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Mi
rome
hani
s Contribution to CoupledTransport and Me
hani
al Properties ofFra
tured GeomaterialsE. Lemar
hand, C.A. Davy, L. Dormieux, W. Chen & F. Sko
zylasSeptember 25, 2009Abstra
tThe present paper is devoted to the modelling of interdependent me-
hani
al and hydrauli
 behaviors of geomaterials in presen
e of a singlethrough-wall fra
ture by means of mi
rome
hani
s arguments. Experi-mental results of fra
tured 
on
rete samples show non linear evolutionsfor both me
hani
al and hydrauli
 behaviors with respe
t to 
on�nementintensity. These non linear responses are interpreted by the progressive
losure of 
ra
k-like pores de�ning the pore volume of the fra
ture interfa-
ial domain. Disregarding tortuosity e�e
ts, we adopt a 2D representationfor these 
ra
ks. The key role of the fra
ture initial porosity is also em-phasized. It allows to dis
uss the shape of the distribution of the lo
alapertures distribution fun
tion 
lassi
ally used, inter
epted here in termsof the distribution of initial 
ra
k aspe
t ratio within the fra
ture do-main. Appli
ation on fra
tured 
on
rete samples shows the 
apability ofthe theoreti
al model to a

urately reprodu
e the experimental results.1 Introdu
tionIn the 
ontext of nu
lear energy use for ele
tri
ity generation, radioa
tivity 
on-�nement is of paramount importan
e, both during nu
lear rea
tor exploitationand long-term nu
lear waste storage. In both life 
y
le phases, 
on
rete is usedfor rea
tor stru
tures as well as in nu
lear waste pa
kages [Davy et al., 2007℄.In parti
ular, every ten years, EDF (Fren
h Company for Ele
tri
ity Supply) is
ompelled to subje
t nu
lear rea
tor 
on
rete vessels to air pressurizing and to
he
k for any gas leakage. Test analysis and identi�
ation of physi
al me
ha-nisms of �ow through porous or even fra
tured medium should enable to proveif, under a

idental 
onditions, gas leakage would remain below a given se
urelevel or not. Nevertheless, full s
ale experiments are 
omplex and their interpre-tation is deli
ate, due to the great amount of parameters involved. A more lo
alunderstanding strategy, at the material s
ale, should therefore be 
onsidered.Fluid �ow in natural or arti�
ially-indu
ed fra
tures has been re
ognizedfor a long time as a key issue in geophysi
al and geome
hani
al engineer-1



ing ([Iwai, 1976℄, [Wanfang et al., 1997℄,[Berkowitz, 2002℄). The variability offra
tures geometry and its possible evolution under progressive 
on�nementmake it di�
ult to propose a theoreti
al analysis, parti
ularly if a

ountingfor a
tual 
ouplings between me
hani
al and hydrauli
 responses. To simulatethe me
hani
al and hydrauli
 responses of fra
tures, experimental pro
eduresmay be developed at the laboratory s
ale on 
ir
ular 
ylindri
al samples witha length-to-diameter ratio (L/2R) of about 2 at least in order to limit end ef-fe
ts [Davy et al., 2007℄. Then, a Brazilian splitting test is performed in orderto 
reate a fra
ture along the sample diametral plane. Being a brittle failuretest, the obtained fra
ture has a notable variability from one sample to another,see Figure 1. This is in a

ordan
e with the expe
ted in situ variability.

Figure 1: Photograph of various samples after Brazilian splitting test, whi
hshows the variability in the initial fra
ture: (a) 
on
rete samples; (b): Callovo-Oxfordian argillite.From a phenomenologi
al point of view, a fra
ture is usually interpreted as a 2Dinterfa
e of in�nitesimal thi
kness λ representing the average fra
ture aperture(Figure 2). During ma
ros
opi
 tensile or 
ompressive loadings, denoted by Σ,the 
urrent fra
ture aperture is updated a

ording to :
λ(Σ) = λ0 − cc(Σ) ; cc(Σ0) = 0 (1)2
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exFigure 2: S
hemati
 representation of a fra
tured samplewhere λ0 = λ(Σ = Σ0) denotes the average fra
ture aperture in the referen
e
on�guration Σ = Σ0, and cc(Σ) a

ounts for the evolution of the spa
e in be-tween the fra
ture fa
es under 
on�nement intensity Σ. From a physi
al pointof view, cc(Σ) represents the ma
ros
opi
 me
hanism of the fra
ture geomet-ri
al evolution, that is the fra
ture re
losure law for the ma
ros
opi
 triaxial
ompressive loadings 
onsidered hereafter.Still in this phenomenologi
al 
ontext, determination of the hydrauli
 
ondu
tiv-ity of a fra
ture is usually asso
iated with the Poiseuille law [Gueguen and Pal
iauskas, 1992℄,leading to the following intrinsi
 permeability (kF=[m2℄) de�nition :
k

F = kF (1− n ⊗ n) ; kF =
λ2

12
(2)Re
alling that the fra
ture volume fra
tion is written ϕF = 2λ/(πR), and ne-gle
ting the 
ontribution of the unfra
tured solid matrix, i.e. ks ≪ kF [Walters and Wong, 1999℄,the ma
ros
opi
 permeability tensor K

hom = ϕF
k

F reads :
K

hom =
λ3

6πR
(1 − n ⊗ n) (3)In (3), the in-plane ma
ros
opi
 permeability of a fra
tured sample appearsas a 
ubi
 fun
tion of the average fra
ture aperture, generally referred to asthe 
ubi
 law. A

ording to the fa
t that this 
ubi
 law is dire
tly asso
iatedwith the parallel planes assumption, resorting to this law for real geomate-rials [Witherspoon et al., 1980℄ seems questionable as regards the rough-walledfra
ture surfa
es widely observed experimentally ([Tsang and Tsang, 1987℄, [Tsang and Tsang, 1989℄,3



