3 QB0 G 8)

The associated oriented graph is:

)

<

N/

5

The main result of this paper is theorem [[4, which says that any connected Hopf SDSE is ob-
tained by a dilatation and a finite number of iterated extensions of a cycle or a fundamental
SDSE.

Let us now give a few explanations on the way this result is obtained. An important tool is

given by a family indexed by I? of scalar sequences <)\Sf g )> . associated to any Hopf SDSE.
n

They allow to reconstruct the coefficients of the formal series of (S), as explained in proposition
[9. Particular cases of possible sequence <)\Sf 7 )) are affine sequences, up to a finite number
n>1

of terms: this leads to the notion of level of a vertex. It is shown that level decreases along



the oriented paths of G(g) (proposition P3), and this implies the following alternative if (S) is
connected: any vertex is of finite level or no vertex is of finite level. In particular, any vertex of
a fundamental SDSE is of finite level, whereas no vertex of a cycle is of finite level.

We then consider two special families of SDSE:

e We first assume that the graph associated to (S) does not contain any vertex related to
itself. This case includes cycles and their dilatations (called multicycles), and a special
case of fundamental SDSE called quasi-complete SDSE. We show, using graph-theoretical
considerations and the coefficients )\,(f g ), that under an hypothesis of symmetry, they are
the only possibilities.

e We then assume that any vertex of (S) has an ascendant related to itself. We then prove
that (9) is fundamental.

This results are then unified in corollary p0. It says that any Hopf SDSE with a connected graph
contains a multicycle or a a fundamental SDSE (Sy) and is obtained from (Sy) by adding repeat-
edly a finite number of vertices. This result is precised for the multicycle case in theorem F1] and
for the fundamental case in theorem 3. The compilation of these results then proves theorem [[4.

The end of the paper is devoted to the description of the Hopf algebras H g). By the Cartier-
Quillen-Milnor-Moore theorem, they are dual of enveloping algebra U (g( 5)), and it turns out that
9g(s) is a pre-Lie algebra [, that is to say it has a bilinear product % such that for all f, g,h € 9(s):

(fxg)xh—fx(gxh)=(gxf)xh—gx(fxh).

This relation implies that the antisymmetrisation of x is a Lie bracket. In our case, g(s) has a
basis (fi(k))icr,k>1 and by proposition Pl its pre-Lie product is given by:

Fi(0) % filk) = A filk + 1),

The product * can be associative, for example in the multicyclic case. Then, up to a change
of variables, f;(l) x fi(k) = fi(k + 1) if there is an oriented path of length k£ from i to j in the
oriented graph associated to (.9), or 0 otherwise; see proposition [57.

The fundamental case is separated into two subcases. In the non-abelian case, the Lie algebra
g(s) is described as an iterated semi-direct product of the Faa di Bruno Lie algebra by infinite
dimensional modules. Similarly, the character group of Hg) is an iterated semi-direct product
of the Faa di Bruno group of formal diffeomorphisms by modules of formal series:

Ch(H(S)) = Gm X (Gmfl X ( . -G2 P (Gl R GO) e ),

where Gy is the Faa di Bruno group and Gi,...,G,,m—1 are isomorphic to direct sums of
(tK[[t]],+) as groups; see theorem [J. The second subcase is similar, replacing the Faa di
Bruno Lie algebra by an abelian Lie algebra; see theorem [73.

This text is organised as follows: the first section gives some recalls on the structure of Hopf
algebra of Hp and on the pre-Lie product on g5y = Prim (7—[’(5)). In the second section are

given the definitions of SDSE and their different operations: change of variables, dilatation and
extension. The main theorem of the text is also stated in this section. The following section
introduces the coefficients )\,(f ) and their properties, especially their link with the pre-Lie prod-
uct of g(s). The level of a vertex is defined in the fourth section, which also contains lemmas
on vertices of level 0, 1 or > 2, before that fundamental and multicyclic SDSE are introduced
in the fifth section. The next section contains preliminary results about graphs with no self-
dependent vertices or such that any vertex is the descendant of a self-dependent vertex, and

the main theorem is finally proved in the seventh section. The next three sections deals with



the description of the Lie algebra g(g) and the group Ch (7—[( 5)) when g(g) is associative, in the
non-abelian, fundamental case and finally in the abelian, fundamental case. The last section

gives a functorial way to characterise pre-Lie algebra from the operation of dilatations of Hopf
SDSE.

Notations. We denote by K a commutative field of characteristic zero. All vector spaces,
algebras, coalgebras, Hopf algebras, etc. will be taken over K.

1 Preliminaries

1.1 Decorated rooted trees
Definition 1 [R0, P

1. A rooted tree t is a finite graph, without loops, with a special vertex called the root of t.
The weight of ¢ is the number of its vertices. The set of rooted trees will be denoted by T.

2. Let D be a non-empty set. A rooted tree decorated by D is a rooted tree with an application
from the set of its vertices into D. The set of rooted trees decorated by D will be denoted
by Tp.

3. Let ¢ € D. The set of rooted trees decorated by D with root decorated by ¢ will be denoted
by T3,

Examples.

1. Rooted trees with weight smaller than 5:

avhr by v by d v

2. Rooted trees decorated by D with weight smaller than 4:

vu; a €D, 1 (a,b) € D2 "= L (a,b,c) € DB

c d b d b c c c c d d, c f:l
b\Vad :b\I/;c :C\I/;d :C\I/ab :d%c :d\Vab, bk/ad :d\}ab7 YZ _ YI; 7 127 (a,b,c,d) €D4.
Definition 2
1. We denote by Hp the polynomial algebra generated by Tp.

2. Let t1,...,t, be elements of Tp and let d € D. We denote by B;(tl ...tp) the rooted
tree obtained by grafting t¢,...,%, on a common root decorated by d. This map BdJr is
extended in an operator from Hp to Hp.

b
For example, B (14..) = aL/dC .

1.2 Hopf algebras of decorated rooted trees

In order to make Hp a bialgebra, we now introduce the notion of cut of a tree t € Tp. A
non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes ¢
into a forest denoted by W€(t). The cut ¢ is admissible if any oriented path in the tree meets
at most one cut edge. For such a cut, the tree of W€(t) which contains the root of ¢ is denoted
by R¢(t) and the product of the other trees of W€(¢) is denoted by P¢(t). We also add the total



cut, which is by convention an admissible cut such that R°(t) = 1 and P°(t) = W¢(t) = t. The
set of admissible cuts of ¢ is denoted by Adm.(t). Note that the empty cut of ¢ is admissible;
we put Adm(t) = Adm.(t) — {empty cut, total cut}.

example. Let a,b,c,d € D and let us consider the rooted tree t = bk/dc . As it as 3 edges, it
has 23 non-total cuts.

cut ¢ bbdc l%/dc I;§/dc b%&c %c lgvgc %c %c total
Admissible? | yes | yes yes yes no yes yes no yes
We(t) "L/dc TR TR IRAVAR S INVS TIN T SON U S IO ”K/d”
Re(t) e | | ove | B x v 14 x 1
Pe(t) 1 tg o e X 1., caee X bk/dc

The coproduct of Hp is defined as the unique algebra morphism from Hp to Hp ® Hp such
that for all rooted tree t € Tp:

Afty= > PORR@W)=tol+lot+ Y PR
cEAdm(t) ce Adm(t)

As Hp is the free associative commutative unitary algebra generated by 7p, this makes sense.
This coproduct makes Hp a Hopf algebra. Although it won’t play any role in this text, we recall
that the antipode S is the unique algebra automorphism of Hp such that for all ¢t € Tp:

S(t)y=— Y (=1)"We),

c cut of t

where n. is the number of cut edges of c.

Example.

at

A("K/;) :Zkfd” ®1+1®%c PRI+ ® Ve e @l 1 @it @1
A study of admissible cuts shows the following result:
Proposition 3 For all d € D, for all x € Hp:
AoBj(z)=Bf(z)®1+ (Id® BJ)o A(x).
Remarks.
1. In other words, B:{ is a 1-cocycle for a certain cohomology of coalgebras, see [ﬂ]

2. Ift e TD(i), then A(t) —t®1 € HD@TD(i)-

1.3 Gradation of Hp and completion

We grade Hp by declaring the forests with n vertices homogeneous of degree n. We denote by

‘Hp(n) the homogeneous component of Hp of degree n. Then Hp is a graded bialgebra, that is
to say:

e For all i,j € N, Hp(i)H(j) € Hp(i+ 7).

o Forall ke N, A(Hp(k)) € > Hp(i) ® Hp(j).
i+j=k



We define, for all z € Hp:

val(z) =max{neN|xz € EBHD(k:)
k>n

We then put, for all x,y € Hp, d(z,y) = 2-val(@=v) " with the convention 2-°° = 0. Then d is
a distance on Hp. The metric space (Hp,d) is not complete; its completion will be denoted by

77;. As a vector space: e
Hp =[] #o(n)
neN
The elements of @ will be denoted by > x,, where z,, € Hp(n) for all n € N. The product
m: HD ® 7-[1) — Hp is homogeneous of degree 0, so is continuous: it can be extended from
7—[1) ® 7—[1) to 7—[@, which is then an associative, commutative algebra. Similarly, the coproduct
of Hp can be extended as a map:

A:Hp — Hp@Hp = [[ Ho(i) ® Ho(j).
1,j€N

Let f(h) = > pnh™ € K[[h]] be any formal series, and let X = > x,, € #p, such that zo = 0.
The series of Hp of terms p, X" is Cauchy, so converges. Its limit will be denoted by f(X). In
other words, f(X) = >y, with:

Yo = Do,
n

Yn = Z PkZaq *** Lay, 1fﬂ21
k=1ai+:+ar=n

1.4 Pre-Lie structure on the dual of Hp

By the Cartier-Quillen-Milnor-Moore theorem [[[§], the graded dual H, of Hp is an enveloping
algebra. Its Lie algebra Prim(#},) has a basis (fi)tc7;, indexed by Tp:

Hp — K

{Oifn;«él,

tltn 5257151 ifn=1.

Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra)
is a couple (A, ), where * is a bilinear product on A such that for all z,y, z € A:

(xxy)kz—xx(yxz) = (y*xx)*2 —y* (T *2).

Pre-Lie algebras are Lie algebras, with bracket given by [z,y] = x xy — y * x.

The Lie bracket of Prim(#},) is induced by a pre-Lie product x given in the following way:
if f,g € Prim(H}), f * g is the unique element of Prim(H3,) such that for all ¢t € Tp,

(fx9)t) = (f @g) o (r@m)oA(l),

where 7 is the projection on Vect(TP) which vanishes on the forests which are not trees. In
other words, if ¢, € Tp:
Jex fo = Z n(t,t';st") for,
teTp

where n(t,t’;t') is the number of admissible cuts ¢ of t” such that P¢(t”) =t and R°(t") =+¢. It
is proved that (prim(#3), %) is the free pre-Lie algebra generated by the ..’s, d € D: see [{, f].
Note that H} is isomorphic to the Grossman-Larson Hopf algebra of rooted trees [, [, [J]



2 Definitions and properties of SDSE

2.1 Unique solution of an SDSE

Definition 4 Let I be a finite, non-empty set, and let F; € K[[h;,j € I]] be a non-constant
formal series for all i € I. The system of Dyson-Schwinger combinatorial equations (briefly, the
SDSE) associated to (F;)qer is:

Viel, X; =B (fi(X;,j €1)),
where X; € ”;fl\[ for all 1 € I.

In order to ease the notation, we shall often assume that I = {1,..., N} in the proofs, with-
out loss of generality.

Notations. We assume here that I = {1,...,N}.

1. Let (S) be an SDSE. We shall denote, for all ¢ € I:

o () P3P
Fi= ) ag ol bR

P15 PN

2. Let 1 <j < N. Weputg; =(0,---,0,1,0,--- ,0) where the 1 is in position j. We shall
denote, for all i € I, a'? = ¥

i Sy forall j kel a(?,)ﬁ =qW and so on.

J ejter’

Remark. We assume that there is no constant F;. Indeed, if F; € K, then X; is a multiple
of .;. We shall always avoid this degenerated case in all this text.

N\
Proposition 5 Let (S) be an SDSE. Then it admits a unique solution (X;)ier € (’H[> .

Proof. We assume here that I = {1,...,N}. If (X1, -+, Xx) is a solution of S, then X; is
a linear (infinite) span of rooted trees with a root decorated by i. We denote:

These coefficients are uniquely determined by the following formulas: if

_ p+ (4,11 4PlLay  PN1 L PNay
t= BZ (tlvl t17q1 tN,l tN,qN > )

where the ¢; ;’s are different trees, such that the root of ¢;; is decorated by i for all i € I,
1 <j < g, then:

N
at = H (pia -+ pigy)! at? aPbr. L g (1)
i=1 pi,ll e pi,qi! (p1,1+ +P1,q7 PN, 1F +pN7‘1N) 1,1 Ny

So (S) has a unique solution. O

Definition 6 Let (S) be an SDSE and let X = (X;)ies be its unique solution. The
subalgebra of H generated by the homogeneous components X;(k)’s of the X;’s will be denoted
by Hs). If Hs) is Hopf, the system (S) will be said to be Hopf.



2.2 Graph associated to an SDSE
We associate a oriented graph to each SDSE in the following way:
Definition 7 Let (S) be an SDSE.
1. We construct an oriented graph G/g) associated to (S) in the following way:

e The vertices of G(g) are the elements of I.

OF;
e There is an edge from 7 to j if, and only if, (9—h2 #= 0.
J
2. If o =% 0, the vertex i will be said to be self-dependent. In other words, if ¢ is self-
i

dependent, there is a loop from i to itself in G(g).

3. If G(g) is connected, we shall say that (S) is connected.

Remark. If (S5) is not connected, then () is the union of SDSE (S1), - - -, (Sk) with disjoint
sets of indeterminates , so H(g) ~ H(g,) ® -+ ® H(g,). As a corollary, (S) is Hopf if, and only
if, for all 4, (S;) is Hopf.

Let (S) be an SDSE and let G(g) be the associated graph. Let i and j be two vertices of
G(s)- We shall say that j is a direct descendant of i (or i is a direct ascendant of j) if there is
an oriented edge from i to j; we shall say that j is a descendant of i (or 7 is an ascendant of j)

if there is an oriented path from ¢ to j. We shall write "¢ — 57 for ”j is a direct descendant of

1.

2.3 Operations on Hopf SDSE

Proposition 8 (change of variables) Let (S) be the SDSE associated to (Fj(hj,j € I))icr.
Let \; and p; be non-zero scalars for all i € I. The system (S) is Hopf if, and only if, the SDSE
system (S') associated to (pi Fy(Ajhj, j € J))icr is Hopf.

Proof. We assume that I = {1,..., N}. We consider the following morphism:

gb' 7‘[[ — 7‘[]
"NV FeF — (M) (unin)~EF,

where n;(F) is the number of vertices of F' decorated by i. Then ¢ is a Hopf algebra automor-
phism and for all 4, ¢ o Bi" = u;\; B o ¢. Moreover, if we put ¥; = )\%¢(X,) for all i:

Vi = 60 BA(F(Xy, -, Xx))
1

So (Y1,---,Yn) is the solution of the system (S’). Moreover, ¢ sends H gy onto Hg). As ¢ is
a Hopf algebra automorphism, Hg) is a Hopf subalgebra of H; if, and only if, H (g is. O

Remark. A change of variables does not change the graph associated to (5).

Proposition 9 (restriction) Let (S) be the SDSE associated to (Fi(hj, j € I))icr and let
I' C I, non-empty. Let (S") be the SDSE associated to (Fi(hj,j € I)|hj:0,v]'¢[/>‘ o If (S) is
iel’
Hopf, then (S") also is.

10



Proof. We consider the epimorphism ¢ of Hopf algebras from H; to Hjs, obtained by send-
ing the forests with at least a vertex decorated by an element which is not in I’ to zero. Then
¢ sends Hg) to H(gy. As ¢ is a morphism of Hopf algebras, if Hg) is a Hopf subalgebra of H,
H(sry is a Hopf subalgebra of H . O

Remark. The restriction to a subset of vertices I’ changes G (s) into the graph obtained by
deleting all the vertices j ¢ I’ and all the edges related to these vertices.

Proposition 10 (dilatation) Let (S) be the system associated to (F;)icr and (S') be a

system associated to a family (ij{)jej, such that there exists a partition J = U J;, with the
i€l
following property: for all i € I, for all x € I;,

F' =F, Zhy,jel
yte

Then (S) is Hopf, if, and only if, (S’) is Hopf. We shall say that (S') is a dilatation of (S).

Proof. We assume here that I ={1,...,N}.
—. Let us assume that (5) is Hopf. For all i € I, we can then write:

AX) =3 PO, Xn) © Xy(n),
n>0

with the convention X;(0) = 1. Let ¢ : H; — Hp be the morphism of Hopf algebras such that,
forall 1 <i < N:

¢oB => Bfog.

Jjel;

Then, immediately, for all 1 <7 < N:

H(X;) = Z X

Jel;

As a consequence:

2 AXD =) D BY| Y XK D Xi | @ X ().

JEI; J€l; n>0 kel keln
Conserving the terms of the form F' ®¢, where t is a tree with root decorated by 7, for all j € I;:

A0 =Y R [ XX, X K| o xi0)
n>0 kel keln
So (S") is Hopf.
<. By restriction, choosing an element in each I;, if (S’) is Hopf, then (S) is Hopf. O

Remark. If (5”) is a dilatation of (S), then the set of vertices J of the graph Gy associated
to (S') admits a partition indexed by the vertices of G(g), and there is an edge from = € J; to
y € Jj in G(g) if, and only if, there is an edge from i to j in G(g).

11



Example. Let f,g € K[[h1, ho]]. Let us consider the following SDSE:

®: {

Then (5') is a dilatation of (5).

X1+ X + X3, Xy + X5))
X1 =+ X2 =+ Xg,X4 —|—X5))
X1+ X + X3, Xy + X5))
)
)

)

)

==

)

X1+ Xo+ X3, Xy + X5
X1+ Xo+ X3, Xy + X5

)

Q
—~

Proposition 11 (extension) Let (S) be the SDSE associated to (F;)ier
(8') be associated to (Fy)icrugoy, with:

Fh=1+ Zaz(o)hi.

el

Then (S’) is Hopf if, and only if, the two following conditions hold:

1. (S) is Hopf.