[Wanfang et al., 1997℄, [Walters and Wong, 1999℄, [Sausse, 2002℄). In parti
u-lar, these surfa
e irregularities make it di�
ult to properly de�ne parameter λ(or λ0) that should be used in the 
ubi
 law.For 
ompressive loadings the progressive fra
ture re
losure law cc(Σ) is non-linear in nature. This non linearity is dire
tly related to a 
omplex me
hanismof fra
ture geometry evolution, whi
h suggests a physi
al analysis at the s
aleof the interfa
ial geometri
al irregularities. As a 
onsequen
e, both me
hani-
al and hydrauli
 responses of fra
tured geomaterials are expe
ted to be 
on-trolled by the same physi
al me
hanism. However, the 
onsequen
es of thislo
al me
hanism may be 
ompletely di�erent depending on the property stud-ied, the open question being related to the existen
e, or not, of a 
orrelationbetween the (me
hani
al) roughness and the (hydrauli
) tortuosity. The twoparallel planes assumption allowing the derivation of the hydrauli
 
ubi
 law,albeit mathemati
ally powerful, is physi
ally not able to a

ount for any me-
hani
al response of the fra
ture. Indeed, this very spe
i�
 morphology doesnot allow to in
orporate matter in between the two parallel planes. Moreover,by nature, the 
ubi
 law is not able to dis
uss any physi
s relative to sur-fa
e irregularities responsible for (me
hani
al) roughness and (transport) tor-tuosity ([Tsang, 1984℄,[Walters and Wong, 1999℄). To over
ome this limitation,many authors ([Snow, 1965℄,[Zimmerman and Bodvarsson, 1996℄ among others)have proposed to 
ouple the 
ubi
 law with a non-linear fra
ture re
losure law
cc(Σ). Although these models proved to be e�
ient, the la
k of physi
al 
orre-lation between me
hani
al and hydrauli
 evolutions is frustrating. This is dueto the fa
t that they are both 
ontrolled by the physi
s that takes pla
e at thes
ale of fra
ture asperities [Oron and Berkowitz, 1998℄.In this 
ontext, many authors have proposed improvements of the physi-
al analysis of fra
tures behavior by 
onsidering that a fra
ture 
an be inter-preted as a porous medium with a pore spa
e made up of pores whi
h mor-phology is likely to evolve under ma
ros
opi
 
on�nement ([Hsieh et al., 1985℄,[Moreno et al., 1988℄, [Walsh et al., 1997℄, [Wanfang et al., 1997℄). Among thoseauthors, Myer [Myer, 2000℄ modelled a fra
ture by 
olle
tions of 
ra
ks in orderto a

ount for the progressive fra
ture re
losure. In the present paper, althoughtreated in a more general mi
rome
hani
s 
ontext, our approa
h is similar tothis morphologi
al representation. The proposed mi
rome
hani
s modelling willprove to be able to provide a physi
al de�nition of fra
ture aperture distri-bution, that has been introdu
ed by many authors ([Neuzil and Tra
y, 1981℄,[Tsang, 1984℄, [Tsang and Tsang, 1987℄, [Zhou and Wheater, 1995℄ among oth-ers.) in order to take fra
ture surfa
es roughness into a

ount. Besides restri
t-ing our analysis to monotoni
 
ompressive loadings, irreversibility phenomenamay be disregarded and the fra
ture behavior is assumed non linear elasti
.2 A Mi
rome
hani
s-based analysisFor pra
ti
al purposes, non linear me
hani
al response of fra
tured geomaterials
an be a

ounted for, in a 2D model of the fra
ture, by a non linear relationship4



between the fra
ture 
losure and the applied stress. The fra
ture 
losure cc(Σ)is de�ned as the average of the normal 
omponent of the displa
ement jumpover the fra
ture, symbolized here by F (see Fig. 2):
cc = −

1

2RL

∫

F

[ξ] · ndS (4)where 2R = D and L are respe
tively the sample diameter and the samplelength, while dS is a di�erential surfa
e element.Still, from a physi
al point of view, the 
losure of the pore spa
e within the fra
-ture lips is likely to be the me
hanism responsible for this non linearity (see Fig.2). In order to 
apture the pore spa
e 
losure me
hanism in a mi
rome
hani
sframework, a 3D model of the fra
ture is due. At the mi
ros
opi
 s
ale, that isthe one whi
h reveals surfa
e irregularities, the fra
ture of dimension 2R×L×λis interpreted as a porous medium made up of an elasti
 solid matrix and a fully�uid-saturated pore spa
e (see Fig. 3) .
n

F

Ωs

Ωp

− 0

−λ•
U(λ)

•
U(0)

z

Figure 3: Ma
ros
opi
 fra
ture interpreted as a porous medium (ΩF = Ωs

⋃

Ωp)2.1 A 3D de�nition of the fra
tureLet Ωs (resp. Ωp) be the solid (resp. �uid) phase domain within the fra
tureand V s (resp. V p) its asso
iated volume in the 
urrent 
on�guration. In its
urrent 
on�guration, the fra
ture domain is de�ned by ΩF = Ωs

⋃

Ωp. Its
urrent (resp. initial) volume V F = V s + V p (resp. V F
0 = V s

0 + V p
0 ), i.e. the
urrent (resp. initial) volume is given by :

V F = 2RLλ (V F
0 = 2RLλ0) (5)By de�nition, λ is a parameter of the fra
ture geometry in its three dimensionaldes
ription. The 2D displa
ement jump [ξ] and the 3D displa
ement �eld U are5



related by (Fig. 3):
[ξ] = U(λ) − U(0) (6)At the fra
ture level, the fra
ture re
losure law cc(Σ) may be dire
tly related tothe volume fra
tion of the pore spa
e within the fra
ture domain. Let ϕ denotethe fra
ture porosity de�ned with respe
t to the 
urrent 
on�guration of thefra
ture domain:

ϕ = V p/V F (7)We also introdu
e the normalized pore volume φ de�ned as :
φ = V p/V F

0 = Jϕ (8)where J = λ/λ0 is the ja
obian of the transformation.Mi
rome
hani
s applied to two-phase porous medium made up of an elasti
 solidmatrix weakened by 
ra
k-like pores may prove1 that the volume strain withinthe solid phase is negligible when 
ompared to the volume strain in the 
ra
ks,provided that ϕ ≪ 1. When ϕ = O(1), this result requires the solid phasein
ompressibility (νs = 1/2). Let us 
onsider an iso
hori
 transformation ofthe solid matrix (V s ≡ V s
0 ) in the fra
ture domain. In this 
ase, we eventuallyhave :

φ(Σ) =
λ0 φ0 − cc(Σ)

λ0
; ϕ(Σ) =

λ0 φ0 − cc(Σ)

λ0 − cc(Σ)
(9)where φ0 is the fra
ture porosity in the referen
e 
on�guration.Therefore, the evolution of the fra
ture pore spa
e may be derived from the fra
-ture re
losure law cc(Σ). In a wide range of experimental results, the evolutionlaw cc(Σ) follows a trend that may be �tted by the non-linear law :

∀Σ ≥ Σ0 , cc = c∞c

(

1 − exp

(

Σ0 − Σ

Σ∞

)) (10)In pra
ti
e, the slope at the origin (Σ → Σ0) and the asymptote for in�nitevalues of Σ allow the determination of both parameters c∞c and Σ∞.From (10) analyti
al de�nitions of fra
ture porosity ϕ and normalized porevolume φ are derived. Assuming a 
omplete re
losure of the fra
ture pore spa
efor in�nite value of the ma
ros
opi
 
on�ning pressure Σ, (9) and (10) yield:
lim

Σ→∞
ϕ = 0 ⇔ φ0 =

c∞c
λ0

(11)so that (9) may be rewritten as :