2. Foralli,j e I® = {je[/ag.o) #o}, F; = Fj.

If these two conditions hold, we shall say that (S’) is an extension of (S).

Proof. We assume here that I = {1,...,N}.
—. Let us assume that (S") is Hopf. By restriction, (S) is Hopf. Moreover:

N
Xo = B; (1 +3 a"x;

=1

)

i=1

. Let 0 ¢ I and let

N
= .0 +ZQEO)BS—OBZ+(JCZ(X1) aXN))

As H gy is a graded Hopf subalgebra, the projection on Hyg ... yy @ Hyo,... n}(2) gives:

N

S aVF (X1, Xn) @ 1 € Hig) BH ).

=1

So this is of the form:

N
PRXo(2)=P® (Za§°)16> :
i=1

—

for a certain P € H(g). As the 15’s, i € I, are linearly independent, we obtain that for all 4, j,
aEO)E(Xl, e XN) = ago)P for all ¢, and this implies the second item.

<. As (9) is Hopf, we can put for all 1 <i < N:

+o0
AX) =X 01+ PV @ Xq(k),

k=1

12



where Pr(f) is an element of the completion of Hgy. By the second hypothesis, if 4,5 € I, as
F; = Fj, P,gi) = Py(Lj). We then denote by P, the common value of P,gi) for all 1 € I. So:

N
AXg) = w0@1+1®.0+Y a”AoBf(X;)
=1

N N oo
= Xo®1+1® X+ Zal(-o)(l + Xi) ® .0 + ZZ@Z(O)PJ(Z) ® By (Xi(5))
i=1 i=1 j=1

N N oo
= Xo®1+10Xo+ Y a1+ X) @0+ Y. Y a P @ Bf (Xi(5)
i=1 i=1 j=1

N N 00
= Xool+loXo+Y d’1+X)e.0+Y PeBi | axi()
=1 j— .

N N
= Xo®1+10Xo+ Y a’(1+X) @0+ Y P Xo(j+1).
i=1 i=1
This belongs to the completion of H gy ® H g1y, so (S”) is Hopf. O
Remarks.

L. If (S) is an extension of (S), then G(g) is obtained from G(g) by adding a non-self-
dependent vertex with no ascendant.

2. If 1 is reduced to a single element, then condition 2 is empty.

Definition 12 Let (S) a Hopf SDSE and let ¢ € I. We shall say that i is an extension vertex
if, denoting by J the set of descendants of i, the restriction of (S) to J U {i} is an extension of
the restriction of (S) to J.

2.4 Constant terms of the formal series
Lemma 13 Let (S) be an Hopf SDSE. If F;(0,---,0) =0, then X; = 0.

Proof. If F;(0,---,0) = 0, then the homogeneous component of degree 1 of X; is zero, so
.i & H(g). Considering the terms of the form F'®.; in A(X;), we obtain:

Fi(X;,jel)®.; € 7‘[(5) ®7‘[(5).
As .; ¢ H(g), necessarily F;(X;, j € I) =0, 50 X; = 0. 0

As a consequence, if Fj(0,---,0) = 0, then H gy = H(g), where (5') is the restriction of
(S) to I — {i}. Using a Change of variables, we shall always suppose in the sequel that for all i,
F;(0,---,0)=1.

2.5 Main theorem
Notations. For all 8 € K, we put:

M

(148 1+5( D)k _ | a—pr)7 it s 40,
— hif B =0.

The main aim of this text is to prove the following result:

13



Theorem 14 Let (S) be a connected SDSE. It is Hopf if and only if one of the following
assertion holds:

1. (Extended multicyclic SDSE). The set I admits a partition I = I3 U --- U Iy indexed by
the elements of Z/NZ, N > 2, with the following conditions:

e Foralli e IE"

F=1+ Z o'

J€l

e Ifi and i have a common direct ascendant in G(s), then F; = Fy (so i and i' have
the same direct descendants).

2. (Eztended fundamental SDSE). There exists a partition:

I=|JZ|ul Ui uKoUL UL UL,
i€l i€Jo

with the following conditions:
o Ky, I, Ji, I2 can be empty.

e The set of indices Iy U Jy is not empty.
e For alli € InU Jy, J; is not empty.

Up to a change of variables:

(a) For alli € Iy, there exists B; € K, such that for all x € J;:

Fx:f&' Zhy H f& (1—1-5]‘)2% Hfl Zhy

yed; jelo—{iy ‘1P yeJ; jedo yed;

(b) For alli € Jy, for all x € J;:

x—HfﬂJ (1+ﬂj)zhy H fi Zhy

j€ly yeJ;j jeJo—{i} yeJ;

(c) For alli € Ky:

F—Hfﬁj (1—1—@‘)2% Hfl Zhy

jely 1P yeJ; jedo yeJ;

(d) For all i € I, there exist v; € K and a family of scalars (a(i) with

J >j€]0UJ0UK0’

(vi #1) or (3j € Iy, ) # 1+ 8)) or (3j € Jo, i # 1) or (3j € Ko, ) #0).
Then, if v; #0:

Hf 8 Viag-i) Zhy H fa Vlagi) Zhy H fo <1/, ()h> 1—1.

i el vial) yeJ; jedo vi% yeJ; j€Ko

o

Zﬁ m{1=5"n | =S a%m 1= n |+ 3 aln+1.

j€lp yeJ; 7j€Jo yeJ; jE€EKo

14



(e) For alli € Jy, there exists v; € K — {0} and a family of scalars <a§i))jelouJouK0ull’
with the three following conditions:

. Ifi) ={jel /ay) # 0} is not empty.

e Forallj e Ifi), v; = 1.

e Forall 5,k € Iy), F; = Fy. In particular, we put bgi) = agj) for any j € Iy), for
all t € Iy U Jy U K.

Then:
1 i i
Fo= ;Hf(_)ﬁf (0 —1=8) o | TT o [(57 1) 2omy
" jelg bjl —1-8; yeJ; j€Jo bg.')—l yeJ;
fo (89R,) + oDy +1- L.
jg(() ’ < ’ ]) jggi) o Vi

(f) In = {z1,...,zn} and for all 1 < k < m, there exist a set:

I(mk)g UJZ ) UJZ UKQUIlUJ1U{$1,...,$k_1}
i€lp 1€Jo

and a family of non-zero scalars (a(-w’“)

i >j€l(xk) such that for all i,j € I*s) | F; = F;
Then:

j-

jer@r)

Here is the graph of a system of an extended multicyclic SDSE, with N = 5. The different
subset of the partition are indicated by the different colours. the multicycle corresponds to the
five boxes. An arrow between two boxes means that all vertices of the boxes are related by an
arrow.

Here is the graph of an extended fundamental SDSE. The vertices in J;, with ¢ € Iy, are
green. There are two elements in Iy, one with 5; = —1 (light green vertices) and one with
B; # —1 (dark green vertex). There are two elements in Jy, corresponding to light blue and dark
blue vertices. The unique element of Ky is red; the unique element of I is yellow; the unique
element of Jy is orange; the dark vertices are the elements of I5. An arrow between two boxes

15



means that all vertices of the boxes are related by an arrow.

For example, the SDSE associated to the following formal series has such a graph:

Fyo= fg(ha) fi(ha + hs) fi(he + h7 + hs)

Fy=F; = (1+h2+h3)f 2 (1 4 B)h1) fi(hg + hs) fi(he + h7 + hg)
Fy=F = f%(( +5)h1) 1(h6+h7+h8)
Fo=F=F = f%(( B)h1) f1(ha + hs)
Fy = f%(( B)h1) fi(ha + hs) f1(he + h7 + hs)
F10 = %f flo) <1/a§10)h1> fﬁ <l/agl )(h2 + h3)> fﬁ (l/ail )(h4 —|- h5)>

10 10 1
- (v (he + b + 1)) fo (va§ Vho ) +1 ==,

= L1 (1= 5)m) gy (0 )

00 ((ag‘m) a 1) (ha + h5)> f

fo( h9)+a§0)h10+1—%

f

1
(10)
ag —1

Fio=F3 = 1+a§0)h10,
(14)
F14 = 1+ aq3 h13a
Fis = 1+ a§125)h12 + a§§5)h13,
Fig = 1+ a%&hm,
Fir = 1+ agw) ho,
Fig = 1+ a§178)h17,
Fig = 1+ a§179)h17,

where 8 # —1, v,/ # 0, and the coefficients ay) are non-zero.
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3 Characterisation and properties of Hopf SDSE
3.1 Subalgebras of Hp generated by spans of trees

Let us fix a non-empty set D.

Lemma 15 Let V' be a subspace of Vect(Tp) and let us consider the subalgebra A of Hp
generated by V. Recall that for all d € D, f,, is the following linear map:

Hp — K
fou !
t tn — t1etn,ed -

Then A is a Hopf subalgebra if, and only if, the two following assertions are both satisfied:
1. Foralld e D, (f., ®Id) o A(V) CV + K.
2. Forallde D, (Id® f.,) o A(V) C A.

Proof. =—. If A is Hopf, then A(V) C A® A. AsV C Vect(Tp), A(V) CH® (Vect(Tp) +
K). So:
AV)C(AA)N(H® (Vect(Tp) + K)) = A (V& K).

This implies both assertions.

<. We use here Sweedler’s notations: A(a) =a’ ® a” and (A ® Id) o A(a) = d' ® o’ @ o’
for all a € A.
First step. Let us consider the following subspace of Prim(#},):

B={fePrim(Hp)/(f®Id)oA(V)CV +K}.

By hypothesis 1, f,, € B for all d € D. We recall here that x is the pre-Lie product of
Prim(H},). Let f and g € B. For all v € V::

(frxg®1Id)oA(v) = for(v)gom(v ).
As feB, for(WW' eV +K. Asge B, for(v)gor(v")w" €V +K. So fxg€ B, and B
is a sub-pre-Lie algebra of Prim(#H}). As Prim(H},) is generated as a pre-Lie algebra by the
f.i’s, B = Prim(H3).
Second step. Let us consider the following subspace of H7:
B ={f € Hp / (f © 1d) o A(A) C A},

Let f € Prim(H}). By the first step, for all vy, -+ ,v, € V:
(f@]d)oA(vlvn) :f(vi...v;)vll/...vx :ZUI...f(vg)vg/...vn [ A’
=1

so Prim(H},) C B'. Let f,g € B'. For all a € A:

(fg@Id) o A(a) = f(a')g(a")a".

As f e B, f(d)d" € A. As g € B, f(d')g(a")a” € A. So B’ is a subalgebra of H},. As it
contains Prim(H},), it is equal to H},. So:

AA)CHpR A+ (] Ker(f)@Hp =Hp® A.
FeHs
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Third step. Let us consider the following subspace of Prim(H3,):
C={fePrim(Hp)/(Id® f)oA(V) C A}.
By the second hypothesis, f,, € B for all d € D. Let us take f and g € C. For all v € V:
(Id® (f *g)) o A(v) = forw(v")gom(v").

Asge C,vgonm(v") € A. Let us denote:

v orm(v') = Zvl Uy,
where v1,...,v, are elements of V. Then:
Vforw gom") =Y vl fom(v] - up)gom(v”).
By the second step, as V' C Vect(Tp):
AV)YC (Hp @A) N (Hp® Vect(Tp) + K)) = Hp @ (V + K).
So:

Zvl ol @ (v - ZZvl v @ (V).

Finally:
(Id® (f*g)) ZZm Vi @ fom(vf).

As f € B’, this belongs to A. So fxg € B’. As at the end of the first step, we conclude that
B’ = Prim(H%,).

Last step. As in the second step, we conclude that for all f € H},, (Id® f) o A(A) C A. So
A(A) CA®@Hp,and A(A) C(Hp @A) N (AR Hp) = A® A. So A is a Hopf subalgebra. O
3.2 Definition of the structure coefficients

Proposition 16 Let (S) be an SDSE. It is Hopf if, and only if, for alli,j € I, for alln > 1,
there exists a scalar A7) such that for allt' € Ti(n):

Z ni(t,t)a; = \iay,

teTi(n+1)

where n;(t,t') is the number of leaves | of t decorated by j such that the cut of | gives t'.

Proof. =>. Let us assume that (S) is Hopf. Then H gy is a Hopf subalgebra of #;. Let
us use lemma 15, with V' = Vect(X;(n), i € I, n > 1). So (f., ® Id) o A(X;(n + 1)) belongs
to H(g), and is a linear span of trees of degree n with a root decorated by i, so is a multiple of
Xi(n). We then denote:

(f., ® Id) o A(Xi(n +1)) = APV X Z A gyt
t'eT (n

By definition of the coproduct A:

(f.; ®Id)o A(Xi(n+1)) = > n;(t,)agt'.

teT (n+1), €T (n)
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The result is proved by identifying the coefficients in the basis 7 (n) of these two expressions of
(f., ® Id) o A(Xi(n +1)).

<. Let us prove that both conditions of lemma [[] are satisfied, with the same V' as before.
By hypothesis, for all 4,5 € I, for all n > 2, (f,; ® Id) o A(Xi(n)) = )\S’_j%XZ(n -1) eV.
Moreover, (f,; ® Id) o A(X;(1)) = é;; € K, so the first condition is satisfied. For the second
one:

(Id® f.;) o A(X;) = (Id® f.;) o A(Bf (Fi(X;, j € 1)) = Fi(X;, j € I) € Hg).
So H(g) is a Hopf subalgebra of H;. O

3.3 Properties of the coefficients \{”

The coefficients /\£Z g are entirely determined by the ay)’

coeflicients of the F;’s, as shown by the following result:

s and ag.i;g’s, and determine the other

Lemma 17 Let us assume that (S) is Hopf, with I ={1,...,N}. Let us fizi € I.
1. For all sequence i =iy — -+ —> iy, of vertices of G(g):

n—1 (ip)

(i) _ (in) oy Yipa
AT = a4 (1 65y) oy
p=1 Ip+1
In particular, )\gi’j ) = ay).

2. For allpy,--- ,pny € N:

NO) 1 (i,4) )
Up1, i1, on) — pj+1 ( prto+pN+1 Zpla ) Wy oo o)

lel
Proof. 1. Let us consider a sequence i1, - - - ,i, of elements of I, such that ¢; = i and for all
1<p<n-— Z e 7é 0. By definition of )\(l’])
n—2 i
Midat | = api, +(1+4; o)ain_+ Z affire,
iz o e op=l Qg
)\1(1i7j)a2(;1) ... agi"—l) = agél) . agi"_l)ag n) + (1 +dj4,)a,, (@) -agi’:] 1)
7 n—
+ 2 dgda i)Y ),
p=1
), o Oy
'7' _ in . Jytp+1
M= a4 Y (U Giye)
p=1 aip+1

This proves the first point of the lemma.

2. Let us now fix p1,--- ,pn € N. By definition, for ¢’ = B;‘(.lpl cee PN

(4,9) _
)‘p1+ ApnH1OBF (1 P1 @N) T (pj+1)aBi+(.1P1.--.j7’j+1---.1\;¥’1v)

+Za3i+(,1p1 PPl N 1T )

(4,5) O _ ) (@) @
>‘p1+ +pn+1%py o) T (p] + 1)a(ph -pj+1,pN) + Zpl Upy o)y
=1

19



This proves the second point of the lemma. O

Remarks.
1. Asa consequence of the second point, if (S) is Hopf and if agp) pN) = 0, then agl) V)= =0
if l1 > p1,--- ,In > pn. In particular, as there is no constant E, for all 7, there ex1sts aj

such that a 7é 0.
2. So the sequences considered in the first point of lemma [[7 always exist.

3. Moreover, for all vertices i, j of G(g), i — j if and only if a 75 0.

4. Finally, for all ¢ € I, for all p > 1, X;(p) # 0.

Proposition 18 Let (S) be a Hopf SDSE.

1. Let 1,7 be vertices of Gg), such that j is not a descendant of i. Then for alln > 1:

AGD) =

2. Let (S) be a Hopf SDSE with set of vertices I and let (S’) be a Hopf SDSE with set of
vertices J. Then (S') is a dilatation of (S) if, and only if, J admits a partition indezed by
the elements of I and for alli,j € I, for allx € J;, y € J;, for all n > 1:

AGd) — \@),

3. Let i € I such that:

F;, = 1+Za§i)h

jel
Then for all direct descendant i’ of i, for all j, for all n > 1:

)‘1(1+i = )‘(Z A,

A

As a consequence, if i',i"" are two direct descendants of i, Fy = Fn.

Proof. 1. Let us consider a sequence ¢ = i1, - - ,i, of elements of I such that a 75 0 for
all 1 <k <n—1. Then j is not a direct descendant of iy, - ,i,, so a§ ") — 0 and angk)ﬂ =0

for all k. By lemma [, A% = 0

2. =. From lemma [[7-1, choosing an element x; in J; for all i € I.
<. Let us consider the dilatation (S”) of (S) corresponding to the partition of J. Then

the coefficients A7) of (8") and (S”) are equal, so by lemma [13-2, (S') = (5").