φ(Σ) = φ0 exp((Σ0 − Σ)/Σ∞)

ϕ(Σ) =
φ0 exp((Σ0 − Σ)/Σ∞)

1 − φ0 (1 − exp((Σ0 − Σ)/Σ∞))

(12)1by resorting to mi
rome
hani
s analysis (Mori-Tanaka's s
heme for instan
e)6



It is important to note that experimental results allow to determine the evolutionof the volume fra
tion of the fra
ture pore spa
e with respe
t to the 
ompressiveloading intensity. Sin
e we are dealing with a given displa
ement-stress relation-ship rather than a strain-stress relationship, one information is still missing forthe ma
ros
opi
 behavior des
ription. Indeed φ0 (or equivalently λ0) appearsin (12) as an unknown parameter that still has to be determined, or at leastestimated. In parti
ular, its �
titious nature does not permit a reliable mea-surement of φ0.Moreover, it should be emphasized that (11) introdu
es a strong link betweenmaterial e�e
ts, through φ0, and stru
tural e�e
ts, through λ0. From (11),those e�e
ts 
annot be 
onsidered separately. For any value of φ0 
orresponds aunique value of λ0 
onsistent with the fra
ture re
losure me
hanism experimen-tally identi�ed (c∞c ). This 
ompetition between material and stru
tural e�e
tsis expe
ted to in�uen
e both me
hani
al and hydrauli
 behaviors.2.2 A mi
rome
hani
s modelFollowing the morphologi
al representation of fra
ture aperture distribution pro-posed by Myer ([Myer, 2000℄, [Jaeger et al., 2007℄), we assume from now on thatthe fra
ture pore spa
e is made up of a distribution of 
ra
k-like pores havingdi�erent initial aspe
t ratios. As a 
onsequen
e, fra
ture porosity is 
ompletelydetermined by the total 
ra
ks volume V p = V c. This morphologi
al assump-tion allows to address the progressive fra
ture re
losure along the applied 
on-�ning pressure, on the basis of the progressive re
losure of lo
al 
ra
ks, fromthe smaller to the higher aspe
t ratios.
2a

2c

Figure 4: The fra
ture modelled as a distribution of dis
rete parallel 
ylindersIn view of applying Eshelby's work [Eshelby, 1957℄, a 
ra
k is here modelledas a 
ylindri
al in
lusion [Horii and Nemat-Nasser, 1983℄, of length L, with an7



ellipti
al se
tion embedded in a solid matrix (see Fig. 4). These in
lusions areintrodu
ed so as to a

ount for the anisotropi
 situation where parallel 
ra
ksare uniformly distributed. The unit normal ve
tor n = ez is the same for all
ra
ks. Cra
k radius is denoted by a and 
ra
k half-opening by c. Cra
k aspe
tratio is denoted by X = c/a ≪ 1. For the sake of simpli
ity, 
ra
ks are assumedto have the same radius a, so that a 
ra
k family is 
ompletely de�ned by itsinitial aspe
t ratio.Let ν(X0) be the distribution fun
tion of 
ra
k aspe
t ratios in the initial state.By de�nition, ν(X0)dX0 stands for the number of 
ra
ks per unit length (i.e.diameter 2R in the fra
ture plane) whi
h initial aspe
t ratio lies in between X0and X0 + dX0. A

ording to (8) where V p = V c, the in
remental pore volumefra
tion is then given by :
dϕ =

X

J
ǫ(X0)dX0 ; ǫ(X0) =

πa2

λ0
ν(X0) (13)where ǫ(X0) is a 2D 
ra
k density parameter, whi
h is similar to the 
ra
kdensity parameter introdu
ed by [Budiansky and O'Connell, 1976℄. (13) thenallows us to give a mi
rome
hani
s de�nition for the fra
ture volume fra
tionintrodu
ed in (7) :

ϕ(Σ) =
1

J(Σ)

∫

O(Σ)

Xǫ(X0)dX0 (14)where O(Σ) formally represents the set of open 
ra
ks for a ma
ros
opi
 stressintensity Σ, i.e. integrations are made over the initial aspe
t ratio of 
ra
ksfamilies still open for 
on�ning pressure intensity Σ.2.2.1 Lo
al 
ra
k 
losure lawA

ording to the fa
t that 
ra
ks are likely to undergo non-in�nitesimal deforma-tions under ma
ros
opi
 
ompressive stresses, we have to resort to a rate-basedformulation of the 
onstitutive equations. In this framework, it is then possibleto derive an estimate for the relation existing between the lo
al strain rate dprevailing within a 
ra
k and the ma
ros
opi
 applied stress rate Σ̇. Let us
onsider a representative element volume of the fra
ture made up of an elasti
solid matrix (volume fra
tion fs = 1 − ϕ, elasti
 sti�ness tensor Cs) and iden-ti
al oriented 
ra
ks (total volume fra
tion fc = ϕ, elasti
 sti�ness tensor C
c)submitted to a ma
ros
opi
 strain rate D. In 
ontinuum mi
rome
hani
s, useof an elasti
 tensor Cc allows a

ounting for di�erent behavior of the 
ra
ks.For instan
e [Dormieux et al., 2006℄, Cc = 0 for open 
ra
ks, while Cc 6= 0 mayrepresent 
losed 
ra
ks. In this latter 
ase, Cc is de�ned in order to a

ount forthe behavior (fri
tionless or not) of the 
ra
ks.The linearity of the problem addressed in rate formulation allows us to relatelinearly the mi
ros
opi
 and ma
ros
opi
 strain rates a

ording to2 :

d
α = A

α
: D (15)2yβ denotes the average of y over domain Ωβ (β = s, c, F ))8



where A
α denotes the average 
on
entration tensor overdomain Ωα (α = s (resp.

c) for the solid phase (resp. 
ra
ks)). Estimates for these 
on
entration tensorsare derived frommi
rome
hani
s homogenization s
hemes ([Mura, 1987℄,[Dormieux et al., 2006℄).In the framework of the Mori-Tanaka s
heme, estimates for lo
alization tensorsread :
{

A
c

= (I + Ps
c : (Cc − Cs))

−1
: Ã

A
s

= Ã
(16)where I and Ps

c are the fourth order identity tensor and Hill's tensor asso
i-ated with a 
ylindri
al in
lusion of ellipti
al 
ross-se
tion embedded in the solidmatrix of sti�ness tensor Cs respe
tively, while
Ã

−1 = fs I +
1

J

∫

O(Σ)

X(I + P
s
c : (Cc − C

s))−1ǫ(X0)dX0 (17)is introdu
ed so as to satisfy the strain rate average rule d
F

= D. Consideringopen 
ra
ks, we have Cc = 0 so that the strain rate in a 
ra
k may be estimatedas [Dormieux et al., 2006℄ :
d

c = (I − S
s
c)

−1 : Ã|Cc=0 : D (18)where Ss
c = Ps

c : Cs is the Eshelby tensor.De�ning the rate of the ma
ros
opi
 stress as the average over the r.e.v. of thelo
al stress rates, say Σ̇ = σ̇
F , it is found that the fra
ture behavior itself takesan hypoelasti
 form (Shom

t = (Chom
t )−1) :

Σ̇ = C
hom
t : D or D = S

hom
t : Σ̇ (19)where homogenized sti�ness tensor Chom

t = C : A
F

= (1 − ϕ) Cs : A
s. Forhydrostati
 loading 
onditions, (19) allows us to relate the fra
ture strain rate

D to the rate of the ma
ros
opi
 
on�ning pressure Σ̇ = −Σ̇1 (Σ > 0 for
ompression) as :
D = −Σ̇ S

hom
t : 1 (20)Combining (16), (18), (19) and (20), the 
ra
k 
losure law 
an be derived fromthe relation n ⊗ n : d

c = dc
nn = ċ/c [Deudé et al., 2002℄ :

Ẋ =
ċ

a
= Xdc

nn = −αs
n

Σ̇

1 − ϕ(Σ)
(21)where possible 
ra
k propagation is disregarded (ȧ = 0) and where 
oe�
ient

αs
n is given by :

αs
n = n ⊗ n : X(I − S

s
c)

−1 : S
s : 1 (22)Interestingly, one 
an prove (see for instan
e [Dormieux et al., 2006℄) that Ts =

X(I − Ss
c)

−1 is a tensorial fun
tion independent of 
ra
k aspe
t ratio providedthat the latter is small enough X ≪ 1 (whi
h is true for 
ra
ks by de�nition)and fun
tion of the solid matrix Poisson ratio νs only. For parallel 
ylindri
al9



in
lusions of ellipti
al se
tion with aspe
t ratios X ≪ 1 (unit normal n = ez) inan isotropi
 solid matrix, one gets :
αs

n = 2 (1 − ν2
s )/Es (= (1 − νs)/µs) (23)Interestingly enough, (23) proves that the lo
al me
hani
al response (
ra
k 
lo-sure law) is mainly 
ontrolled by the solid matrix Young modulus. Therefore,solid matrix in
ompressibility assumption (νs = 1/2) may be used without mod-ifying the result (see se
tion 2.1).Time integration of (21) yields the evolution law of 
ra
k aspe
t ratio withrespe
t to the applied loading 3 :

X = 〈X0 − Xcℓ
0 (Σ)〉+ with Xcℓ

0 (Σ) = αs
n

∫ Σ

Σ0

ds

1 − ϕ(s)
(24)where X0 = X(Σ0) is the 
ra
k aspe
t ratio in the referen
e 
on�guration

Σ = Σ0. Xcℓ
0 (Σ) represents the initial aspe
t ratio of the 
ra
ks whi
h 
losewhen the 
on�ning pressure rea
hes Σ. In other words, for a given value of Σ,
ra
ks whi
h are still open are those whi
h initial aspe
t ratios greater than thethreshold value Xcℓ

0 (Σ). Taking advantage of (12), Xcℓ
0 (Σ) may also be written :

Xcℓ
0 (Σ) = αs

n ((Σ − Σ0) − η(Σ)) , ∀Σ ≥ Σ0 (25)where η(Σ) = Σ∞ (φ(Σ) − φ0) / (1 − φ0). Therefore, at 
on�ning pressure Σ,the set of open 
ra
ks O(Σ) introdu
ed in (14) gathers 
ra
ks with initial aspe
tratio satisfying the 
ondition X0 > Xcℓ
0 (Σ), where Xcℓ

0 (Σ) is given in (25). Asa 
onsequen
e, the fra
ture porosity now reads :
ϕ(Σ) =

1

J(Σ)

∫ ∞

Xcℓ

0
(Σ)

(X0 − Xcℓ
0 (Σ)) ǫ(X0)dX0 (26)Conversely, the 
losure of a given 
ra
k family (X = 0) o

urs as soon as theapplied stress rea
hes Σcℓ(X0) satisfying Xcℓ

0 (Σ = Σcℓ(X0)) = X0. A

ordingto (25), Σcℓ(X0) reads :
Σcℓ(X0) = Σ0 − Σ∞

(

h(X0) − W

(

φ0

1 − φ0
eh(X0)

)) (27)where h(X0) = φ0

1−φ0

− X0

αs
n
Σ∞

, while the Lambert fun
tion W (x) satis�es :
W (x) × exp(W (x)) = x (28)Taking advantage of (12), the 
ra
k density parameter ǫ(X0) may easily be de-rived from a double derivative ([Morlier, 1971℄, [Jaeger et al., 2007℄, [Deudé et al., 2002℄)of (26) with respe
t to Σ as :

ǫ(X0) =
φ0

Σ2
∞

exp((Σ0 − Σcℓ(X0))/Σ∞)

×

[

(

dXcℓ
0

dΣ
+ Σ∞

d2 Xcℓ
0

dΣ2

)

/

(

dXcℓ
0

dΣ

)3
]

|Σ=Σcℓ(X0)

(29)3〈·〉+ stands for the �positive part of� 10



Although dire
tly linkted to the fra
ture re
losure law (12), (29) proves thatthe initial 
ra
k aspe
t ratio distribution only requires an estimate for the 
ra
kaspe
t ratio threshold Xcℓ
0 (Σ).Use of (25) together with (27) in (29) yield the 
ra
k density parameter :

ǫ(X0) =
1 − φ0

(αs
nΣ∞)2

ϕ(Σcℓ(X0))
[

1 − ϕ(Σcℓ(X0))
]2 (30)Remarkably, the Mori Tanaka e�e
tive media theory provides a mi
rome
hani
sinterpretation of the me
hani
al response of the fra
ture using the 
ra
k re
lo-sure law (25) and the initial 
ra
k aspe
t ratio distribution (30). In parti
ular,(30) proves that ǫ(X0) depends upon three parameters: αs

n, Σ∞ and φ0. Assum-ing that the solid matrix elasti
 
oe�
ients (Es, νs = 1/2) are given quantities,
αs

n is estimated by (23). The shape of ǫ(X0) is then 
ontrolled by Σ∞ and φ0.Interestingly, as in [Oron and Berkowitz, 1998℄ the derived initial 
ra
k aspe
tratio distribution shows that 
onta
t points having zero aperture in fra
turesare naturally managed by our mi
rome
hani
s modelling whatever the value of
φ0 6= 0. For 
onvenien
e, we introdu
e from now on the normalized initial 
ra
kaspe
t ratio distribution ǫ̂(X0) = ǫ(X0)/ǫ(0).A simple derivation of (30) proves that the normalized 
ra
k density parameter
ǫ̂(X0) may exhibit a maximum value ǫ̃ = ǫ̂(X0 = X̃0) at ϕ = 1/3:

ǫ̃ =
4

27

1

φ0(1 − φ0)2
(31)Introdu
ing u = 2φ0/(1 − φ0), the initial 
ra
k aspe
t ratio X̃0 asso
iated with

ǫ̃ also reads :
X̃0 = (αs

nΣ∞)/2 × (u − 1 + 2 ln(u)) (32)Due to the (required) positivity of X̃0, the existen
e of ǫ̃ is only ensured for
1/3 ≤ φ0 ≤ 1. When φ0 ≤ 1/3, the maximum value is ǫ̃ = 1.2.2.2 E�e
t of φ0 on the initial 
ra
k aspe
t ratio distributionAs previously mentionned, φ0 
ontrols the intensity (31) and the position (32) ofthe peak of the initial aspe
t ratio distribution. In parti
ular, depending upon
φ0, fun
tion ǫ̂(X0) may take di�erent shapes as shown in Fig. 5 for Σ∞ = 1MPa and αs

n = 5.10−5 MPa−1.
• if φ0 < 1/3, see Fig. 5(
), the mi
rome
hani
s model suggests a de
reasingfun
tion of an exponential type. As φ0 → 0, this result be
omes in
reasinglyequivalent to the one obtained by assuming non-intera
tive 
ra
k-like pores as
φ0 → 0 (see appendix).
• if 1 > φ0 > 1/3, the mi
rome
hani
s model produ
es a trun
ated-gaussiantype fun
tion, see Fig. 5(b). The latter has been measured experimentally([Billaux et al., 1984℄, [Gentier, 1986℄, [Walters and Wong, 1999℄) and 
ommonly�tted by gamma or log-normal fun
tions in theoreti
al or numeri
al approa
hesfor de�ning lo
al apertures distribution of real fra
tures ([Neuzil and Tra
y, 1981℄,[Tsang and Tsang, 1987℄, [Renshaw, 1995℄).11



• if φ0 → 1, a skewed, almost gaussian, fun
tion is obtained, see Fig. 5(a). Thistype of fun
tion has also been used by several authors as the lo
al apertures dis-tribution asso
iated with fra
tures ([Tsang, 1984℄,[Pyrak-Nolte and Morris, 2000℄).It has also been obtained following numeri
al simulations ([Tsang and Tsang, 1989℄,[Unger and Mase, 1993℄, [Oron and Berkowitz, 1998℄).2.2.3 Chara
terization of φ0Interestingly, whatever the value of φ0, when the normalized 
ra
k density pa-rameter ǫ̂(X0) is an input of the problem, the latter may provide a 
hara
teri-zation of φ0, provided that Σ∞ and αs
n are given quantities.

• when 1/3 ≤ φ0 ≤ 1, we make use of the existen
e of a maximum of ǫ̂(X0).It is then straightforward to determine φ0 by using (32) sin
e X̃0 is herean input of the problem.
• when φ0 ≤ 1/3, we make use of the slope at the origin of ǫ̂(X0), denotedby η. A

ording to (30), the latter takes the form:

η =
dǫ̂

dX0 |X0=0

=
1

αs
nΣ∞

(2 W (g(u)) − 1)

(W (g(u)) + 1)2
(33)where g(u) = u

2 exp(u
2 ) with u = 2φ0/(1 − φ0).More generally, determination of φ0 from a purely me
hani
al analysis requiresthree informations:

• the solid matrix (assumed isotropi
 elasti
) behavior providing αs
n,

• the experimental fra
ture re
losure law providing Σ∞ a

ording to theanalyti
al approximation introdu
ed in (10),
• the initial 
ra
k aspe
t ratio distribution ǫ(X0), similar to lo
al fra
tureapertures distribution, provided by experimental 
hara
terization te
h-niques.2.2.4 E�e
t of Σ∞ on the nature of a fra
tureIn [Tsang, 1984℄, an interesting qualitative 
lassi�
ation of geometri
al fra
-ture states is given, depending upon the shape of the fra
ture aperture densityfun
tion. Sharply peaked aperture distributions, whether gaussian or skewed(see Fig. 5 a) and b)) are 
hara
teristi
 of very well mat
hed fra
tures, whileill-mated fra
tures are rather asso
iated with �at and broad apertures distribu-tion ([Tsang, 1984℄,[Berkowitz, 2002℄).Our mi
rome
hani
s modelling has been developped in a su�
iently large frame-work to manage any type of fra
ture. Assuming that αs

n is a given quantity, theinitial 
ra
k aspe
t ratio distribution depends upon φ0 and Σ∞. As previouslypresented, φ0 provides the trend of the initial 
ra
k aspe
t ratio distribution.12
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ra
k aspe
t ratio distribution as a fun
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However, there is no way to asso
iate the value of the initial fra
ture pore vol-ume φ0 to the well-mat
hed or ill-mated state of the fra
ture. By 
ontrast,depending on parameter Σ∞, (30) may exhibit a sharply peaked shape (Σ∞small enough) or a �at and broad shape (Σ∞ su�
iently high). This is illus-trated in �gure 6 where we used Σ∞ = 1MPa (resp. 5MPa) for the peaked(resp. �at) distribution. Obviously, the proposed mi
rome
hani
s approa
h isable to retrieve 
lassi
al fra
ture apertures distribution shape [Tsang, 1984℄. Inaddition, this model allows us to give a qualitative and quantitative explanationto the well-mat
hed or ill-mated de�nition of a fra
ture. Let us 
onsider that thema
ros
opi
 fra
ture re
losure o

urs for a 
on�ning pressure Σ = Σ∗ = 7MPa.Let us also 
onsider two di�erent values for Σ∞ = 1MPa, 5MPa respe
tively.A

ording to (25) with φ0 = 0.5 and αs
n = 5e− 5MPa−1, the initial aspe
t ratiothreshold satis�es :