3. Let us consider a sequence 4,7 = i1,--- ,i, of elements of I such that a(z’“ # 0 for all

: ()
1 <k <n—1. By hypothesis on 1, a; ;=0 By lemma [[7}1:

(Zk)

A = a0+ Z 1+ 8jiy) j(ZZ)“ =\,

k=1 Zk+1

So, if i’ and " are two direct descendants of i, for all k € I, for all n > 1, )\,(f/’k) — AR, By
lemma [4-2, Fyy = Fn. |
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Proposition 19 Let (S) be an SDSE, with I = {1,...,N}. It is Hopf if, and only if, the
two following conditions are satisfied:

1. There exist scalars )\g’j) satisfying, for all 1 <i,5 < N, for all (p1,--- ,pn) € NV:

@) _ 0\ 6
Upr,pyaron) pj+1 (Apﬂr “+pn+1 IZIW ) U1, pn)°
€

2. For allp > 1, for alli,5,dy,--- ,d, € I, such that al¥ ) % 0 where p; is the number

. ( 1, PN
of dy’s equal to i, for all ny,--- ,ny > 1:
(i,) @ — G (di, dy)
Ml — @ = )‘p+]1 Qe > <)\ 1) )

lel

Proof. Preliminary step. Let us assume the first point and let ¢ € Tjgi). We use the
following notations:

= B;r H s"s

s€Tp

S

seTg)

We also denote, for all j € I:

Then, by (fl):

Hp]
H 7°s pl,--,pN SgDa

SET’D

ay —

Hence:

Z n;(t,tYa; = nj | B |.; Hsrs ! Apt(,; T[sm)

+ Z Tsl +1 81782) B+(ﬂnsrs)
51,52€TD °2
TsgZ

N
(p;+ 1) [ »s!
j=1 (Z) Ts
(T'jJrl)(r +1) H r 'a(pl,'--,Pj+1,"'7pN)a‘J' H as
o] S-

s€Tp
s€Tp

+ ) (s +1)nj(s1,82)——
s1,52€Tp
= () £ Y (s s)ragan

(Z) a
Up1, o) s1,82€TD o2

TSQ asl
Qg
Ts; + 1 Agqy

(4,) @
Api 4 eetpy+1 ZP; t Z nj(s1, 52) T82_ -

51,52€TD 52
755 >0
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—. Let us assume that (S) is Hopf. We already prove the existence of the scalars )\( 9,

We obtain from the preceding computation:

(Zvj) _ 7]) (d 82)7])
)\weight(t’)at/ - p1+ +pn+1 Zp] + Z 82)\wezght(32 ag's
s2€TD
where d(s2) is the decoration of the root of sy. Let us choose p, i,5,d1,--- ,d,, ni,--- ,np as in

the hypotheses of the proposition. Let us choose for all 1 < j < p a tree s; with root decorated
by d;, of weight n;, such that as, # 0: this always exists (for example take a convenient ladder).

Let us take ' = B (sy -+ sp). Then ay # 0 because al” - p) 7 0, 80:

(p1,:
)\(@j) _ )\ i,5) dl,] )
nit-+np+l = Tp+1 Z :
<. Let us show the condition of proposition [[§ by induction on the weight n of ¢. For
n =1, then ¢’ = .,. Then, by hypothesis on the a? ( ) — )\( ©3)  Go:
(p17 7pN)
Z nj(t,tl)at = I{ = (Z‘gl) = )\gi’j)a.i .
teTi(n+1)

Let us assume the result for all tree of weight < n. The preceding computation then gives:

2 l
Z n;(t,t)a; = )\Sli ] Zp] O Z n;(s1,s2) 7“52— ay.

(1) $1,82€Tp 52
teTp 7352 >0

The induction hypothesis and the condition on the coefficients /\ﬁf 9) then give that this is equal

to Aggght(t/)ﬂat/. So Hs) is a Hopf subalgebra of H;. O

3.4 Prelie structure on HZ*S)

Let us consider a Hopf SDSE (S). Then H(S) is the enveloping algebra of the Lie algebra

g(s) = Prim <H?S)), which inherits from Prim(H7) a pre-Lie product given in the following
way: for all f,g € G(g), for all x € H(g), f * g is the unique element of g(gy such that for all
x € vect(X;(n) /i€ I,n>1),

(fxg)@) =(f@g)e(r@m)oAl).

Let (fi(p))ierp>1 be the basis of g(g, dual of the basis (X;(p))icrp>1. By homogeneity of A,
and as A(X;(n)) is a linear span of elements — ® X;(p), 0 < p < n, we obtain the existence of

coefficients aé 7 such that, for all 4,5 € I, k,1 > 1:

£ % fik) = a ) ik +1).

By duality, a,(” 7) is the coefficient of X () @ X;(k) in A(X;(k+1)), so is uniquely determined in
the following way: for all ¢’ € TD 1), t" e Tlgi)(k:),

Z n(t' t";t)a; = al(g ’lj)at/atu
teTH (k+1)
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Lemma 20 For all t' € T3 (1), ¢ € TS (k):

Z (t t” t)at )\( 7]) t/at//
teT (k+1)

Proof. By induction on k. If k = 1, then t" = ., , so:

Z n(t/, t//; t)(lt = aBTL(tH) = agi)at/ = )\gi’j)at/atu,
teTH) (k+1)

as ay = 1. Let us assume the result at all rank < k — 1. We put t” = B;"( H s"). We put
s€Tp
pj = Z rg for all j € I. Then:

867’79)

Z n(t/,t”;t)at = n t/,t”,B;r o HSTS aB:»(t,HSTS)

teTS) (k+1) s€Tp
+ Z (TSI + 1)n(t,782;81)a3j(571 Hsrs>
s1,52€7TD 2
rsy>1

N
(pj + 1) [ p!
=1

(Z) Ts
= (re4) Y : ar ] o
l I D1, Pj+1,"" PN
Tt/+1) 7”81 J

s€Tp
s€Tp
Ts Qs
+ Z (re; + 1)71](81,82) j‘lat”a 1
s1,52€Tp 52
@
U1, pyar o) as,
= (p] + 1) 5 J ap apr + Z ’I’L] S1, 82)7“32 a agn
(p1,+,PN) 51,52€TD 52
(3,9) O] 51
- )‘p1+ +pn+1 ij + Z n;(s1, s2) r82 Qg Qprr
51,52€TD 52
755 >0
_ (3,9) O] (r(s2).7)
= )\p1+ +pN+1 Zp] + Z T32>\|82| QA Q11
s2€Tp

using the induction hypothesis on sy, denoting by r(s2) the decoration of the root of ss. By

proposition [[-2, if ay # 0, then a&)l e pn) # 0, so:

) — @) r(s),d) _ ()
NP = A, +er( s a; )
(E3)  _ J) (r(s).3) O]
)\lt”JI - )‘pli- NS Zré’)‘ ’ Zplaj :
l
So the induction hypothesis is proved at rank n. O

Combining this lemma with the preceding observations:
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Proposition 21 Let (S) be a Hopf SDSE. The pre-Lie algebra g(s) = Prim (’HZ‘S
basis (fi(k))icr k>1, and the pre-Lie product of two elements of this basis is given by:

)> has a

Fi ) % filk) = A7 fi(k +1).

4 Level of a vertex

The second item of proposition [§-2 is immediately satisfied if there exist scalars b; and ay)

such that A{7) = bij(n —1)+ ag.i) for all n > 1 and all ¢,5 € I. This motivates the definition of
the level of a vertex.

4.1 Definition of the level

Definition 22 Let (5) be a Hopf SDSE, and let i be a vertex of G gy. It will be said to be

of level < M if for all vertex j, there exist scalar bgi), dgi), such that for all n > M:
ig) — p(0) ~ (i)
A7) =b'(n—1)+a; .

The vertex 47 will be said to be of level M if it is of level < M and not of level < M — 1.

Remark. In order to prove that i is of level < M, it is enough to consider the j’s which

are descendants of i. Indeed, if j is not a descendant of i, by proposition [§1, )\,(f ) = 0 for all
n > 1.

Proposition 23 Let (S) be a Hopf SDSE, i a vertex of G(g) and j a direct descendant of
Gs)-

1. i has level 0 or 1 if, and only if, j as level 0.

2. Let M > 2. Then i has level M if, and only if, j has level M — 1.
Moreover, if this holds, then for all k € I, b,(j) = b,(gj).

Proof. Let i € G(g) and j be a direct descendant of i. As (S) is Hopf, let us use the second
point of proposition [[9, with £ =1 and d; = j. Then for all [, for all n > 1, as ag»i) #0:

il il ; j
APD = A0 4 AGD — g0,

So for all M > 1, ¢ is of level < M if, and only if, j is of level < M — 1. Moreover, if this holds,
then b = b7 for all k.

The first point is a reformulation of the preceding result for M = 1. Let us assume that
M > 2. If i is of level M, then j is of level < M — 1. If j is of level < M — 2, then i is of level
< M — 1: contradiction. So j is of level M — 1. The converse is proved in the same way. O

Corollary 24 Let (S) be a connected Hopf SDSE. Then if one of the vertices of G(g) is of

)

finite level, then all vertices of G (g are of finite level. Moreover, the coefficients bgi depend only

of 3. They will now be denoted by b;.
Proposition [[§1 immediately implies the following result:

Lemma 25 Let (S) be a connected Hopf SDSE and let j be a verter of G(g) of finite level.
If there exists a vertex i in G5y which is not a descendant of j, then b; = 0.
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4.2 Vertices of level 0

Let (S) be a Hopf SDSE with I = {1, ...
(1)

this case, the coefficients a
(p1,+ PN

N
g0 = b

N
(i) 1 A 0 (i)
a(pl,..- ,pj+1,.-- 7pN) - p] I 1 <)\] + lz; /’[/] pl) a(pl,--.

(4)

In order to ease the notation, we shall write a( (1,

in this section.

p1,- py) iDstead of a

Lemma 26 Under the preceding hypothesis:

DN)

, N}, and let us assume that 7 is a vertex of level 0. In
) satisfy an induction of the following form:

PN)"

and F instead of F;

1. Let us denote J = {j € I /| A\j = 0}. There exists a partition I = Iy U--- U Iy U J, and
scalars B, , B, such that for alli,j € INJ =1 U---Ulp:
G) _ 0 if i, do not belong to the same I,
. by if i j € .
2. Moreover F(hy,---, H fs, Z Nhy
lel,
Proof. Let us fix ¢ # j. Then:
Apy, pitl, pi+l,- J’N)
1
T opi+l <)\ +,u +Z,ul pz) Apr,pj+1s o)
1
= A
(pi +1)(p; +1) <>\ —i—,u +Z'u’ pl) ( +Z'uj pl) Ap1,-pN)>
_ 1 0 0
EDED (AJ A ;“ﬂ‘ UAGM Z“l PL| o om):
For (p1,--' ,pn) = (0,--- ,0), as a(,.. 0) = 1:
Mz(j))\j = ug-l))\i. (2)
For (p1,--- ,pN) = €k, we obtain:
k k i k k
(M 67+ ) (g + ) A= (g + 68+ 187) (3 + 1) A
SO7 if )\k 7é 0:
7 k
ng)ﬂg ) _ u§)u§ ) (3)
If A\x = 0, it is not difficult to prove inductively that a(,, .. ) = 0if pp > 0, so F'is an element
of K[[h1, -+ ,hg—1,hg+1, - ,hn]]. Hence, up to a restrlctlon to I'\ J, we can suppose that all

the Ap’s are non-zero. We then put 1/(] ) =

i, J,k,
G _ )

12 = v/,

I/'(j) (I/i(k) — l/(»k)) = 0.

for all i,j. Then () and (f) become: for all

(4)
()



Let 1 <i,57 < N. We shall say that i R j if ¢ = j or if I/i(j) # 0. Let us show that R is an
equivalence. By ({]), it is clearly symmetric. Let us assume that iR j and jRk. Ifi = jor j =k
ori=k,theniRk. If i,j, k are distinct, then y(j) # 0 and V(k) # 0. By (f), Vi(k) ) %0, so
1 R k. We denote by I,--- , Iy the equlvalence Classes of R

Let us assume that ¢ R j, ¢ # j. Then 1/ 75 0, so for all k, 1/( ) = l/i(k). In particular,

(@) _ ) () _ (J)

v; v =y So, finally, there exists a family of scalars (ﬁl)lgig M, such that:

e Ifi,j € I;, then y = [, and ,u(] = \i0.

e If i and j are not in the same I;, then u( ) = ,uz(]) 0.

An easy induction then proves:

)\pl___)\pN M
Q48 (148 | D m—1

p=1 lel,

Ay, ... =
(p1,+,PN) ol pNl

This implies the assertion on F'. O

4.3 Vertices of level 1

Let us now assume that i is of level 1. Then, up to a restriction to i and its direct descendants,
()

the coeflicients a =q
(p1,,PN) (1, 5pN

) satisfy an induction of the form:

W _
(0

asj = aj ’

N
@ 1 . 0 (i) :
R T N T pj+1 <)\] + ;’uﬂ' pz) gy, ) 1 (p1, o) # (0, 0).

instead of a(i) and F' instead of F;

In order to ease the notation, we shall write a( (P1, o)

in this section.

D1, PN)

Lemma 27 Under the preceding hypothesis, one of the following assertions holds:

1. There exists a partition I = 1 U---UlpyUJ, scalars 81, -+, Bar, a non-zero scalar v such
that:
F(hy,---  hn Hfﬁp > vahy +Zazhz+1——
lel, leJ

2. There exists a partition {1,--- N} =1L U---UIpy UJ, scalars v, for 1 < p e M, such
that:

F(hl,---,hN):l—Z In | 1=vp > athy | +> aihy.

p=1 lel, leJ

Proof. Let us compute a;;, in two different ways:

<)\j + ugk)) a = ()\k + /L,(Cj)> a;.

In other words: .
Aj —|—,u( ) a;

)

=0. (6)
i + ,uk ag

26



Let us take J = {j / Vk, \j + ugk) = 0}. Let us consider an element j € J. Then an easy

induction proves that for all (p1,--- ,pn) such that py +---+py > 2 and p; > 1, A(py,--
As a consequence:

F(hy, -+ ,hn) = F(h1,--+ ,hj_1,0,hjt1, -+ ,hn) + ajhj.

So:
F=F(h;,i¢J —|—Za]

jed

We now assume that, up to a restriction, J = (). Let us choose an i and let us put bpy,--

(Pi + 1)agp, ... pit1, pn)- Lhen, for all j € I, for all (p1,--- ,pn):

N
1 (i) )
b(p17~~~7pj+1;~7p1v) = pi+1 (Aj +Mj + Zﬁ‘j b b(pl,---,pw)'
=1

We deduce from lemma 2§ that there exist a partition I = I; U--- U Iy and scalars (51, ...

such that:
(l) 0 if 7,1 are not in the same I,
Hi = <)\ +u())ﬁk if il eI
So ,ug»i) does not depend on ¢ such that u ji # 0. So there exist scalars u; such that:

o { 0 if 5,1 are not in the same Iy,
Hj ()\j—F/Lj),Bk if 5,1 € Ij.

) =0.

PN) T

a/BM’

1. Let us assume that M > 2. Let us choose j € I1. Then for all k € I U--- U Iy, ([) gives:

o
‘ A )
Ak Ok
We denote Io U --- Ul = {i1,--- ,iar}. We proved that the vectors (A, Ai;,---, Ai,,) and
(aj,ai,,- - ,a;,) are colinear. Choosing then a j € I, we obtain that there exists a scalar

v, such that (\;);er = v(a;)ier. Two cases are possible.

(a) If v # 0, putting al(pl,---,pN) = Va(p, ... py) if (p1,---,pn) # (0,---,0) and a’(o,___m,

then the family <a’(p 1, PN)

F(hy,--- ,hy) satisfies the first case.

) satisfies the hypothesis of lemma P§. As a consequence,

(b) If v =0, then we put, for all j, yu; = via;. By (), for j and k in the same I, Vi =1
if 7 and k are in the same I;: this common value is now denoted v;. It is then not

difficult to prove that:

F(hy,- - ,hN):l—Z In 1—1/pZalhl

p=1 P lel,
This is a second case.

2. Let us assume that M = 1. Then (\; + p;)51 = ,ug»i) forall i,5 € I.

(a) Let us suppose that 51 # 1. Then, for all j,k € I p; = fﬁ

=A;. So, for all j,

Aj+py = = 51)‘ So (B) implies that ()\;)jer and (aj);es are colinear. As in 1.(a),

this is a first case.

(b) Let us assume that $; = 1. So A; = 0 for all j. As in 1.(b), this is a second case.
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4.4 Vertices of level > 2

Lemma 28 Let (S) be a Hopf SDSE and let i be a vertex of G(s)- We suppose that there
exists a vertex j, such that:

e j is a descendant of 1.

o All oriented path from i to j are of length > 3.

Then F; =1+ Z ali)hl.

i—l

Proof. We assume here that I = {1,...,N}. Let L be the minimal length of the oriented
paths from ¢ to j. By hypothesis, L > 3. Then the homogeneous component of degree L + 1
of X; contains trees with a leave decorated by j, and all these trees are ladders (that is to say

trees with no ramification). By proposition [[G, if ¢’ € Tjgi)(L):

A%’j)at/ = Z nj(t,t/)at.
e (L+1)

For a good-chosen ladder ', the second member is non-zero, so )\(Li’j ) is non-zero. If ¢’ is not a
ladder, the second member is 0, so ay = 0. As a conclusion, X;(L) is a linear span of ladders.
Considering its coproduct, for all p < L, X;(p) is a linear span of ladders. In particular, X;(3)

is a linear span of ladders. But:

X;(3) = Zal(i)a%)w + al(?nl A
Im <m
(@)

so a; ,,, = 0 for all [, m. Hence, F; contains only terms of degree < 1. O

Remark. This lemma can be applied with ¢ = j, if ¢ is not a self-dependent vertex.

Proposition 29 Let (S) be a Hopf SDSE and let i be a verter of G (s of level > 2. Then i
1S an extension vertex.

Proof. We denote by M the level of i. By proposition P3| all the descendants of i are of
level < M — 1, so ¢ is not a descendant of itself.

Let M be the level of i and let us assume that M > 3. Let j be a direct descendant of ¢, k
be a direct descendant of j, [ be a direct descendant of k. Then j has level M — 1, k has level
M — 2, [ has level M — 3. So in the graph of the restriction to {i,j, k,{} is:

i J k [ or i J k l Q
The result is then deduced from lemma .

Let us now assume that ¢ is of level 2 and is not an extension vertex. Let j be a direct
descendant of i and k be a direct descendant of j. By proposition P, j is of level 1 and k is of
level 0, so k is not a direct descendant of i. The graph of the restriction of (S5) to {7, j, k} is:

First step. Let us first prove that there exists a direct descendant j of ¢ such that a% £ 0.
Let us assume that this is not true. As i is not an extension vertex, there exist j,j' € I such

28



that a%, # 0, 7 # 7. Let k be a direct descendant of j. Considering the different levels, the
graph associated to the restriction to {i, 7, j’, k} is:

SN NN N
NN TN

kD
Up to a change of variables, we put:
EF;(0,+++,0,h;,0,--+ ,0,hjr,0,-++ ,0) =1+ hj + hjs + bhjhj + O(h?).
Then by proposition [[f, )\(i’j)a i =2a,, + an = 0, so )\(i’j) = 0. On the other hand,

JVJ

)\g}j)a” .+ aIJ = b, so 0 = b: this contradicts a 7& 0.

Jv]
Second step. Let us consider a vertex j such that a 7é 0. Up to a change of variables,

we can assume that ag-) = 1 and that for all direct descendant kofj,a (] )= 1. By lemma P35,
b; = b; = 0. So, as i is of level 2, there exist scalars a,b, such that:

N lifn=1,
A = ¢ qifn =2,
bif n> 3.

Then proposition [[d-1 implies:

b
F(0,---,0,h;,0, - m_1+h+2m§‘ZM+omﬁ
By hypothesis, a # 0. Moreover, by proposition [if, b = X ( Ng ajk =a ., =a. So:
G g

2
Em,~,amﬁ,-(n_1+h-+m@ —4ﬁ+omﬁ.

As j has level 1, we put:

AGHR) — a,(cj) =1lifn=1,
" c(n—1)+difn>2,

where ¢(= by) and d are scalars. From proposition [[g-1:

c+d o  (c+d)(2c+d)
6

ﬂmwwamﬁw,m:1+m+2!@+ hi 4+ O(h).

(k)

Moreover, A; =a so AVFe — ¢ and )\i(,f’k) = 2. Then )\i(,f’k)aik = 2a*

a k
.= 5 SO
Ajs 1 k> 3 2 i Y ’
K i 1 :
A

G .
¢+ d = 2. Similarly, using ’V;” , we obtain )\Sf’k) = 3. Using Y, , we obtain:

c+d_3(c+d)(20+d)‘

3 —
2 6

Asc+d=2,2c+d=3,s0c=d=1 and A,(lj’k):nfor all n > 2. As )\gj’k)zl, A,({”“) = n for
all n > 1.
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Let now [ € I which is not a direct descendant of j and let k be a direct descendant of j.
For all n > 1:

AGD = AGD ®),

aB;r(.knfl) = aBj*(.kn*lI%c) =(n—1a

We proved that for any vertex [ of G(g), for all n > 1:

AGD —

n

n if [ is a direct descendant of 7,
- al(k) (n —1) if  is not a direct descendant of 7,

where k is any direct descendant of j. This proves that j has level 0, so ¢ has level 1: contradic-
tion. So 7 is an extension vertex. O

5 Examples of Hopf SDSE

5.1 cycles and multicycles

Notation. We denote by [(i1,- - ,i,) the ladder with decorations, from the root to the leave,
i1, ,ipn. In other words:

in
$in—1

i1, vip) = Bl o0 BL(1) = 1z .

11

Theorem 30 Let N > 2. The SDSFE associated to the following formal series is Hopf:

Fi = 1+ hs,
Fnoy = 1+hN’
Fy = 1+4+h.

Proof. We identify {1,--- , N} and Z/NZ, via the bijection i —» i. Then, for all n > 1 and
forall 1 <i< N, X:(n)=1(i,---i+n—1). As a consequence:

+o0
AX) =X;01410 X+ Y Xem @ Xq(p).
p=1

So H gy is Hopf. O

Note that the graph G g) associated to such a system is an oriented cycle of length NV, with
only non-self-dependent vertices.

Definition 31 Let (S) be a Hopf SDSE. It will be said to be multicyclic if, up to change
of variable, it is a dilatation of a system described in theorem BQ.

The graph of a multicyclic SDSE will be called a multicycle. In other term, a N-multicycle
(N > 2) is such that the set I of its vertices admits a partition I = I7U---U I3 indexed by the
elements of Z/NZ, such that the direct descendants of a vertex ¢ in I are the elements of Irgy
for all j € Z/NZ. Moreover, up to a change of variables, for all i € G(s):

Fi:1+zhl-

i—>l
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Here is an example of a 5-multicycle:

Note that if N =2, G(g) is a complete bipartite graph, that is to say that the set of vertices
of G(g) admits a partition into two parts, and for all vertices i and j, there is an edge from 7 to
7 if, and only if, ¢ and j are not in the same part of the partition.

5.2 Fundamental SDSE
Theorem 32 Let I be a set with a partition I = Iy U JyU Ko U I; U Jy, such that:
o Iy, Jo, Ko, I1, J1 can be empty.
o [y U Jy is not empty.

The SDSE defined in the following way is Hopf:

1. For all i € Iy, there exists 8; € K, such that:

F; = fp,(h H [ s (L+B5)h Hfl

_]GIO {i} 18 Jj€Jo

2. For alli € Jy:

8. For alli € Ky:

4. For all i € I, there ezist v; € K, a family of scalars (a§- ))]ejoujouKO, such that (v; # 1)
or (3j € Iy, ag-z) #1+p;) or (35 € Jo, a 7é 1) or (3j € Ky, a 7é 0). Then, if v; # 0:

I () T, ) T o)1
tjelo wa? jedo Vi% j€Ko ’
If v, =0:
a®

Fi:_Zﬁ] In(1—nh Za In(1 — j)—i—Zay)hj—i—l.

j€lo J j€Jo JjE€EKo
5. For all i € Jy, there exists v; € K — {0}, a family of scalars (a )

§ )jEIoUJoUKOUIl, with the
following conditions:

oI —{jell/a # 0} is not empty.
oFOT@ll]GI(l) v; = 1.
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o For all j, k € I{i), F; = Fy,. In particular, we put bg) = at for any j € I1 , for all
te lpUJgUKp.

Then:
S | O ((bﬁ“—l—ﬂa‘) ) L g (7 = 1) m) TT 10 (070)
bjelo o) -1- jedo b1 jEKo
+ Z a; Ty +1— —
jer®

Proof. In order to simplify the notation, we assume that I = {1,...
proposition [ with, for all 4,5 € I:

,N}. We shall use

£ — g)lfn—l
g a\) +bj(n—1)if n>2,

the coefficients being given in the following arrays:

1. az(j):
Z\] e ly e Jy eKy|elh e
G) | 818
€lo |(1+8:) =6i3Bi | 145 |1+Bi| ap” | =——
: @ _
€ Jo 1 1-6,;| 1 |a? b/y7 1
: (@)
e Ko 0 0 0 [a?| X
7,
el 0 0 0 | 0 al?)
eJ; 0 0 0 0 0
2. i
Z\j E[o EJO EKQ el eJi
elo |(L+5) =06 | 14+ 06 |1+ 5 Vj%@ b, e ﬁz
e Jo 1 1-6,;] 1 |va?| 89—
€ Ko 0 0 0 |v;d? bgf)
el 0 0 0 0 0
ey 0 0 0 0 0
3. bj:
J e Iy cehl|leKyleh|€e
bj |1+8;| 1 0 0 0
The second item of proposition [ is immediate. Let us prove for example the first item for
i€ Jyand j € Iy. Let us fix (p1,...,py) € NY —{(0,...,0)}.
(4,9) O]
)\P1+ Apn+1 Za D
i 1)
= b§”—1—ﬁj—<1+ﬁj>2pl— S a8+ — Y., a'n
=1 lelgUJoUK( lelTUJy

—1—5j+ﬁjpj+ Z (l—l-ﬁ]—a )>pl

leuJy
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If there exists [ € (I; U J1) — Iy), such that p; # 0, then a? aE Y =0 and

P15epj+Lpn) T (P15 ,pN)
then the result is immediate. We now suppose that p; =0 for all [ € (I; U Jp) — . Then:
i l
p1+ Apn+1 Z(Z P o= b‘gl)_l—ﬁj—{—ﬁ]pj—FZ <1+B]—a§))pl
1ert”

_ b§i)—1—ﬁj+5jpj+<1+ﬁj—bl> S

ter(”

1. If Z p; = 0, then:
lely)

@

(z) _ <b(i) _1_ 8. > %py,...pN)
p1 i t1,pn) J Bips pi+1
The first item of proposition [IJ is immediate.
2. If Z p; =1, then agp)h Py Lpn) = 0 and )‘z(ni) T > a§l)pl = 0. So the first item
1er®
of proposition [[ holds.
3. If Z p; > 2, then aE;)h___7pj+1,___7pN) = aE;)l,___7pN) = 0, so the result is immediate.
lely)
The other cases are proved in the same way, so this SDSE is Hopf. |

Remarks.

1. For all A # 0:

k!
k=0

The second side of this formula is equal to 1 if A = 0. So, formulas defining the SDSE of
theorem B7 are always defined.

2. The vertices of IoU JyU K are of level 0. A vertex 7 of I is of level 0 if v; = 1; otherwise,
it is of level 1. The vertices of J; are of level 1.

Definition 33

1. A Hopf SDSE will be said to be fundamental if, up to a change of variables, it is the
dilatation of a system of theorem BZ.

2. A fundamental Hopf SDSE (.S) will be said to be abelian if for any vertex i € I, b; = 0.

Remark. In other words, (9) is abelian if Jy = () and if for any i € Iy, 5; = —1. Then, for
all i € Ky, F; = 1. As there is no constant F;, we obtain Ky = ().

A particular case is obtained when I = Jy. Then we obtain the following systems:

Theorem 34 Let I be a finite subset which is not a singleton. The SDSE associated to the
following formal series is Hopf:

Fi=]Ja-hy)™", foraliel
J#i
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The graph associated to such an SDSE is a complete graph with only non-self-dependent
vertices, that is to say that there is an edge from i to j in G(g)if, and only if, i # j. In particular,
if N =2, G is 1 <— 2, as for the SDSE of theorem B( with N = 2.

Definition 35 Let (S) be a Hopf SDSE. It will be said to be quasi-complete if, up to change
of variable, it is a dilatation of one of the systems described in theorem B4.

The graphs associated to quasi-complete SDSE shall be called quasi-complete. A quasi-
complete graph G has only non-self-dependent vertices; there exists a partition I = [ U---U s
of the set I of vertices of G(g) such that, for all z,y € I, there is an edge from z to y if, and
only if, z and i are not in the same I;. In particular, quasi complete graphs with M = 2 are
complete bipartite graphs. Moreover, if (S) is quasi-complete, up to a change of variables, for

all x € I;:
-1

Fe=1{1->_hy
j#i yEl;

Here is an example of a 2-quasi-complete graph and a 3-quasi-complete graph:

3 )

Another particular case is the following: assume that I = Iy and that 8, = —1 for all z € .
Then, for all x € I, F;; = 1+ h,. Note that G(g) is not connected if [I| > 2, and this is the only
case where G(g) is not connected. The dilatation of such an SDSE will be called a non-connected
fundamental SDSE. For such an SDSE, the set of indices I admits a partition I = I[; U---U Iy
(M > 2) and up to a change of variables, for all 1 <+i < M, for all z € I;:

F$:1+Zhy.

yel;

Remark. Note that a dilatation replacing x € KqgU I; U J; by a set J, in a system of
theorem B3 also gives a system of theorem BJ. The same remark applies when the dilatation
replaces x € Iy, with B, = 0, by a set J,. So we shall always assume that the dilatation giving
a fundamental SDSE from an SDSE of theorem @ satisfies J, = {z} for any x € Ko UI; U J;
and for any x € Iy such that 8, = 0.

6 Two families of Hopf SDSE

We here first give characterisations of multicyclic and quasi-complete SDSE. We then consider
Hopf SDSE such that any vertex is a descendant of a self-dependent vertex. We prove that such
an SDSE is fundamental. The results of this section will be used to prove the main theorem [[4.

6.1 A lemma on non-self-dependent vertices

Lemma 36 Let (S) be a Hopf SDSE and let i € 1 such that az(i) =0. Let j, k andl € I
such thata #0, ak 7é0 cmdalZ £ 0. Thenak #0 ora 7é0.

Proof. Let us assume that a,(c) =0. As a 75 0,7 #k. As a,g) =0, a.v,C = a(i,)ﬁ = 0. Then,

J

= q!' )ag) + 0; hence, )\(Z K = lgj).

from proposition [I§, ay))\g’k) = )\g’k)azg = Ik + a’\/k i
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Moreover, As al(i) # 0, 1 # k. Then, by proposition [L§, al(i))\g’k) = )\g’k)azg = aIf + alvk =
al(z)aé) + 0, so )\( R = a,gl). Hence, a,gl) = a,(g) # 0. O

Remark. In other words, if (5) is Hopf, then, in G gy:

Z—>] — ’L—>] or Z<]
l k l—k l k
A special case is given by i = k:
ﬁ-] — 7

~=.
~ = .

6.2 Symmetric Hopf SDSE

Proposition 37 Let (S) be a Hopf SDSE, such that G gy is a N-multicycle with N > 3.
Then (S) is a multicyclic SDSE.

Proof. Let I = I U--- U I be the partition of the set of vertices of the multicycle G(g).
As N > 3, for all ¢ € I, by lemma P§ with i = j:

E =14 Z ay)h]‘.
1—>]
Let j,j/ € Iw. Then any i € I— is a direct ascendant of j and j'. By proposition [[§-3,

F F In particular, for k € I 1, a,(c) = (J ). We apply the change of variables sending hj

(J) hk if k € I77, where j is any element of I. Then, for any j € Iy

Fi=14+ Y I

kel
So (S) is multicyclic. O

Proposition 38 Let (S) be a Hopf SDSE, such that G(s) is M-quasi-complete graph (M >
2). Then (S) is a 2-multicyclic or a quasi-complete SDSE.

Proof. First, let us choose two vertices + — y in G(5). Then y — z in G(g), and by
(
a

SO )\g%y)a;y) Z‘y)az(jr) + 0, and aé:l)) = A;y7y) depends

proposition [L@, )\;y’y)azgj = aig + ayvz ,
Y Yy
(z)

only on y. So, up to a change of variables, we can suppose that all the a; ’’s are equal to 0 or
1. We first study three preliminary cases.

First preliminary case. Let us assume that G(g) = 1 +— 2. We put:

h2) = Zai Zé, Fg(hl) = szhzl,
=0 =0

with a1 = by = 1. Then )\(1’1) = )\(l’l)aié = 2a! 21 = 2bs. On the other hand, )\(1 b
1
2a

10
2\}2
1

(ZQV
1

S0 2a9by = 2a9: as = 0 or by = 1. Slmllarly, bo=0o0ras=1. Soaps =by =0o0r 1. In
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the first case, Fy(ho) = 1+ hy and Fy(hy) = 1+ hy. In the second case, let us apply lemma [[3-1
with (i1, ,in) = (1,2,1,2,+-+). If n = 2k is even, we obtain Ay = 2+ 2(k — 1) = 2k = n.
If n =2k +1 is odd, )\,(11’2) =142k =mn. So )\S’Q) = n for all n > 1. By proposition [9-1,
for all n > 1, apy1 = a,. So for all n > 0, a, = 1 and Fy(he) = (1 — hy)~!. Similarly,
Fg(hl) = (1 — hl)_l.

Second preliminary case. Let us suppose that G g) is the following graph (which is 3-quasi-

complete):
NS

3

1

2

We put:
F1(h2, hg) = 1+ h2 + h3 + a2h§ + a3h§ + a/hghg + O(hB),
Fg(hl,hg) = 1+h1 —|—h3—|—b1h%—|—b3h§+b/h1h3+0(h3),
Fg(hl,hg) = 1+M —|—h2—|—61h%—|—62h%—|—6,h1h2+O(h3).

By restriction, using the first preliminary case, restricting to {1,2}, {1,3} and {2,3},a2 = by,

a3 = c¢; and bg = ¢ and all these elements are in {0, 1}. Moreover, by proposition 4, )\gm)aﬁ =
2(12\/12 , SO )\5172) = 2as. On the other hand, )\gl’z)aﬁ = aﬁ + agv13 , SO )\5172) =1+ a'. Hence,
1+ a’ = 2as. By symmetry, we obtain 1+ a’ = 2a3, so as = a3. Similarly, by = b3 and ¢; = 3,
soap =a3=by=bg=ci=cp=0o0r1.

If they are all equal to 0, then ¢’ = —1. Then )\i(,,g’l)a{

3,1
2 = ay1, S0 )\g’ ) = 1. Moreover,
b

1
3

)\(3’1) SO )\gg’l) = —1: this is a contradiction, so as = a3 = by = b3 =c¢1 = co = 1,

3 Y
and a’ = 1. Sinfilarly, ¥ =1and ¢ = 1. As in the first preliminary case, using lemma [L3-1, we
prove that NPT # j for all n > 1, and then that Fy(hg,h3) = (1 — hg)~1(1 — h3)~L.
Similarly, Fy(h1,h3) = (1 — h1)"1(1 — h3)~! and F3(h1, ho) = (1 — hy)~1(1 — he)~L.

= Qa 1
1 2

W =

Third preliminary case. We now consider the 2-quasi-complete graph with three vertices
14— 2+— 3. Then I} = {1,3} and I = {2}. We put:

Fy(h1,hg) = 1+ h + hg + a@o)hi + ap2h3 + aqyhihs + O(R?).

Restricting to {1,2}, by the first preliminary case, we obtain Fj(hy) = 1+ hg or Fj(hg) =
(1 — hg)_l.

1. Let us assume that Fj(hg) = 14 hg. Then by the first case, F»(hy,0) = 1+hq, so a@2,0) = 0.
(2,1) (2,1) a : (2,3)
1%3

Moreover, Ay’ ’atl = 0, so Ay 'ali = aci,)y = 0. Then Ay"at1l = ale, SO

2
)\52,3) = a(,1) = 0, and )\gz’g)axg = 2a3v3: aq,2) = 0. As a consequence, Fy(hi,h3) =
1+ ho + h3. Restricting to 2 +— 3, by the first point, F3(hs) =1+ ho.

2. Let us assume that Fy(hg) = (1 — ho)~!. Then Fy(hy,0) = (1 — he)~! by the first point,
80 a(g2) = 1. By the first preliminary case, this implies that F»(0,h3) = (1 — h3)~! and
F3(hg) = (1 — hy)~!. Similarly with the first case, we prove that AP —pifi=1or3
for all n > 1. By proposition [[g-1:

m+n+1 m+n+1

Am+1,n) = m+ 1 QA(m,n), A(mmn+1) = n+1 A(m,n)-

An easy induction proves that a(, ) = (") for all m,n, so Fy(hy, hg) = (1—hy —hg) L.

m
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We separate the proof of the general case into two subcases.