Xcℓ
0 (Σ∗) =

{

4e−4 forΣ∞ = 1 MPa
5.38e−4 forΣ∞ = 5 MPa

(34)Therefore, for Σ∞ = 1 MPa (resp. 5 MPa) the fra
ture re
losure at 
on�ningpressure Σ∗ = 7 MPa is asso
iated with the re
losure of the 
ra
ks with aninitial aspe
t ratio X0 ≤ 4e−4 (resp. X0 ≤ 5.38e−4). From �gure 6, Σ∞ = 1MPa yields a 
omplete re
losure of the lo
al 
ra
k-like pores, 
onsistent with awell-mat
hed de�nition of the fra
ture. By 
ontrast, Σ∞ = 5 MPa yields a par-tial re
losure of the lo
al 
ra
k-like pores, whi
h 
an be related to an ill-matedfra
ture. This result 
an also be interpreted through the de�nition of X̃0 givenin (32). When Σ∞ in
reases, the maximum value ǫ̃ is asso
iated with a highervalue of X̃0. Hen
e, a higher value of the 
on�ning pressure is required for the
omplete 
losure of the lo
al 
ra
k-like pores.When φ0 < 1/3, the same 
on
lusion is obtained. A

ording to (33), for in-
reasing values of Σ∞, the initial 
ra
k aspe
t ratio distribution tends towardthe line ǫ̂ = 1.Whithin our analysis, determination of both 
ra
k re
losure law (25) andinitial 
ra
k aspe
t ratio distribution (30) has to be understood as the key ofthe mi
rome
hani
s interpretation of the fra
ture re
losure me
hanism. In par-ti
ular, the proposed analysis proves that, whatever φ0, we are able to build aninitial 
ra
k aspe
t ratio distribution ǫ(X0) that is 
ompatible with the observedma
ros
opi
 behavior (fra
ture re
losure). This result is a dire
t 
onsequen
e ofthe relation between φ0 (material e�e
ts) and λ0 (stru
tural e�e
ts) expressedin (11). Whenever the material (φ0) is modi�ed, the initial fra
ture thi
kness(λ0) itself is modi�ed in su
h a way that they are still asso
iated with the samema
ros
opi
 behavior.Hen
e, the me
hani
al analysis does not allow the determination of φ0, ex
eptedthe situation where all needed informations are known as mentionned in se
tion2.2.3. In order to over
ome this indetermination on φ0, we may take advan-tage of the hydrauli
 behavior of fra
tured geomaterials. This point is adressedin the next se
tion, where permeability evolution of fra
tured geomaterials areestimated in the 
ontext of mi
rome
hani
s arguments, still based on the Mori-Tanaka e�e
tive media theory. 14
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t of Σ∞ on the fra
ture de�nition (αs
n = 5e−5MPa−1, φ0 = 0.5)2.3 fra
ture permeability estimatesWe take here advantage of 
lassi
al ro
k joints 
ondu
tion laws as proposed inRo
k Hydrauli
s ([Gueguen and Pal
iauskas, 1992℄, [Dormieux and Lemar
hand, 2001℄).The idea is as simple as 
onsidering a 
ra
k as a system of two parallel planes,of width 2c. In between these two planes, the �uid obeys a Poiseuille 
ondu
-tion law that linearly relates the �ltration velo
ity and the pressure gradient.It is therefore possible to de�ne a �
titious porous medium of permeability kc,that is equivalent to the real 
ra
k as regards the linear relationship between�ltration velo
ity and pressure gradient. Re
alling that ex and ey are the twoorthonormal ve
tors in the 
ra
k plane, and n = ez the outward unit normal tothis plane, we may write :

kc =
c2

3
(ex ⊗ ex + ey ⊗ ey) + ksn ⊗ n (35)where arbitrarily de�ned parameter ks may be 
hosen as the (isotropi
) perme-ability of the un
ra
ked solid matrix ks = ks 1 [Dormieux and Kondo, 2004℄.It is readily seen that the ma
ros
opi
 permeability tensor K

hom is stronglya�e
ted by the presen
e of 
ra
k through the fa
t that it lo
ally enhan
es (if
c2 ≫ ks) the �uid motion in the (ex, ey) plan. By 
ontrast, its e�e
t on the�uid �ow in the normal dire
tion n is negligible. From a physi
al point of view,repla
ing the �uid domain in a 
ra
k by a �
titious porous medium, of perme-ability kc, is 
onsistent with the fa
t that the linearity of the lo
al 
ondu
tionlaw is preserved. On a mathemati
al point of view, this substitution is verypowerful. Indeed, it repla
es the di�
ult task of the homogenization pro
ess ofa Stokes problem over a representative element volume (r.e.v.) by the one of anheterogeneous dar
ean medium with heterogeneous permeability k(z). Consid-ering again a 
ontinuous distribution of initial 
ra
k aspe
t ratios, ea
h 
ra
k15



family (F j) a

ounts for one distin
t phase as regards the heterogeneous de-s
ription of Dar
y's law within the r.e.v..With the assumption that ks ≈ 0 [Walters and Wong, 1999℄, mi
rome
hani
stools then allow to derive fra
ture permeability as the average over the r.e.v.,denoted by 〈·〉, a

ording to :
k

F = 〈k ·A〉 =
1

J

∫ ∞

Xcℓ

0
(Σ)

kc · Ac Xǫ(X0)dX0 (36)As the se
ond order 
on
entration tensor reads4 Ac = ex ⊗ ex with the mor-phology assumption made in se
tion 2.2, tortuosity e�e
ts 
annot be a

ountedfor in the present analysis [Dormieux and Lemar
hand, 2000℄. Therefore, (36)redu
es to :
k

F =
1

J

∫ ∞

Xcℓ

0
(Σ)

c2

3
Xǫ(X0)dX0 ex ⊗ ex (37)At the sample s
ale, as we 
hose a spe
i�
 two layers 
omposite morphology(see Fig. 3), the ma
ros
opi
 permeability tensor is derived by a simple mixturelaw :

K
hom = ϕF

k
F ; ϕF = 2λ/(π R) (38)Combining Eqns (37) and (38) �nally yields a longitudinal ma
ros
opi
 perme-ability 
oe�
ient estimated by :

Khom
xx =

2a2λ0

3π R

∫ ∞

Xcℓ

0
(Σ)

X3ǫ(X0)dX0 (39)This is similar to the ma
ros
opi
 permeability proposed in [Tsang and Witherspoon, 1983℄.Hen
e, resorting to mixture law estimates yields a ma
ros
opi
 longitudinal per-meability 
oe�
ient de�ned as a 
ubi
 fun
tion of 
ra
k aspe
t ratio, 
lassi
allyreferred to as a �lo
al 
ubi
 law� ([Neuzil and Tra
y, 1981℄,[Wanfang et al., 1997℄,[Berkowitz, 2002℄).One may also use a normalized longitudinal ma
ros
opi
 permeability 
oe�
ientde�ned as :
Khom

xx

Khom
xx,0

=

∫ ∞

Xcℓ

0
(Σ)