General case, first subcase. M = 2. We put Iy = {x1,--- ,x,} and Iy = {y1, -+ ,ys}. For

x; € I, we put:
_ (wp) q1 ... }4s
FJBP - Z a/(qfvvqs)h/yi hys'
(q1,,4s)

Restricting to the vertices x, and y,, by the first preliminary case, two cases are possible.

1. ag(f;’fy)q = 0. Then, by the third preliminary case, restricting to x,, y, and y,, for all y,, ¥4,
ag’,’gq/ = 0. So:

Foy =14 hy,.
q

2. )\,(f”’y‘I) = n for all n > 1. Using proposition [[J-1, we obtain:

(zp) It qat s (a)
Yqr,e gmA1,as) RICTRAR
37 dm 3 sQs qm+1 »yls

An easy induction proves:
@) (14 +qs)!
(QIv"'v(IS) - qllqs| :

So:
-1
F,, = (1 -~ Zhyq> :
q

A similar result holds for the y,’s. So, we prove that for any vertex i of G gy, one of the following
holds:

L E=1+) h;
i—7
-1
2. Fy=|1-) b
i—>7

Moreover, by the first preliminary case, if 7 and j are related, they satisfy both (a) or both (b).
As the graph is connected, every vertex satisfies (a) or every vertex satisfies (b).

General case, second subcase. M > 3. Let us fix i € G and let us denote y1,--- ,y, its direct
descendants. Restricting to the vertices 7 and y;, two cases are possible.

1. ag(/?,yj =0. As M > 3, with a good choice of y;/, we can restrict to the second preliminary

case, and we obtain aéj)7yj = 1: contradiction. So this case is impossible.

2. )\Sf’yj) = n for all n > 1. Using proposition [[3-1, we obtain, similarly with the case M = 2,
itiel,:
-1

E=1]{1->_n

q#p lehq
So (S) is quasi-complete. O

Definition 39
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1. Let G be a graph. We shall say that G is symmetric if it has only non-self-dependent
vertices and if, for ¢ # j, there is an edge from ¢ to j if, and only if, there is an edge from
j to .

2. Let (S) be an SDSE. We shall say that (S) is symmetric if G g) is symmetric.

Theorem 40 Let (S) be a connected symmetric Hopf SDSE. Then (S) is 2-multicyclic or
quasi-complete.

Proof. By proposition B§, it is enough to prove that G(s) is a M-quasi-complete graph,
with M > 2. Let us consider a maximal quasi-complete subgraph G’ of G(s). This exists, as
G (s) contains quasi-complete subgraphs (for example, two related vertices). Let us assume that
G' # G(s)- As G(g) is connected, there exists a vertex i € G(g), related to a vertex of G’'. Let
us put I’ = I1 U--- I}, be the partition of the set of vertices of G'.

First, if 7 is related to a vertex j of I, it is related to any vertex of . Indeed, let ;' be
another vertex of Iz’, andlet k € [ (’1, q # p. By lemma B, j is related to 7. As G (s) is symmetric,
1 is related to j'.

Let us assume that ¢ is not related to at least two I,’s. Let us take k, [ in G’, in two different
I,,’s, not related to i. By the first step, j, k and [ are in different I,,’s, so are related. By lemma
B, k or [ is related to i. As G (s) 1s symmetric, then ¢ is related to k or [: contradiction. So i is
not related to at most one I,’s.

As a conclusion:

1. If 7 is related to every I,’s, by the first step i is related to every vertices of G', so G' U{i}
is an M + 1-quasi-complete graph, with partition Iy U---U Iy U {x}: this contradicts the
maximality of G’.

2. If 7 is related to every I,’s but one, we can suppose up to a reindexation that ¢ is not
related to Ips. Then, by the first step, i is related to every vertices of Iy U--- U Ipr—1. So
G'U{z} is an M-quasi-complete graph, with partition I3 U- - -U(IpyU{z}): this contradicts
the maximality of G’.

In both cases, this is a contradiction, so G(g) = G’ is quasi-complete. O

6.3 Formal series of a self-dependent vertex

Let (S) be a Hopf SDSE, and let us assume that i is a self-dependent vertex of G(s)- Up to a
(%)

change of variables, we can suppose that a;” = 0 or 1 for all j. In particular, we assume that

az(i) = 1.

Lemma 41 Under these hypotheses, i is of level 0 and for all j € I, bj = (1 + 51-7]')&2(2.

Proof. We apply lemma [[3-1, with ij, = i for all i. We obtain, for all n > 1:

A =0l + (14 6;5)(n — 1)L

So this proves the assertion. O

Remark. So all the descendants of ¢ are also of level 0.

38



Lemma 42 Under the former hypotheses, there exists a partition I =1y U---UIpy U J (J

(%)

eventually empty), with i € I1, such that the coefficients a;” are given in the following array:

J\k| L I I3 Iy J
I [1]p+1] - B+ | #
L | :]1—0 1 1 :
I | 1 | 1-8s
. ) . ) 1
Iy 1] 1 R N e
J o - 0 *
Moreover, for all j € Iy:
Fy = IIMP > M

I€,

Finally, the coefficients )\g’k) are given by )\g’ ) = bp(n —1) + akj) for all n > 1 with:

k| L | L] |In]J
b Bt 1] 1[0

Proof. We can apply lemma P with \; = ag) and u;” = —ay) + (1+6;5) az(fj) Then
I=LU---IpUJ,such that — (k) + 1+ )a Ef]) is given for all 7, k by the array:

Nk L | L |- | Iy |J
Il ﬁl 0 0 *
I 10| B e
Iy | O]~ 0Byl

We assume that ¢ € I, without loss of generality. For the rOW j € J, the result comes from the
g) =0 and a 75 0, then, by proposition [[9}-1:

) = (o = a1 a)) o = 0

following observation: let j, k € I such that a

As a§) =0, then a(]) =0, so a§k) =0.
Lemma R4 also gives:

F;, = H I8, Z hy
IeT,

So (1 +5”) =p+1lifjel,lifjelbu---Ulpy,and 0if j € J. Soa()lsgivenbyfor
all 5,k by the 1ndlcated array. We obtain in lemma [{1] that:

B+ 1ifkel,
b, = lifkelaU---Ulyy,
0ifk e J.

As a conclusion, if j € I, then for all 1 < k < N, a,(gj) = a,(;) and /\53"’” = )\,(f’k) for all n > 1.
By proposition [9, F; = F}. O
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6.4 Hopf SDSE generated by self-dependent vertices

Proposition 43 Let (S’) be a Hopf SDSE, and let i be a self-dependent vertex of G(sny-
Let (S) be the restriction of (S') to i and all its descendants. Then (S) is fundamental, with
Ko=1, = J, = 0.

~Proof. We use the notations of lemma B3. Note that if 4,5 are in the same Ij, then
)\,(f’k) = )\ﬁf’k) for all n > 1, for all k € I. So, by proposition [[§2 the Hopf SDSE formed by 4

and its descendant is the dilatation of a system with the following coefficients )\,(f k),
j\k 1 2 3 e M
1 [(/+D)n—-1)+1 n n
2 Gi+n  |n-B| n || n
3 : n n—p03| " :
: : : . . n
M (Br+1)n n no|n—PBu

with ¢ = 1. We already proved in lemma [ that:

M
= H fﬁj (h])
j=1

If j #1, for all (ky,--- ,ka):
(’) S S W )
Qi1 k) = ((51 +1) 121 ki+Bi+1-(f+1) 121 ki — k1> ﬁ

(J)
= (fr+1+ ﬁlh)M,

ki+1
o)
89)1 Fe 1 k) (Zkzﬂ—l—ﬁj ZkH_ﬁj ) Zh;i_klM)
)
= (1_/8]‘4‘5]‘]?)%.

Ifl#1and ! # j:
() @

(J) (k1,- k?JVI) (K1, kar)
(kl, k1, k) <Z kl Z kl + /Blkl> (1 + /Blkl)ki_{_l-

So, if j # 1:
Fj=f o (+A)m)f_ 2 hi) 11 o (ha)-

o f k#1,j

Let us put IV ={j>2/B;#1} and J; = {j > 2/ B; = 1}. Then, after the change of variables
hj — 1 hforall]EI’

o= fp(h) Hfﬁ;(_ >Hf1
JeI} JjeJ}
Bo= o @rams ) T o (7h) TL At e 5
1+81 -8, ]EI/ 0} ]EJ’
1
Fi = fo (1+80m) [] 13, <?hj I nm)itier
1+81 ; 5] . .
jeI, jeJi—{s}
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Putting v; = for all j € Iy, then, as 3; = —j and 1 - 3; = ﬁ
o= fa(h) Hf u (L +)hy) T fu(hy)
JeIj JjeJ}
Fyo o= fa (1 +51)h1)f’7j(hj) I 7o (+apny) I Ahy) if 5 € I,
1461 , . 1475 )
jely—{j} ]eJO
Fj = fo (1+B)h) wa] (L)) T filhy) it s e T
1+61 j
JEI, JGJ/ {3}
So this a fundamental system, with Iy = {1} U I} and Jy = J. O

Corollary 44 Let (S) be a connected Hopf SDSE such that any verter of Gg) is the de-
scendant of a self-dependent vertex. Then (S) is fundamental, with Ko =1, = Jy = ().

Proof. Let = be a self-dependent vertex of (S). Then the system formed by x and its

descendants is fundamental. We then put Iéx) and Jéx) the partition of the set formed by x and
(z)

its descendants. We separate I, into two parts:

10,12{?/61 /By # },10,2={yeféx)/ﬁy:—}-
2)

Then, after elimination of an eventual dilatation by restriction, the direct descendants of = € Ié g

are x, the elements of [éfl) and Jéx); the direct descendants of z € [éfl) are the elements of Io(ﬁ)

and Jém); the direct descendants of x € Jém) are the elements of Ié,ml) and the elements of Jém)

except x. Let us consider the following cases:

1. If there exists a vertex x, such that JO # (), then, as G(s) is connected, for any self-

dependent vertex vy, Jé - Jox). As a consequence, for any self-dependent vertex y,
Ié,ml) = Ié%ll) . We then deduce that (S) is fundamental, with Jy = Jéx) for any self-dependent
vertex .

2. If for any self-dependent vertex x, Jo(w) = (), and if there is a self-dependent vertex x such
that IOJC2 # 0, then by connectivity of G(gy, for any self-dependent vertex y, [éfg = Io(g)
and IO | ={y}, or Iéz) is empty if y € [, ém) Then (S) is a fundamental, with Jy = 0.

3. If for any self-dependent vertex x, Jox) =0= Iéjvz) . Then by connectivity, I = Iéjvl) for any

self-dependent vertex. So (S) is fundamental, with Jy = 0.

In all cases, (S) is fundamental. O

7 The structure theorem of Hopf SDSE

7.1 Connecting vertices

Definition 45 Let (S) be an SDSE and let i € G(g).

1. We denote by ey

() is the subgraph of G(g) formed by i and all its descendants.

2. The vertex i is a connecting vertezx of G(g) if GE;)) — {4} is not connected.
Lemma 46 Let (S) be a Hopf SDSE and let i € G(g) be a connecting vertex. Then (i is the

descendant of a self-dependent vertex) or (i belongs to a symmetric subgraph of Ggy) or (i is
not self-dependent and relates several components of a non-connected fundamental SDSE).
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Proof. First step. If i is self-dependent, it is a descendant of itself and the conclusion holds.
Let us assume that ¢ is not self-dependent. Let Gi,---, Gy be the connected components of
GE?) —{i} (M > 2). Let 2, € G, be a direct descendant of i for all p. Let x;, be a direct

descendant of x),. Then x’ € G,. Choosing ¢ # j and applying lemma p¢, there is an edge from
()

i to xj,. Iterating this process, we deduce that any vertex of G( {z} is a direct descendant

of ¢. If 7 is the direct descendant of a vertex j € GE S?) — {i}, then i is included in the symmetric
subgraph i <— j of GEQ)’ so the conclusion holds.

Second step. Let us now assume that ¢ is not the direct descendant of any j € G — {i}.
Letn>2,j€ Gy, and let ¢ = 29 — -+ = o, in ngz), where o, ,z, € Gy, p # q. Then, as
» (i), (0) (10) _ %y (i)

1 is not related to any z;, Ay Womgee ) = OBF (o (wa am))? SO An = %52, and A does

ax2
not depend on n: we put )\%’]) = \j for all j € G — {i}, n > 2. In other words, ¢ has level <1,
and b; = 0 for all j.

Third step. In order to simplify the writing of the proof, up to a reindexa‘cion7 we shall
suppose that ¢ = 0 and the vertices of G( — {0} are the elements of {1,--- , N}. By a change of

variables, we can suppose that ag- )

R7, with ugl) = (l) forall 1 < j,l < N and \; = afg for all j,k in two different connected

components of G —{0}.

=1 for all 1 <75 < N. By the second step, we can use lemma

1. In the first case, we obtain the following values for a( ) and Aj:

i\k| L Ly || Iy | J
Il —Vﬂl 0 0 —V
IQ 0 —l/ﬁg : :
: : . - 0 :
Iy 0 0 | —vBpm | —v
J 0 0 0
AN
Nlvle]v]o

As there are no vertices with no descendants, necessarily v # 0 and 3, # 0 for all p. For
the same reason, Iy U---U Iy = is 1mp0551ble If J # (), then any vertex of J is related
to every vertex of Iy U---U Iy, so GE — {0} is connected: impossible, as 0 is a connected

vertex. So J = (), and 0 connects several totally self-dependent subgraphs.

2. In the second case, we obtain the following values for a( ) and Aj:

j\k| L | I, |-~ | Ing | J
Il — 0 0 0
IQ 0 —Ul9 : :
: : . i 0 :
Iy 0 0 |—-vm |0
J 0 0 0
j\ |- L | J
STo =10 1o

As there are no vertices with no descendants, J = () and v; # 0 for all [.
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Moreover, as bj = 1+ 3; = 0 for all j > 1, 0 connects several components of a non-connected
fundamental SDSE. |

7.2 Structure of connected Hopf SDSE

Lemma 47 Let (S) be a Hopf SDSE containing a multicycle with set of vertices I = Iy U
- UlIyz, Then any non-self-dependent vertex of G(g) has direct descendants in at most one Ij.

Proof. Let us assume that the vertex 0 of G(g) have a direct descendant x € I and y € I

with k # I. Then lemma B implies that any direct descendant of x is a direct descendant of 0,
so 0 has also a direct descendant in [z77. Similarly, 0 has a direct descendant in I;7. Iterating
this process, 0 has direct descendants in all the I;’s. Up to a restriction, the situation is the

following;:

|

Moreover, for all 1 < i <k, F;(hj+1) = 1+ hiy1, with the convention hyi1 = h;.
We first assume M > 3. In order to ease the notation, we do not write the index 9 in the
sequel of the proof. By proposition [[6, )\go’Q)aI}) = aﬁ + a1v2 , SO )\5072) =1+ 62—12 On the
0 0

other hand, )\gO’Q)aIg = 2a2v02 , SO )\5072) = 2722 Hence:
a a
14 2b2 922
al a9
Moreover, )\Z(,,O’Q)aig =a _,, SO )\Z(,,O’Q) = 2‘;2—;2. On the other hand, )\go’Q)aﬁ =a _,, SO
0 2\)2 0 2\)1
0 0
)\éo,2) = %2 Hence:
a a a
12 _ %22 4 412
al a9 al

This is a contradiction.

Let us now prove the result for N = 2. We assume that there exists a Hopf SDSE with the

graph:
/ O \

and such that F} =1+ hy and F5 = 1+ h;. We write:

FO = Z a(w)hllh%,

1

2

i3
with a1 gy and a(g 1) non-zero. Then )\go’l)azo = 2a1v01 , SO )\go,l) = —2;(120(;) On the other hand,
(0,1) _ (0,1) _ aq o
Ay arg = a’l\/OQ +GI% , 80 Ay = 201) + 1. We obtain:
2000) _ 301

a(1,0) a(0,1)

43



Moreover, )\go’l)ai 1(21) = 2a1x}; ,
0

O N

2
=a ,,+a.1,80 )\:())0,1) = 2229 41 On the other hand, )\go’l)a
2 a(1,0)
1\}1 fl
0,1) _ aqa o
SO )\3 = Wzl)'

2
oy g - 200 _ %y

a(0,1) (1,0 @(0,1)

This is a contradiction. O

Lemma 48 Let (S) be a Hopf SDSE, such that any vertex of Gsy has a direct ascendant.
Let i be a vertex of G(gy. Then (i is a descendant of a self-dependent vertex) or (i belongs to a
multicycle of G(g)) or (i belongs to a symmetric subgraph of G g ).

Proof. Let us first prove that ¢ is the descendant of a vertex of a cycle of G(g). As any
vertex has a direct ascendant, it is possible to define inductively a sequence (z;);>0 of vertices
of G(g), such that xp =i and x4 is a direct ascendant of z; for all /. As G(s) is finite, there
exists 0 < I < m, such that x; = z,,. Then z; < ;31 + -+ < Tp—1 < T, = 27 is a cycle of
G(s), and i is a descendant of any vertex of this cycle.

Let G’ = x1 — -+ — x5 — x1 be a cycle such that i is a descendant of a vertex of G, chosen
with a minimal s. As s is minimal, there are no edges from z; to z,, in Gg if m # [+ 1, with
the convention x441 = z1. The situation is the following:

rl —— - ——> Ty
Y| —— =Yt ——>

Three cases are possible:
1. If s =1, then ¢ is the descendant of a self-dependent vertex.
2. If s = 2, the situation is the following:

T] =—— T2

|

n s Yi—1 7
By minimality of s, there are no self-dependent vertex in {x1,x2, 91, ,y¢—1,1}. Applying
repeatedly lemma B, there is an edge from y; to x1, then from ¥ to 1, - - -, then from i

to yt—1. So 7 belongs to a symmetric subgraph of Gg).

3. If s > 3, then the subgraph formed by x1,--- ,zs is a multicycle. Let G’ be a maximal
multicycle of length s of G, such that i is a descendant of a vertex of G’. We denote by I’
the set of vertices of G’. Let us assume that i ¢ G'. There exists x1 = y1 — -+ = yr—1 —
ye =1 in G, with t < 1, and x; € I'. Up to a reindexation, we can assume that z; € I%.
By lemma B, y1 is the direct descendant of any vertex of I7 and the direct ascendant of
any vertex of I3. By lemma [[7, y; is not the direct ascendant of any vertex of Ié if k& # 3.

So I'U{z} = I U (I%U {z}) U--- U IZ gives a multicycle of length s, such that i is a
descendant of a vertex of I’ U {i}: this contradicts the maximality of G'. Soi € I'.

O
By the preceding study of Hopf symmetric SDSE:

Corollary 49 Let (S) be connected Hopf SDSE, such that any vertex of G sy has a direct
ascendant. Then (any vertexr of G(g) is the descendant of a self-dependent verter, so (S) is
fundamental) or ((S) is quasi-complete, so (S) is fundamental) or ((S) is multicyclic).
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Corollary 50 Let (S) be a connected Hopf SDSE. Then there exists a sequence (G;)o<i<k
of subgraphs of G(s), such that:

o The system (Sy) associated to the F;’s, i € Gy, is fundamental or is multicyclic.
o Gk = G(S)

o Forall0 < i < k—1, Gjy1 is obtained from G; by adding a non-self-dependent vertex
without any ascendant in Gj.

If Gy is fundamental, any vertez is of finite level. If Gqg is multicyclic, no vertex is of finite level.

Proof. First step. Let us first prove the following (weaker) result: if (S) is a Hopf SDSE,
there exists a sequence (G;)o<i< of subgraphs of G (s), such that:

e (5 is the disjoint union of several fundamental systems or is multicyclic.
o Gk = G( S)-

e For all 0 < i < k — 1, G441 is obtained from G; by adding a non-self-dependent vertex
without any ascendant in G;.

Let us proceed by induction on N. If N =1, then G(g) = Gy is formed by a single vertex which
is necessarily self-dependent, so (S) is fundamental. Let us assume the induction hypothesis
at rank < N — 1. If any vertex of G(g) has an ascendant, then by corollary 9, we can take
G(sy = Go. If it is not the case, let us take i being a vertex with no ascendant. The induc-
tion hypothesis can be applied to the components of G(g) — {i}. We complete the sequence
(Go, - -+ ,Gy) given in this way by Gry1 = G(g)-

As a consequence, the set of descendants of any self-dependent vertex, every symmetric sub-
graph, every multicycle of G(g) is included in Go.

Second step. Let us assume that G(g) is connected. If Gg is connected, then it is fundamental
or multicyclic. If it is not, let us assume that it is not a non-connected abelian fundamental
SDSE. So one of the components H of Gy is not a fundamental abelian SDSE with I = Ij.
Then for a good choice of i, the vertex added to G;_1 to obtain G; is a connecting vertex,
connecting a subgraph containing H and other subgraphs. By the first step, as it does not
belong to Gy, this vertex is not the descendant of a self-dependent vertex and does not belong
to a symmetric subgraph. By construction, it does not connect several components of a non-
connected fundamental SDSE: this is a contradiction with lemma [if. So Gy is of the announced
form. O

7.3 Connected Hopf SDSE with a multicycle

Let us precise the structure of connected Hopf SDSE containing a multicycle.

Theorem 51 Let (S) be a connected Hopf SDSE containing a N-multicyclic SDSE. Then
I admits a partition I = I3 U --- U Iy, with the following conditions:

1. If x € It its direct descendants are all in I

2. If x and 2’ have a common direct ascendant, then they have the same direct descendants.

Moreover, for all x € I:

F, =1+ Z ag”)hy.

T—Y

If x and ¥’ have a common direct ascendant, then F, = F,. Such an SDSE will be called an
extended multicyclic SDSE.
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Proof. We use the notations of corollary p(J. We proceed by induction on k. If k = 0,
(S) is a multicycle and the result is immediate. Let us assume the result at rank & — 1 and
let (S") be the restriction of (S) to all the vertices except the last one, denoted by x. By the
induction hypothesis, the set of its vertices admits a partition I’ = I{U- - -UI’N, with the required
conditions. Let us first prove that all the direct descendants of x are in the same IZ. Let y € I
and z € I; be two direct descendants of x, with k#1 Lety € [ 771 be a direct descendant of
y and 2/ € [ 71 Pbe a direct descendant of z. Lemma Bf implies that x is a direct ascendant of
2 and 3/, as y can 't be a direct ascendant of 2’ and z can’t be a direct ascendant of 3’ because
k # 1. So we can replace y by 4/ and z by 2/. Iterating the process, we can assume that y and
z are in the multicycle: this contradicts lemma [{q. So the direct descendants of z are all in I
for a good m. We then take [; = I7 ifl#m—1and I— = I-— U {z} and this proves the
first assertion on Gg).

We now prove the assertion on F,. We separate the proof into two subcases. Let us first
assume M > 3. There is an oriented path © — xm — -+ = z 37—, with a7 € IZ-( for all 4.
Moreover, there is no shorter oriented path from x to r5 77— As M > 3, from lemma E

F, =1+ Z az(f)hy.

Let us secondly assume that M = 2. Let 1,...,p be the direct descendants of z and let 0 be

a direct descendant of 1. Then as 1,...,p are in the same part of the partition of I’, they are

not direct descendants of 1. Let us first restrict to {x,1,0}. By proposition [[§, )\gz,o)a{? =0 as

(1()) = 0 by the induction hypothesis, )\( =0) _ 0. Moreover, 0 = )\(w O)alv L =a \}0 , SO agﬁ) =0.
1 1

Similarly, agg) = (:2 = 0. Let us now take 1 <i < j < p. Then )\(x Z)azl =0, so )\(x D=0
and 0 = )\(x’ )aIJ = ay SO aE J) = 0. As a conclusion, F}, is of the required form.

Proposition [§3 1mphes that F, = F,s if  and 2’ have a common ascendant, and this implies

the second assertion on Gg). O

Remark. In particular, the vertex added to G; in order to obtain G;y1 is an extension
vertex. By proposition [[1], any such SDSE is Hopf.

7.4 Connected Hopf SDSE with finite levels

We now prove the following theorem:

Theorem 52 Let (S) be a connected Hopf SDSE, such that any vertex of (S) has a fi-
nite level. Then (S) is obtained from a fundamental system by a finite number (possibly 0) of
extensions. Such an SDSE will be called an extended fundamental SDSE.

Proof. Let (S) be a connected Hopf SDSE, such that any vertex of (S) is of finite level. We
use notations of corollary f0. We shall proceed by induction on k. If k = 0, then S = Sy and
the result is obvious. Let us now assume the result at rank £ — 1. By the induction hypothesis,
the system (S’) associated to Gj_; is a dilatation of a system of theorem B3. Moreover, G is
obtained from Gp_; by adding a vertex with all its direct descendants in Gj_1. Let us denote
by 0 this vertex. We separate the proof into three cases.

First case. Let us assume that 0 is of level 0. Then all the direct descendants of 0 are of level
0, so are in Iy U Jy U I1, and v, = 1 for all direct descendants of z in J; with i € I;. Moreover,
for all z € I, A = by(n 1)—i—a( ).

Let us take z,y € I. Using proposition (91 into two different ways:

agj%:@yﬂém_aém)) (0) _ (b +al - <>) (0)
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So, for all x,y € I:
<by - ag”)) o = <bx - agy)> aéo). (7)

If x and y are in the same I; with ¢ € InUJp, then b, — ag(/m) =b,— a;(vy) #0, so a;(vo) = ag(jo) and for

alln > 1, /\SW = )\slo,y). Hence, up to a restriction, we can assume that there is no dilatations
on (5").
Let i € I1. If v; #£ 1, we already know that ago) = 0. Let us assume v; = 1 and let us choose

j € Iy U Jy U Ky, such that ay) # b;. Then b; = agj) =0, so () gives <bj — ay)) ago) =0. So

ago) =0 for all ¢ € I;. So the direct descendants of 0 are all in Iy U Jy U K. Using proposition
[91 with i € Ip U Jy U Ko:
(0)
%p1, o)
pi +1

(0)

0 7
(p1, Pig1yPN) az( ) +bi(p1+--+pN) — Z bipj — az( )pi

JEIOUJoUKo—{i}
(0)

%:HL%@%OHf@@%OHh@@m.

i€ly @ i€y i 1€Ko

So:

So (S) is a system of theorem B2, with 0 € Ko U I;.

Second case. Let us assume that 0 is of level 1 and is not an extension vertex. Then all the
direct descendants of 0 are of level 0, so are in IoUJo U I, and v, = 1 for all direct descendants
of z in I;. Moreover, for all i € I, )\go’l) = ago) and A\ = bi(n—1)+ al” if n > 2.

i

First item. Let us assume that a\”) = 0. Then by proposition [91:

[

N
(0) O @y | O
Upy ot py) (BT bi(py + -+ +pn) = Z a;"'p; Up1,+,0, o)
j=1

_ ~(0) (4) (0)
0 = |&" =2 a'pi | a0 pyy
jen

If there is a j € Iy U Jy U Ky, such that ago) # 0, then for (p1,---,pn) = €, we obtain dgo) =0.
If it is not the case, as 0 is not an extension vertex, there exists j, k € Iy, agolz # 0 (so a§-0) #£0

and a]E;O) 7& O) Then7 fOI' (plf" 7pN) = €j7 (plf" 7pN) = &k, and (pla"' 7pN) == 8j +€k7 we
obtain: A A
al” +a!) = a§°) +al? = dgo) + aﬁj) + agk) =0.

(2 (2

~(0)

So ELEO) = 0. So in all cases, a,
aEJ) a§0)

= 0. Moreover, for (p1,--- ,pn) = ¢; for any j € I;, we obtain
= 0. As a conclusion, we proved:

1. For all ) S I, <CLZ(~O) = 0) — (&50) = 0)

2. Let us put I}O) = {z eh/ aﬁo) #* O}. Then for ¢ € I, such that aﬁo) =0, for all j € Ifo),
agj) =0.

Second item. Let us take i,j € I. Using proposition [d-1 into two different ways:

al® = (bj +al? - ag»i)) ago) = <bi + ELEO) — agj)) al?. (8)

,J J J
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So <d§0)) - and <a§0)) ., Bre colinear. By the first item, we deduce that there exists a scalar
1€l 1€l

v € K, such that for all ¢ € I, ELEO) = I/(IZ(O). Let us now take i,j € Iy U Jy U Kg, with i # j.
Then b; = agj ) and bj = ag-z), so (§) gives:
NONCIUNC)

So <d(0)) and <a§0)) are colinear. By the first item, we deduce that there
1€lgUJogUK 1€lgUJgUK(

0)

exists a scalar v/ € K, such that for all « € Iy U Jy U Ky, a0 = ag . Let us now take

7

/
1€lgpUJgUKpand j € I;. Then b; = ag»i) =0, so Vag.o)ago) = (bi + l/ago) - agj)> ag.o). In other

words: 0 o e
VielgUJyUKy, Vj eI, (v— V')az( )ag. ) = (b; — aﬁj))ag. ). 9)

Third item. Let us assume that 150) = (). Then all the direct descendants of 0 are in

Iy U Jy U Ky. Moreover, if i € Iy U Jy U Kj:
(0)

agg)lv sPi+1, " 7pN) - Va’l(O) + bl(pl + e + pN) - Z blp] o aEZ)pi (pl-,+’qN)
JEIUJoUKo—{i} pi
A o0
= (yago) + <bi - aE”) pi) 7(;1";’?1\7).

It is then not difficult to show that (S) is a system of theorem B3, with 0 € I;.

Fourth item. Let us assume that v =1/, Let j € I;. If v; # 1, then we already know that
a§0) = 0. If »; = 1, then for a good choice of i, b; — az(j) #0in (f), so ag.o) = 0: then Ifo) =0,
and the result is proved in the third item.

Fifth item. Let us assume that I%O) # (). By the preceding item, v # v/. Let us take j € Ifo).
By (B)), for all i € Iy U Jo U Ko, aﬁj) =b—(v— u/)az(o) does not depend of j. As a consequence,
F; = F, for all j, k € Ifo). We put bgo) = al(-j) for all ¢ € Iy U Jg U Ky, where j is any element of
I£0). Let us use proposition [[§-1. For all i € Io U Jo U K, if (p1,--- ,pn) # (0,-++,0):

(0)
(0) |0 @) " (0) | Y1 on)
a(Plf'wpi-i-l,--pr) =|va Tt <bZ 4 >pz + (V v )ai Z Pi p;i+1 )
jer?
For all j € I\, if (pr.--- ,pn) # (0,--- ,0):
(0) (0) “EO) )
_ P1, PN
lpy,e pitlypn) — Vi P+ 1
Let usfixi € [yU JyU Ky and j € Ifo). Then:
agg) = <V'a§0) +b; — ay)) aEO),
ag’oi)’j = yago)ay]) <l/'a§0) +b; — agi)> ,
(ZE’(‘]]) = I/(ZZ(O) (Z§O) ,
agg)’j = yago)ag.o) <l/l(l§0) +b; — agi) + (v — I//)(ZZ(O)> .



(0)

Identifying the two expressions of a, , I

/ (0) ; 0)? If £
as v # v and a; # 0, we obtain v ( a; = 0. or
i
this is impossible. So there is an i € Iy U Jy U Ky, such that ago) # 0. As a consequence, v = 0.
So v/ # 0, and we then easily obtain that:

Boo= STI7 e (0 -1-8)n) TT7 0 (60 1) a) IT o (#00)
i€lp icJo b1

b1 icly

1
+ > a%h; +1—

7//

all ¢ € Iy U Jy U Ky, a9 = 0, then by the second item, for all j € Ifo), agj) = 0, then F} = 1;

ier(”

So (S) is a system of theorem B2, with 0 € .J;.

Third case. 0 is a vertex of level > 2. By proposition RY, it is an extension vertex. O

8 Lie algebra and group associated to H ), associative case

Let us consider a connected Hopf SDSE (.S). We now study the pre-Lie algebra 9(s) of proposition
R1. We separate this study into three cases:

e Associative case: the pre-Lie algebra g(g) is associative. This holds in particular if (S) is
an extended multicyclic SDSE.

e Abelian case: (S) is an extended fundamental, abelian SDSE (see definition BJ).
e Non-abelian case: (S) is an extended fundamental, non-abelian SDSE.

We first treat the associative case.

8.1 Characterization of the associative case

Proposition 53 Let (S) be a Hopf SDSE. Then the pre-Lie algebra g(sy is associative if,
and only if, for alli € I:

i—>]
Proof. =—>. Let us assume that * is associative. Let ¢, 7, k € I, let us show that a

) —0or a](j) =0, then agll)c = 0. Let us suppose that ay) %0 and a,(j) # 0. Then:

0 = (fe(1)x f5(1)) * fi(1) — fi(1) = (f;(1) * fi (1))
_ <)\gj,k‘)>\§i,j) _ )\gi’j))\g’k)> £(3)

A (A0 - A59) 3)

= o’ (af =AY £i(3).

| 0 =0.1
a’

So )\g,k) = ag ), Moreover, by proposition [[§:

3

Soa ,)ﬁ = 0. As a consequence:

(
J

)
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<=. Then X;(n) is a linear span of ladders of weight n for all n > 1, for all i € I. As a
consequence, if x € Vect(X;(n) /i € I,n > 1), for all f,g € g(g):

(fx9)@) = (f@g)o(r@m)oAlx) =(f@g)oAlz) = fz)g(z").
Soif f,g,h € G(g), for all z € Vect(X;(n) /i€ I,n>1):

((f xg) xh)(x) = f(a)g(a")h(@") = (f x (g x h))(x).
So (fxg)xh = fx%(gxh): g is an associative algebra. O

Corollary 54 Let (S) be a connected Hopf SDSE. Then gs) is associative if, and only if
one of the following assertions holds:

1. (S) is an extended multicyclic SDSE.

2. (S) is an extended fundamental SDSE, with:
e Forallie€ 1y, B; = —1.
e Jy, Ko, I and J1 are empty.

If the second assertion holds, then (5) is also an extended fundamental abelian SDSE, and
another interpretation of gg) can be given; see theorem 0.

8.2 An algebra associated to an oriented graph

Notations. Let G an oriented graph, 7,7 € G, and n > 1. We shall denote i — j if there is
an oriented path from ¢ to j of length n in G.

Definition 55 Let G be an oriented graph, with set of vertices denoted by I. The associa-
tive, non-unitary algebra Ag is generated by P;(1), i € I, and the following relations:

e If j is not a direct descendant of ¢ in G, P;(1)P;(1) = 0.
o Ifiy — iy — -+ =iy and iy — i — -+ — i, in G, then:

B, (1) Py (1) Py (1) = Py, (1) -+ By (1) Py (1).

Let G be an oriented graph, and let ¢ € I and n > 1. For any oriented path ¢ — io — -+ — iy,
in G, we denote P;(n) = P, (1)--- P,,(1)P;(1). If there is no such an oriented path, we put
P;(n) = 0. By definition of Ag (second family of relations), this does not depend of the choice
of the path.

Lemma 56 Let G be an oriented graph. Then the P;(n)’s, i € I, n > 1, linearly generate
Ag. Moreover, if Pi(m) and P;(n) are non-zero, then:

P

(P m) = { i £

0 if not.
Proof. By the first relation, Pj(n) = P;, (1)--- P;,(1)P;(1) = 0 if (4,41,...,%,) is not an

oriented path in G. So the P;(n)’s, i € I, n > 1, linearly generate Ag.
let us fix P;(m) = P;,,(1)--- P;,(1)P;(1) and Pj(n) = Pj,(1)--- Pj,(1)P;(1) both non-zero.

If 4 ﬂ>j we can choose io,...,1%,, such that ¢ = i3 — --- — 4,, — j. Then:

Pj(n)Fi(m) = Pj, (1) --- P, (1) P (1) Py, (1) - - - Pip () Pi(1) = Pi(m + n).
If this is not the case, then j is not a direct descendant of i,,, so P;j(1)P;, (1) = 0 and
P;(n)P;(m) = 0. ]
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Proposition 57 Let G be an oriented graph.
1. The following conditions are equivalent:

(a) The family (P;(n))icrn>1 is a basis of Ag.

(b) All the P;(n) are non-zero.

(¢) The graph G satisfies the following conditions:
o Any vertex of G has a direct descendant.

o [If two vertices of G have a common direct ascendant, then they have the same
direct descendants.