X3ǫ(X0)dX0

∫ ∞

0

X3
0 ǫ(X0)dX0

(40)Clearly enough, permeability 
ouplings with me
hani
al fra
ture re
losure is
ompletely a

ounted for by both the initial 
ra
k aspe
t ratio distributionfun
tion ǫ(X0) and the lo
al 
ra
k re
losure law Xcℓ
0 (Σ). The originality ofour 
ontribution lies in the fa
t that both ǫ(X0) and Xcℓ

0 (Σ) are ex
lusivelyidenti�ed from the me
hani
al fra
ture re
losure law measured experimentally.4
onsistent with the Mori Tanaka s
heme
16
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Figure 7: E�e
t of φ0 on the normalized permeability evolution, Σ∞ = 6MPa)2.3.1 E�e
t of φ0 on the normalized permeability evolutionAs for the me
hani
al analysis developed in the previous se
tion, the e�e
tof φ0 may already be dis
ussed. For αs
n = 5e−5MPa−1 and Σ∞ = 6MPa,normalized permeability 
oe�
ient (40) is plotted vs 
on�ning pressure intensityfor di�erent values of φ0 in �gure 7. The following 
omments 
an be made:

• in the range 0 ≤ φ0 ≤ 1/3, theoreti
al estimates are very 
lose to ea
hother. Therefore, if theoreti
al estimates are 
lose to the experimental re-sults whatever φ0 ∈]0, 1/3], it is possible to predi
t the hydrauli
 responseof fra
tured materials dire
tly from the me
hani
al fra
ture re
losure lawidenti�ed experimentally. Indeed, in this 
ase experimental results may befairly well approximated by the estimate obtained in the limit 
ase φ0 → 0(Dilute s
heme approximation [Lemar
hand et al., 2007℄) re
alled in (49).The latter only requires the determination of parameter Σ∞.
• when φ0 > 1/3, there is no way to predi
t the hydrauli
 behavior from theme
hani
al one sin
e φ0 is still unknown. By 
ontrast, hydrauli
 behaviorallows the determination of φ0 by best-�tting pro
edure.2.3.2 E�e
t of Σ∞ on the normalized permeability evolutionEvolution of the normalized permeability 
oe�
ient with respe
t to the 
on�ningpressure is displayed in �gure 8 for di�erent values of parameter Σ∞ when

φ0 = 0.5. Clearly enough, when Σ∞ de
reases the permeability 
oe�
ientde
reases more rapidly. This result is 
onsistent with the aforementionned e�e
tof Σ∞ on the initial aspe
t ratio distribution, where higher values of Σ∞ areasso
iated with ill-mated fra
tures. 17
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Figure 8: E�e
t of Σ∞ on the normalized permeability evolution, φ0 = 0.5)3 Appli
ation3.1 ExperimentsThe experimental method is fully des
ribed in [Davy et al., 2007℄, as appliedto Callovo-Oxfordian argillite, whi
h is a deep geologi
al formation privilegedfor deep underground nu
lear waste storage. The results presented here areupon industrial high performan
e 
on
retes whi
h are studied by Andra (Fren
hAgen
y for Nu
lear Waste Management) in similar 
ontext (i.e. deep nu
learwaste storage), and also by EDF (Fren
h Ele
tri
ity Supply Company) for nu-
lear rea
tor vessels. Both 
on
retes, labelled CEM I and CEM V respe
tively,are made of 4-12 mm 
al
areous aggregates, of CEM I-type or alternately CEMV-type 
ement, of a water proportion on the order of 40 % 
ement mass (i.e.water-to-
ement ratio W/C ≈ 0.4) and of a superplasti
izer, in proportions asrequested by ANDRA. For theoreti
al purpose, 
on
rete behavior is assumedisotropi
 elasti
: Young's modulus Es = 30GPa and Poisson's ratio νs = 0.5.Sample Referen
e Con�guration Final Con�gurationnumber Σ0 ∆c
0 Kxx,0 Σmax ∆c

max Kxx,max[MPa℄ [10−5m℄ [10−15m2℄ [MPa℄ [10−5m℄ [10−15m2℄Sample 1 1.8 0 32 43.2 3.91 1.3Sample 2 3.6 1.9 0.88 45.1 5.4 0.022Table 1: Gas permeability test results on fra
tured 
on
rete samples subje
tedto hydrostati
 pressure Σ. Gas pressure for permeability assessment is of 1 MPain both 
ases.A Brazilian splitting test reprodu
es a fra
ture along the diametral plane ofa 
ir
ular 
ylindri
al spe
imen, see Figure 1(b). All spe
imens have a length-18
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Σ − Σ0 [MPa℄Figure 9: Experimental measurements of cc = (∆c − ∆c

0)(Σ)to-diameter ratio (L/D) approa
hing 2 (with D ≈ 37 mm and L ≈ 70 mm).Although only two test results are presented here, several samples have beentested, so as to ensure proper results representativity. Sample 1 is made withCEM V 
ement (W/C = 0.39) and Sample 2 is 
omposed of CEM I 
ement(W/C = 0.43). Subsequently, ea
h sample is wrapped in a Vitton membrane.It is then subje
ted to an hydrostati
 
ompressive loading in a triaxial 
ell witha maximum hydrostati
 pressure Σ of 45 MPa. The measured 
ra
k 
losure ∆cis evaluated from the average displa
ement of four LVDT sensors pla
ed diamet-ri
ally around the sample. Preliminary 
alibration phase enables to a

ount forall set-up and bulk 
on
rete deformations, so that �nally, ∆c data 
orrespondsolely to fra
ture 
losure or opening. Evaluation of longitudinal gas permeabil-ity Kxx is performed under quasi-stati
 inert Argon gas �ow, at pressures of 0.5or 1 MPa, using Dar
y's law and perfe
t gas assumption, see [Davy et al., 2007℄for details. The permeability evaluated here is quali�ed as apparent, in thesense that gas slippage e�e
ts are not a

ounted for. The expression providing
Kxx remains identi
al for a fra
tured spe
imen as for an inta
t one, althoughgas �ows preferentially through the fra
ture rather than through the materialbulk. Indeed, volume �ow rate is identi
al at any given 
ross-se
tion along ex.
Kxx is not normalized by sample diameter D so as to get a fra
ture permeabil-ity, we rather work with apparent fra
tured sample permeability (expressed inm2). Moreover, while ∆c is measured instantaneously, permeability measure-ments Kxx are 
ondu
ted at stabilized values of 
on�ning pressure Σ. Initial(referen
e state) and asymptoti
 values are summarized in Table 1.As shown in Figure 9, when applying hydrostati
 pressure loading up to 45 MPa,a progressive 
ra
k 
losure of great amplitude (of 40 or 50 µm) o