(d) The SDSE associated to the following formal series is Hopf:

Viel, F;=1+ h;.

i—J
2. If this holds, then Ag is generated by P;(1), i € I, and the following relations:

o If j is not a direct descendant of i in G, P;(1)P;(1) = 0.
o Ifi—jandi—kin G, then Pj(1)P;(1) = Py(1)P;(1).

The product of Ag is given by:

P

](nm(m):{ Py(m+mn) if i = j,

0 if not.
Moreover, if (S) is the system of condition (d), g(s) is associative and isomorphic to Ag.

Proof. 1. (a) = (b) is obvious.

(b) = (c¢). Let us assume (b). Then for all ¢ € I, P;y(2) # 0, so there exists a j
such that ¢ — j in G: any vertex of G has a direct descendant. Let us assume ¢ — j and
i — 5/ in G. Let k be a direct descendant of j. Then P;(2) = P;(1)P;(i) = Pj(1)P;(1) and
P(3) = PP, ()P(1) = Py(1)Pi(2) £ 0, 50 Pu(1)P(2) = Pu(1)Py(1)P(1) £ 0. As a conse-
quence, P;(1)Pj (1) # 0 and k is a direct descendant of j'. By symmetry, the direct descendants
of j/ are also direct descendants of j: two direct descendants of a same vertex have the same
direct descendants.

(¢) = (d). Then for all i € I, for all n > 1:

Xi(n) =Y i ig, - ,in),

where the sum runs on all oriented paths i — i9 — --+ —> 4, in G(s)- So:

AXi(n) =D ) lligga, - in) @1, dg, -+, ip).
k=0

Ifi =g+ =i — igq1 and ¢ — i --- — i}, — 4} 4, the second condition on G implies that i3

and i3 are direct descendants of ip and iy,.. ., ix11 and 4)_ ; are direct descendants of i}, and ij,.
So:

AX) =Y D> Uikgtse o rin) @i, in) = Y Xj(n— k) @ Xi(k).
k=0 zﬁkazk, kzoiin'

) Zﬂzkﬁ»lv‘

pp1—> " —ln

o1



So (S) is Hopf.
(d) = (a). Then, for all i € I, for all n > 1:

Xi(n) =Y (i ig, -+ in),

where the sum runs on all oriented paths ¢ — i — .-+ — i, in G(g). By proposition 58 9(s)
is associative. Moreover, it is quite immediate to prove that in gg):

e If j is not a direct descendant of ¢ in G, f;(1)fi(1) = 0.

o Ifiy — iy — -+ =iy and iy — i — - — i, in G, then:
fin (V) fin (W) fir (1) = fir, (1) -+ fi, (D) i, (1) = fir (m).

So there is a morphism of algebras from Ag to g(g), sending P;(1) to f;(1). This morphism
sends P;(n) to fi(n). As the f;(n)’s are linearly independent, so are the P;(n)’s.

2. Let Af; be the associative, non-unitary algebra generated by the relations of proposition
b7-2. As these relation are immediatly satisfied in Ag, there is a unique morphism of algebras:

A, — A
(I)‘{ P — P,

Let i1 — iy — -+ — iy and 41 — 5 — -+ — i/, in G. Let us prove that P;, (1) --- P;,(1)P;, (1) =
Py (1)--- Py (1)P;, (1) in Af; by induction on k. For k = 2, this is implied by the second family
of relations defining Af,. Let us assume the result at rank k. Then, both in Az and Ay

Pik+1 (1)PZ (1) te Pm(l)Pz (1) = Pik+1(1)Pi§€(1) T Pzé(l)Pu (1)

This is equal to P;(k+ 1) in Ag, so is non-zero. As a consequence, P;

k+1(1)Pi;€(1) # 0in Ag, so
i, = k41 in G. By definition of Ay, P;

Py (1) = P%H(l)Pik(l) in A, so:

ki (

P (DB, (1) -+ Py (D) Py (1) = By (D) By (1) -+ Py (1) Py, (1)

k41 2

So the relations defining A are also satisfied in Ay, so there is a morphism of algebras:

Ag — A
\I’{ PO — P,

It is clear that ® and ¥ are inverse isomorphisms of algebras. O

Corollary 58 Let (S) a Hopf SDSE. If 9(s) is associative, then the graph G gy satisfies
condition (c) of proposition 57 and 9(s) s isomorphic to AG(S).

Proof. First step. Let i, j, k be vertices of G(gy and n > 1 such that i % jand i = k.
Let us prove that F; = Fj, by induction on n. If n = 1, by proposition g-3, F;=F,. If n>2,
then there exists vertices of G(g) such that:

1= 1= e = Jno1 — 7, 1=k — ... = k1 —k.

The case n = 1 implies that I}, = F},, so ji ni 7 and j1 il By the induction hypothesis,
F; = Fj,. In other words, if 4 5 j and i — k, then al(]) = al(k) foralll € 1.
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Second step. Then, for all ¢ € I, for all n > 1:

= "al e alm iy, i),

where the sum runs on all oriented paths ¢ — i — -+ — i in G(g). The first step implies

that ag? .. .alny) depends only of ¢ and n: we denote it by a(z). Then:

Xi(n) = Za(i)liig,--- Jin),
AXi(n) = > Z k) @ Xi(1).

k+l= n,

Dually, putting p;(n) = asf)fi(n) for all 1 <i < N, n > 1, the pre-Lie product of g(g) is given
by:

(@)
m+n_ p m .
f](n)*fz(m) = agn)agi] fl(m+n) lf’L—)]’
0 otherwise;

pi(m +mn) if i =,
0 otherwise.

pj(n) *pi(m) = {

Last step. It is then clear that the associative algebra g(s) is generated by the pi(1), 1 € I,
and that these elements satisfy the relations defining AG(S)- So there is an epimorphism of
algebras:

o: { Ay — 8
This morphism sends Pj(n) to p;(n) for all n > 1. As the p;(n)’s are a basis of Ag 4, the P;(n)’s

are linearly independent in AG(S), so the graph G g satisfies condition (c) of proposition B7.
Moreover, © is an isomorphism. O

8.3 Group of characters

The non-unitary, associative algebra gg) is graded, with p;(k) homogeneous of degree k for all
k > 1. Moreover, gs)(0) = (0). The completion g/(—s\) is then an associative non-unitary algebra.
We add it a unit and obtain an associative unitary algebra K & 9/(5 It is then not difficult to
show that the following set is a subgroup of the units of K & g/(g):

G= 1+Zkak21, xkeg(s)(k:)
k>1
Proposition 59 The group of characters Ch (7—[(5)) is isomorphic to G.
Proof. We put V = Vect(X;(k)|i € I,k > 1). Let g € V*. Then g can be uniquely extended

in a map g from Hg) to K by g((1) + Ker(e)?) = (0), where ¢ is the counit of Hg). Moreover,
g€ g/(g) This construction implies a bijection:



Let f1, f2 € Ch(H(s)). Forall z € V, we put A(z) =2 ®1+1®@z+2' ®2”. As x is a linear
span of ladders, 2’ @ 2" € V@ V. So:

(fi-fo)(x) = (fi® f2)oAx)

Fi(@) + fol@) + fi(@) fr(2")

= fiv(@) + fo () + frv (@) fopp (2")
= fip (@) + fop (@) + fijv (@) Fopv (2”)
= iy @)+ (@) + (Fy = o ) (@).

o —

So (f1-f2)yv = f/1|\v + ]‘{2-‘; + j{l-‘; * ]‘{2‘\‘/ This implies that € is a group isomorphism. |

9 Lie algebra and group associated to H ), non-abelian case

In non-abelian or abelian cases, then any vertex of G g is of finite level. By proposition R1l, the
constant structures of the pre-Lie product satisfy:

(&) se
/\ﬁf’j) _ { a; if n=1,

bj(n—1)+ dy) if n > level(i) + 1,

O

where the a;’’s, gl

. ’s and b;’s are scalars.
9.1 Modules over the Faa di Bruno Lie algebra

Let grqgp be the Faa di Bruno Lie algebra. Recall that it has a basis (e(k))g>1, with bracket
given by:
le(k),e(D)] = (I — k)e(k +1).

The gpqp-module Vj has a basis (f(k))r>1, and the action of gpgp is given by:
e(k).f()=1f(k+1).

We can then construct a semi-direct product VOM d grgB, described in the following propo-
sition:

Proposition 60 Let M € N*. The Lie algebra VE)M dgrap has a basis:

(FOF) oy o U R,
and its Lie bracket given by:
le(k),e(D)] = (I —F)e(k+1),
FOk), FOW)] = 0

We now take g = VOEBM dgrgp. We define a family of g-modules. Let ¢ € K and v =
(v1,...,up) € KM, The module W, has a basis (g(k))x>1, and the action of g is given by:

{ e(k)gl) = (I+glk+1),
FO(k).g(1) = viglk+1).

The semi-direct product is given in the following proposition:
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Proposition 61 Let g be the following Lie algebra:

<Wc1,v(1) D...PH WCN,U(N)) N (VOM N ngB) .

It has a basis:
(4) (2)
<g (k)> 1<j<N, k>1 Y (f (k)> 1<i<M, k>1 U (e(k))k=1,

and its bracket is given by:

( [ek),e] = (I—Ke(k+1),
le(k), fOW] = 11Ok +1),
(k). 9@ W] = (1+h)g® (K +1),

FO k), fO@)] = o,
FOK), gD (0] = 0P gk +1),
(9D (k), gD ()] = o.

Let us take g as in this proposition. We define three families of modules over g:

1. Let v = (v1,...,va) € KM, The module W/ o has a basis (h(k))r>1, and the action of g
is given by:
) = (= Dh(k+1),
) = vih(k+1),
fOE)AID) = 0ifl>2,
) = 0.

2. Let v = (v1,...,vy) € KM, The module W), has a basis (h(k))r>1, and the action of g

is given by:
e(k).h(1) = h(k+1),
e(k).h(l) = (I—1h(k+1)ifl>2,
fOk).n(1) = vh(k+1),
fOk).n(1) = 0ifl1>2,
g (k).h(1) 0.

3. Letce K, v=(v,...,vp) € KM, i = (p1,...,pn) € KN, The module W/, , has a
basis (h(k))r>1, and the action of g is given by:

e(k).h(l) (I +c)h(k +1),
fOK).A) = vih(k+1),
gD (k).h(1) = pih(k+1),
gD (k).h(1) = 0ifl>2.

9.2 Description of the Lie algebra

Theorem 62 Let us consider a connected, fundamental non-abelian SDSE. Then g(s) has
the following form:

g(S) ~ W« <(Wcl,v(1) D...D WCN,U(N)) < (‘/OM ngdB)) ,
where W is a direct sum of W), ' and W/

I/,O’ v, C U, °

Proof. First step. We first consider a Hopf SDSE (5), dilatation of a system of theorem
B2, such that I = Iy U Jy U Ky. The set J of the vertices of G(s) admits a partition J =

(J:v):velo U (J:v):vEJo ) (Jz):vEKo- We pUt:

A={jeJ/bj#0}, B={jeJ/bj=0}
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In other terms, i € A if, and only if, (i € J,, with € Iy such that b, # —1) or (i € J,, with
x € Jy). As we are in the non-abelian case, A # (). Let us choose i, € J, for all z € I, and
iz, € A. In order to enlighten the notations, we put iy = i,,. We define, for all £ > 1:

( pio(k) - %fm(k)a
10

pilk) = o (filk) — (k) i € Joy — o},
piu(K) = - filk) — o Fu(k) if ¢ £ m and 7 € A

(k) = fi(k)ifzeB,

pilk) = (k) — fu(R) ifi € Jo — {ia), @ £z and @ € 4,

pi(k) = fi(k)— fi,(k)ifiec J, — {iz}, = € B.

Then direct computations show that the Lie bracket of gg) is given in the following way: for all
k1 >1,

® [pio(k)’pio (l)] = (l - k)pio (k + l)

. L+ dy ik +1) it i € Ju — {io),
For all € 1, [py (0, (0] = { {7 o i 0 0EE o = o)
% 0+

For all i € J,, — {io}, for all = # xo, [pi, (k),pi(l)] = { affmxpgg—i_ Difz €A

For all 2" € I — {20}, [ps, (), pi_, ()] = 0.

, _ . Y ‘ g J Oif x#a,
For all z,2" € I —{xo}, i € Jp — {in}, [pi,(k), pi(1)] = { dopi(k+1) if o = a.

e For all .%',.%'/ el — {.%'0}, 1€ JJ; — {Zx}, ] S Jx/ — {2‘351}, [pi(/{?),pj(l)] = 0.

We used the following notations:

_/Bx .
if x € Iy, -1,
1+5$ 0 51#
d, = lifx € Iy, B, = —1,
—1lif x € Jy,
0if z € K.

So the Lie algebra g(g) is isomorphic to:

[Jzgl—1 |11 [7]—1
W o (= dag e —dag 0, ,0) D D W00, 0.ds0,-0) | T\ Vo <8FaB) -
xel—{xzo}

A basis adapted to this decomposition is:

(Pi(k))ie tuy —{io}k>1 U U @i®))ies—fisppz=1 | U U @0zt | U @i (k)iz1-
zel—{zo} z€l—{xzo}

Second step. We now assume that I; # (). Then the descendants of j € I; form a system of
the first step, so:

9(s) = W <9(s0)s

where Wy, = Vect(fj(k) /j € I,k > 1} and (Sp) is a restriction of (S) as in the first step. Let
us fix j € I and let us consider the g(g,)-module W; = Vect(f;(k) / k > 1). With the notations
of the preceding step:
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0@
(z_1+ b;g))fj(mz) if1=1.

o [piy(k), f5 ()]
* [pio(k), f;(D)] = (l - 1+uj%g:> fi(k+1)if 1 >2.

RONEINE)

e [pi,(k), f;(D)] = ( e — ﬁ) fik+1)ifl=1,2z¢A.

NONENE)

o [pi,(k), f;(D)] =v; < - ﬁ) fik+1)ifl>2 2 € A

o i (k). f;(0] = a fi(k +1)if 1 =1, 2 € B.
o i (k). f;(D] = vja? fi(k + 1) if 1 > 2,z € B.
e [pi(z), f;(1)] = 0if 7 is not a i,.

If v; # 0, we put pj(k) = f;(k) if £ > 2 and p;(1) = v;f;(1). Then, for all I:

o (50 = (1= 15 158 ) i+ 1)

W o

o 00 =05 (5~ 52 ) k4D it € A

o [pi,(k).p;(1)] = vjallp;(k +1) if = € B.
e [pi(z),p;(1)] =0if 7 is not a 4.
Sbo W; is a module W, ,,. If v; = 0 and az((ﬂ)') £ 0, we put p;(k) = f;(k) if k > 2 and pj(1) =
ﬁf](l) Then:
ig
o [pio(k),p;(D)] =pj(k+1)if I = 1.
o [piy(k),pj(D] = (1 = V)ps(k+1)if I > 2.

O RC)

e [pi,(k), f;(D)] = ( 7 — Z—f}) fik+1)ifl=1,2z¢A.

o [pi, (k) f;()] =0if 1 > 2, z € A.
o i (k), ;] =a f(k+ 1) if =1,z € B.
o [pi,(k), fi(D)]=0ifl>2, z € B.
e [pi(z),p;(1)] =0if i is not a i,.
So Wj is a module W) . If v; = 0 and agg) =0, we put pj(k) = fj(k) for all £ > 1. Then:
® [pio(k),pi (D] = (L = V)pj (k +1).

o o

.50 = (3 -5 ) D it = 1 e 4

o [pi(k), f;(D]=0ifl>2, 2 €A

o i, (k), f;(0] = aP f(k+ 1) ifl=1, 2 € B.
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o [pi,(k), fi(D]=0if1>2, 2z € B.
e [pi(x),p;(l)] =0if i is not a i,.
So W; is a module W), ;.

Last step. We now consider vertices in Jy. If j € Jy, then its descendants are vertices of the
first step and ¢ elements of I; such that v; = 1. As before:

g(S) = WJl <19(5’1)7

where Wy, = Vect(f;(k) /j € Ji,k > 1} and (S1) is a restriction of (S) as in the second step.
Let us fix j € J1 and let us consider the g(g,)-module W; = Vect(f;(k) /k > 1). As v; # 0,
putting p;(k) = f;(k) if k > 2 and p;(1) = v; f;(1):

€

o 00 = (1= 14058 ) ik + 0,
(4) ey
o 0] =y (% 55 ) ik + D ita e A
o [pi(k),pi ()] = vja'pi(k +1) if x € B.
o pi(k),p;()] = vjap;(k+1)if 1 =1,i € I, with v; = 1.
o [pi(k),p;()] =0if1>2,i€l.
o [pi(x),pj(l)] =0if i ¢ I and is not a .
So Wj is a module W', . O

Theorem 63 Let (S) be a connected, extended, fundamental, non-abelian SDSE. Then the
Lie algebra g(s) is of the form:

Om <9 (Gm-1<9(---92<(g19g0) "),

where go is the Lie algebra associated to the restriction of (S) to the vertices which are not
extension vertices (so go is described in theorem [63) and, for j > 1, g; is an abelian (gj—1 <
(~--g2<(g1<9g0) - - )-module having a basis (W) (k))g>1.

Proof. The Lie algebra g; is the Lie algebra Vect(f.,;(k)/k > 1), where Jo = {x1,...,Zm},
with the notations of theorem [4. O

9.3 Associated group

Let us now consider the character group Ch (7—[(5)) of H(g). In the preceding cases, g(g) contains
a sub-Lie algebra isomorphic to the Faa di Bruno Lie algebra, so Ch (7—[( S)) contains a subgroup
isomorphic to the Faa di Bruno subgroup:

GFdB:{x—l—alx2+a2:c3+--- | Vi, a; € K},

with the product defined by A(z).B(z) = B o A(z). Moreover, each modules earlier defined on
grap corresponds to a module over Grgp by exponentiation:

Definition 64

1. The module V is isomorphic to yK[[y]] as a vector space, and the action of Gp4p is given
by:
A(x).P(y) = P o A(y).
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2. Let G = <V89M> X Gpgp. Let c € K, and v = (vq,- -+ ,vp) € KM, Then W,.,, is 2K |[2]]

as a vector space, and the action of G is given by:

(PAy). - . Pary), A(2)) Q —emp<§jvu )( “) Qo A(2).

3. Let us consider the following semi-direct product:
G = <Wc1 s D cN 5<N)) < ( < GFdB) .

(a) Let v = (v1,-+-,vy) € KM, Then W, is tK[[t] as a vector space, and for all
= (Q1(2),---,@n(2), P1(y),- PM() A(x)) € G:

M
Xt = <1+ZuiPi(t)> t,
=1
X.R(t) = <M>R0A(7§),

for all R(t) € t2K][[t]).
(b) Let v = (v1,--- ,vy) € KM. Then Wi, is tK[[t]] as a vector space, and for all
X =(Qi(2), - ,Qn(2), Pi(y), -+ . Pu(y), A(x)) € G:
A(t)
(7))

X.t

X.R(t) = <M>ROA@),

for all R(t) € t2K][[t]).
(c) Let c€e K,v=(v1, - ,vm) € KM = (p1,...,un) € KV. Then W, is tK[t]]
as a vector space, and for all X = (Q1(2), -+ ,Qn(2), PA(y), -+, Pu(y), A(x)) € G:

c M M
Xt = <@> exp (Z Mz‘Pz‘(t)> (1 + ZNiQi(t)> Alt
; i=1

X.R(t) = <—> exp (ZMH >RoA()

for all R(t) € t2K[[t]].

I
N
—_

+

M=
S
Jqe)

~_

/@?\
+

Direct computations prove that they are indeed modules.
Theorem 65 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case.
Then the group Ch (7—[(5)) is of the form:
Gm X (Gm—1 % (-+- G2 x (G X Go) - -+),
where G is a semi-direct product of the form:
Go =W x (W x (VxGpgp)),

where V is a direct sum of modules Vo, W a direct sum of modules W ,,, and W' a direct sum
of modules Wy, 5, Wi, | and Wy Moreover, for allm > 1, Gy, = (tK]|[t]],+) as a group.

c,V, 0

Proof. The group Ch (7—[(5)) is isomorphic to the group of characters of U(g)*, where g is
described in theorem [pJ. This implies that this group has a structure of semi-direct product as
described in theorem F5. Let us consider the Hopf algebra H of coordinates of Gy. It is a graded
Hopf algebra, and direct computations prove that its graded dual is the enveloping algebra of
go of theorem f3. So H is isomorphic to H(g,)- O
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10 Lie algebra and group associated to Hg), abelian case
We now treat the abelian case. Recall that in this case, Jy = Ko = () and, for all 7 € I, 3; = —1.

10.1 Modules over an abelian Lie algebra

Let gqp be an abelian Lie algebra, with basis (e(i)(k:))1 cicmk>1- We define a family of modules
over this Lie algebra: T

Definition 66 Let v = (v, ,vy) € KM. Then V,, has a basis (f(k))x>1, and the action
of gup is given by:
D k). F() = vif(k+1).

We can then describe the semi-direct product:

Proposition 67 Let us consider the following Lie algebra:

N
g= <€B Vvu)) < Gab-
i=1

It has a basis:
(€D (k) 1<icanz1 U (fD (k) 1<icnps1,

and the Lie bracket is given by:

e®(k), e ()] = o0,
O k), fOD)] = o fO K +1),
Ok, FD@)] = o.

We now define two families of modules over such a Lie algebra.

Definition 68 Let g be a Lie algebra of proposition 7.

1. Let v = (v1,...,vn) € KM. The module W, has a basis (g(k))x>1, and the action of g is
given by:
e (k).g(1) = wvig(k+1),
eWD(k).g(l) = 0ifl>2,
fOk).g(1) = 0.

2. Let v = (v1,...,vm) € KM and p = (u1,...,un) € KV, such that for all 1 < i < M, for
all 1 <j <N, p; <1/i - UZ-(j)> = 0. The module W, , has a basis (g(k))x>1, and the action
of g is given by:

O (k)g(l) = wviglk+1),
FOR).91) = pig(k +1),
fOk).gl) = 0ifl>2.

Remark. The condition p; (I/Z‘ — UZQ )) = 0 is necessary for W,f , to be a g-module. Indeed:

(DR, FOWL() = o gk +1+1),
k). (FOW).90) = FDO. (€D k)-91)) = pyriglh +1+1).
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10.2 Description of the Lie algebra

We here consider a connected Hopf SDSE (.5) in the abelian case.

Theorem 69 Let us consider a Hopf SDSE of abelian fundamental type, with no extension
vertices. Then g(sy has the following form:

g(S) ~ Wq((V (1) @...@VU(N))qgab)a

v

where W is a direct sum of W,, and W;,u'

Proof. First step. We first consider a Hopf SDSE such that:

I= U Ty

AT

For all z € Iy, let us fix i, € J;. We put p;, (k) = fi, (k) and p;(k) = fi(k)— fi, (k) ifi € J,—{is}.
Then direct computations show that:

e [pi.(k),pi,, )] = 0.
o [pi,(k),p; ()] = 6pwpj(k+1)if j € Ty — {iw}.
o [pi(k),p;(l)] =0if i, j are not i,’s.

So:

~ P|Jz|—1
8(s) EBV((J,...,O,LO,...,O) < Gab,

xz€ly

where gqp = Vect(pi, (k) [ x € I, k> 1).

Second step. We now assume that I; # (). Then the descendants of j € I; form a system as
in the first step, so:

g(S) - Wfl 4g(SQ)?

where Wy, = Vect(f;(k)/j € I,k > 1} and (Sp) is the restriction of (S) to the regular vertices.
Let us fix j € I; and let us consider the g(g,)-module W; = Vect(f;(k) / k > 1). With the
notations of the preceding step:

o [pi, (), ;0] = o fi(k+ 1) if 1 = 1.
o [pi(k), £ (D) = vja? fi(k+1) if 1> 2.
o [pi(x), f;(1)] = 0if i is not a .
If v; # 0, we put p;(k) = f;(k) if k > 2 and p;(1) = v;f;(1). Then, for all :
o (i (k). £;(1)) = vjal?) £k +1).
o [pi(x), f;(1)] = 0if i is not a .
So W; is a module V,,. If v; = 0, we put p;(k) = f;(k) for all k> 1. Then:
o [pi, (), ;0] = o fi(k+ 1) if 1 = 1.
o [pi (k). fi (D] =0if 1 > 2.

e [pi(z), f;(1)] = 0if 4 is not a i,.
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So Wj is a module W,,.

Last step. We now consider vertices in Jy. If j € Jy, then its descendants are vertices of the
first step and vertices in I; such that v; = 1. As before:

8(s) = Wi <8(sy)>

where W;, = Vect(f;(k) /j € Ji,k > 1} and (S;) is the restriction of (S) to the regular
vertices and the vertices of I3. Let us fix j € J; and let us consider the g(g,)-module W; =
Vect(fj(k) /k>1). As v; # 0, putting p;(k) = f;(k) if £ > 2 and p;(1) = v; f;(1):

o i (k)2 (0] = vjalp; (k + ).
o [pi(k),p;(D] =0if i € Jp — {iz}.
o [pi(k),p;(1)] = v;ap;(k+1)if I=1and i € I.
o [pi(k),pj())=01if 1 >2and i€ I.
So Wj is a module W, . O

Theorem 70 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case.
Then the Lie algebra g(sy is of the form:

Om <9 (Gm-1<9(---92<(g19g0) "),

where go is the Lie algebra associated to the restriction of (S) to the non-extension vertices (so
18 described in theorem @), and, for j > 1, g; is an abelian (g;—1<(---g2<(g1<go) - - - )-module
having a basis (h9) (k))p>1.

Proof. Similar with the proof of theorem [63. O

10.3 Associated group

Let us now consider the character group Ch (7—[( S)) of H(g). In the preceding cases, g(g) contains
an abelian sub-Lie algebra g, so Ch (7-1( S)) contains a subgroup isomorphic to the group:

Gap = {(aﬁ”waé“x%---) L IV1<i< MYVE>1, o) GK}v
1<i<M

with the product defined by (AW (z))icr.(BW(z))ier = (AW (z) + BO(z) + AW (2)BO (x))se;.
Note that G is isomorphic to the following subgroup of the following group of the units of the

ring K [[z]]M:
14z f1(x)
G1={< : )) | f1($),---,fM($)€K[[ﬂfH}-

Ltafy (z
The isomorphism is given by:
Gab — G1
) ] 1+a51)m+aél)x2+...
(agz)x—l—ag)xQ +> — :

1<i<M :
- 1+a§M)J:+agM)x2+...

Moreover, each modules earlier defined on g, corresponds to a module over G, by expo-
nentiation, as explained in the following definition:

Definition 71
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1. Let v = (vq,...,vy) € KM, The module V,, is isomorphic to yK[[y]] as a vector space,
and the action of G is given by:

(AD(2))1<i<nr.P(y) = exp (ZU AD( ) y).

2. Let us consider the following semi-direct product:

N
= (@ VU(¢)> 4Gap-
=1

(a) Let v = (v1,...,vp) € KM. The module W, is zK[[2]] as a vector space, and the ac-
tion of G is given in the following way: for all X = (Pi(y),..., Pn(y), Ai(x),..., An(x)) €

G,
M
Xz = <1+ZViAi(Z)> z,
i=1
X.22R(z) = 2%’R(2),
for all R(z) € K[[#]].
(b) Let v = (v1,...,va) € KM and p = (p1,...,un) € KV, such that for all 1 <
i < M, forall<j<N,py <yi—vi(])> = 0. The module W,  is zK][[2]] as

a vector space, and the action of G is given in the following way: for all X =

(Pi(y), ..., Pn(y), A1(x), ..., An(z)) € G,

exp(Zu, i )<1+Z“Z :( )

X.22R(z2) = exp ZV,AAZ)) 22R(2),

X.z

for all R(z) € K[[#]].

Direct computations prove that they are indeed modules. The condition < — U(] )> =0

is necessary for W/, , to be a module. Indeed:
Ai(@).(Pi(y)2) = (ea < < >> + pjeap(viAi(2)) P (2)) 2,
(Ai@)Pi)z = (eapo Aiy) Py () Ailx)) 2
= (14 eap(0 4i(2))Pi(2)) 2 + (eap(vidi(2)) — 1)z
- (exp(uisz)) + pjexp(v) Ai(2))Py(2)) .

Theorem 72 Let (S) be a connected Hopf SDSE in the abelian case. Then the group
Ch (’H(S)) is of the form:

GN X (GN_1 X (GQ X (G1 X GQ)),
where Gg is a semi-direct product of the form:
GO =W x (V X Gab),

where V is a direct sum of modules V,,, and W a direct sum of modules W, and le,u' Moreover,
for allm > 1, G,,, = (tK[[t],+) as a group.

Proof. Similar as the proof of theorem 3. O
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11 Appendix: dilatation of a pre-Lie algebra

Let (S) be a Hopf SDSE with set of indices I. We choose a set J and consider the disjoint union
I' of several copies J; of J indexed by I. The Lie algebra g(g) has a basis (f;(k))ier, x>1 and the
Lie bracket is given by:

k), (D] = AP ik + 1) = AP £k +1).

Let (S’) be the dilatation of (S) with set of indices I’. Then the Lie algebra g(g: has a basis
(fi(k))ies, k>1 and the Lie bracket is given in the following way: for all x € J;, y € Jj,

k), £ (0] = AP Fy (k1) = AP Fo(k +1).

We shall say that gg) is a dilatation of g(s). We prove in this section that this construction is
equivalent to give a pre-Lie product of gg).

11.1 Dilatation of a pre-Lie algebra

Definition 73 [l] A permutative, associative algebra is a couple (4,-) where A is a vector
space and - is a bilinear associative (non-unitary) product on A such that for all a,b,c € A:

abc = bac.

Proposition 74 Let (A,-) be a vector space with a bilinear product. For any pre-Lie algebra
(g,%), we define a product on g ® A by:

(z®@a)*(y@b) = (zxy) @ (ab).
Then g ® A is pre-Lie for any pre-Lie algebra g if, and only if, A is permutative, associative.

Proof. <. Let g be a pre-Lie algebra, and let z,y,z € g, a,b,c € A. Then:

(z@a)x(y@b)x(20¢) - (z@a)x ((y ©b) x (2@ ¢))
((zxy)*xz—x*(y*2)) ®abc

= ((yxx)*z—y*(r*x2z)) @ bac

= (@b x(z@a)x(z0c¢) = (@) * ((z@a) x (2© ).

So g ® A is pre-Lie.

=—. Let us assume that g ® A is pre-Lie for any pre-Lie algebra g. Let us choose g as
the pre-Lie algebra Prim(H;,), with D containing three distinct elements 4, j, k. Then, for any
a,b,c € A:

((fo; @a)x (f.; @) * (f., @) = (fo; @a)* ((f.; @) * (f., ®))
= f{}c ® (ab)c — <f¢ —i—f{i.)@a(bc)
— fI ((ab)e — a(be)) — fiy,: ® a(be)
(f.
Ji

= ((f.; @) x(f.; @a))x (fo, @) = (f.; ®D)x ((f.; @ a)x(f., ®¢))

Vk
— f% ® ((ba)e — b(ac)) — \ ® b(ac).

So:
f{i ® ((ab)e — a(be)) — fivkj ® a(be) = f{é ® ((ba)c — b(ac)) — fi\/kj ® b(ac).

Applying Ii ® Ids on the two sides of this equality, we obtain (ab)c — a(bc) = 0. So A is
associative. Applying 'V’ @ Id4 on the two sides of this equality, we obtain a(be) = b(ac), so
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A is permutative, associative. o

Example. Let [ a set, and let A; = Vect(e;)ier. Then A is given a permutative, associative
product: for all 4,5 € I,

€i.€; = €5.

Let (g,*) be a pre-Lie algebra. The pre-Lie product of g ® A is given by:
(z®@e)*x(Y®ej) =xxy @ ey
The following proposition is immediate:

Proposition 75 Let (S) be a Hopf SDSE with set of indices I and (S") be a dilatation of
(S), with set of indices J being the disjoint union of finite sets J; indexed by i € I. Let J' be
a set and for all i € I, let ¢; : J; — J' be a map. The following morphism is a morphism of
pre-Lie algebras:

{ g5y — 95 @Ay
fx(/{?), xelJ, — fl(/{?) ® g, ()

It is injective (respectively surjective, bijective) if, and only if, ¢; is injective (respectively sur-
jective, bijective) for alli € I.

11.2 Dilatation of a Lie algebra

Let Set be the category of sets, Vect be the category of Vector spaces, and Lie the category of
Lie algebras.

Definition 76 Let V be a vector space. We define a function Fy from Set to Vect in the
following way:

1. If I is a set:
(I =PV
i€l
The element v € V in the copy of V' corresponding to the index ¢ € I will be denoted by
V.

2. Ifo: I — J is a map:
Fy(I) — Fy(J
e 7O V()
vy — Vo (i) -
Definition 77 Let g be a Lie algebra. A dilatation of g is functor F' : Set — Lie such
that F'({1}) = g and making the following diagram commuting:

Vect

where the functor from Lie to Vect is the forgetful functor.

Proposition 78 Let g be a Lie algebra. There is a bijection between the set of dilatations
of g and the set of pre-Lie product inducing the Lie bracket of g.
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Proof. First step. Let x be a pre-Lie product inducing the Lie bracket of g. Let I be a set.
We identify v ® e; € g @ Ay and v; € Fy(I). So Fy(I) is given a structure of pre-Lie algebra by:

vk wj = (VHkw);.
The induced Lie bracket is given by:
[vi, wj] = (v*w); — (w*v);.
It is then easy to prove that this structure of pre-Lie algebra on Fy(I) for all I gives a dilatation

of g.

Second step. Let F' be a dilatation of g. So for any set I, Fy(I) is now a Lie algebra.
Moreover, if o : I — J is any map, then Fy(o) : Fy(I) — Fy(J) is a Lie algebra morphism.
We first consider Fy({1,2}). Let m be the projection on Fy({2}) which vanishes on Fy({1}) in
F3({1,2}). We define % on g in the following way: if v,w € V,

(1) *w)g = 7'('2([1)1,11)2]).

Let o : {1,2} — {1,2}, permuting 1 and 2. Then Fy(c) permutes the two copies of g in
Fg({1,2}), so Fy(o) om = ma 0 Fy(o). Moreover, Fy(o) is a morphism of Lie algebras, so for all
v,w e V:

Fy(o) oma([wr,va]) = 1o Fy(o)([wr,va)),
Fy(o)((w % v)2) m1([wa, v1])

(w *U)l = —7'('1([1)1,102])-

So, in Fy({1,2}):
[Ul,wz] = 7T1([1)1,UJ2]) + 7T2([1)1,UJ2]) = (U*w)g — (w*v)l.

Let us now consider any set I and 7, j € I, not necessarily distinct. Considering 7 : {1,2} —
{i,7} sending 1 to i and 2 to j, as Fy(7) is a morphism of Lie algebras, for all v, w € g, in Fg():

[vi,wi] = [Fy(7)(v1), Fy(7)(w2)]
= Fy(7)([v1,wa])
= Fy(m)((v*w)e — (w*v)1)

= (vxw); — (w*v);.

In particular, if i = j =1, in Fy({1}) = g, [v,w] = v x w — w x v: the product x induces the Lie
bracket of g(g).
Let ,y,2z € g. In Fy({1,2,3}):
0 = [21,[y2, 23] + [y2, [23, 21]] + [23, [21, y2]]
= (zx(y*2))s— (@x(zxy))2 = ((y*2) xx)1 + ((zxy) * )1
Fy*(zxz) — (y*(wx2))3 = ((zxz) *xy)2 + (T x 2) x )2
F(zx (@xy))2 — (2% (yx )1 — (zxy) * 2)3 + ((y * ) * 2)3.

Considering the terms in the third copy of g:
(xx(y*xz))s—(yx(x*x2))3— ((r*xy)*x2)3+ ((y*x) xz)3 = 0.

So * is pre-Lie.

Last step. We define in the first step a correspondance sending a pre-Lie product on g to a
dilatation of g, and in the second step a correspondance sending a dilatation of g to a pre-Lie
product on g. It is clear that they are inverse one from the other. O
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