urs. Similarobservations are made for gas permeability relationship with hydrostati
 load-ing: a sharp de
rease of the normalized permeability 
oe�
ient Kexp

xx /Kexp
xx,0 isobtained for both samples, see Figure 10. Disparities in permeability and 
ra
k
losure amplitude between samples may be a

ounted for by the variability gen-19
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Figure 10: Normalized longitudinal permeability 
oe�
ient w.r.t. (Σ − Σ0) -experimental resultserated by the Brazilian splitting test. As stated above, this is yet in favour of a
loser representation of the in situ 
ra
k pro�le variability.3.2 Theoreti
al resultsIn this se
tion, the mi
rome
hani
s reasoning proposed in se
tion 2.2 is appliedand 
ompared to experimental results obtained with fra
tured 
on
rete samples.Test no c∞c (10−5m) Σ∞ (MPa)Sample 1 4 5.6Sample 2 3.4 8.4Table 2: Identi�ed parameters (least squares method)A

ording to se
tion 2.2, the mi
rome
hani
s methodology is dire
tly relatedto the de�nition of the initial 
ra
k aspe
t ratio distribution ǫ(X0) expressedin (30). This fun
tion, 
hara
terizing the morphology of the fra
ture interfa
ialdomain, depends upon three unknown parameters: c∞c , Σ∞ and φ0, whi
hhave to be identi�ed. c∞c and Σ∞ are determined by taking advantage of thefra
ture re
losure law identi�ed experimentally (see Fig. 9). In the range ofapplied 
on�ning pressures, the best �t between experimental and theoreti
alresults (see Fig. 11) is provided by the least squares method. Bla
k points areexperimental measurements while the red solid line is the analyti
al expressiongiven in (10) for the optimized values summarized in Table 2 for the two 
on
retesamples. 20
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With these values in hand, we are able to de�ne the initial 
ra
k aspe
t ratiodistribution (30) and the 
ra
k 
losure law (25) as fun
tions of the unknowninitial fra
ture pore volume fra
tion φ0. The latter is sought in order to getthe best �t between experimental and mi
rome
hani
s results obtained for thenormalized permeability 
oe�
ient evolution (40) as displayed in Figure 12.Obviously, mi
rome
hani
s-based theoreti
al estimates are able to reprodu
e theexperimental evolution of the normalized longitudinal permeability 
oe�
ient.More pre
isely, the Mori-Tanaka estimate (40) provided by our modelling �tsexperimental results, at least in the range Σ : 0 → 20MPa, for φ0 = 0.33 (resp.
φ0 = 0.37) for Sample 1 (resp. Sample 2).Therefore, the mixture law (39), 
onsistent with a lo
al 
ubi
 law of the per-meability evolution with respe
t to 
ra
k aspe
t ratio, is 
apable of a

ountingfor the physi
al me
hanism, revealed by experimental eviden
es, that 
ontrolsboth me
hani
al and hydrauli
 behaviors of the tested fra
tured 
on
rete sam-ples.Besides, experimental results suggest that the ma
ros
opi
 
on�ning pres-sure leads to a de
rease of the permeability almost perfe
tly 
orrelated withme
hani
al fra
ture re
losure. More pre
isely, for the very �rst loading val-ues Σ − Σ0 ≈ 10 MPa, the normalized permeability 
oe�
ient de
reases from1 to 0.19 (Fig. 10) while, at the same time, the normalized fra
ture 
losure
(c∞c − cc)/c∞c de
reases from 1 to 0.17 (Fig. 9 - Fig. 10). These experimentalresults are at the origin of the good agreement between experiments and theo-reti
al estimates derived by the dilute approximation (φ0 → 0). The latter 
asehas already been solved in [Lemar
hand et al., 2007℄ (see appendix). It yieldsan a�ne relationship between the normalized permeability and the normalizedfra
ture re
losure of the form :

Khom
xx

Khom
xx,0

= 1 −
cc

c∞c
(41)This 
orresponds to a perfe
t 
orrelation between me
hani
al and hydrauli
 re-sponses, whi
h has been observed for 
on
rete samples.In 
ontrast with the good agreement obtained between experimental data andtheoreti
al estimates for 
on�nement intensity in the range Σ = 0−20MPa, onemay observe a non-negligible dis
repan
y for Σ = 20 to −40MPa (Sample 1).This is a dire
t 
onsequen
e of our morphologi
al assumption in the de�nition ofthe fra
ture pore volume. Indeed, in addition to stress-sensitive 
ra
k-like pores,pores that are stress-insensitive should also be 
onsidered within the fra
ture do-main. Therefore, these �non-LCL� regions5 ([Wanfang et al., 1997℄,[Oron and Berkowitz, 1998℄,[Berkowitz, 2002℄)are expe
ted to 
ontribute to the hydrauli
 
ondu
tivity in a non negligible way.In parti
ular, a

ounting for these pores in our mi
rome
hani
s approa
h would
ertainly improve the asymptoti
 hydrauli
 behavior estimates.5non Lo
al Cubi
 Law regions
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Figure 12: Normalized longitudinal permeability 
oe�
ient w.r.t. Σ − Σ0
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4 Dis
ussion - Con
lusionIn the present paper, we proposed a mi
rome
hani
s modelling of fra
tured ge-omaterials a

ounting for interdependent hydrauli
 and me
hani
al behaviors.We adressed the question of a single through-wall fra
ture in a non 
ondu
tivesolid matrix. For 
ompressive loadings, experimental results prove that bothhydrauli
 and me
hani
al behaviors show a non linear evolution with respe
tto the 
on�nement intensity. The observed non linearity of the fra
ture re-
losure is physi
ally interpreted as the progressive 
losure of 
ra
k-like poresde�ning the pore spa
e within the fra
ture domain. This 3D interpretation ofthe ma
ros
opi
 interfa
e lies in the physi
al 
on
ept of roughness, whi
h isusually introdu
ed in order to a

ount for fra
ture surfa
e irregularities.Disregarding tortuosity e�e
ts, we assumed a 2D de�nition of 
ra
k-likepores, represented by 
ylinders of ellipti
al se
tion normal to the �ow path.In the framework of Mori Tanaka e�e
tive media theory, we a

ounted for thepossible intera
tion between these 
ra
ks for both me
hani
al and hydrauli
behaviors. This mi
rome
hani
s reasoning is 
ontrolled by two physi
al infor-mations, a 
ra
k 
losure threshold Xcℓ
0 (Σ) and a distribution of initial aspe
tratios ǫ(X0) given in (25) and (30) respe
tively. To be 
ompletely determined,both need the experimental me
hani
al fra
ture re
losure law (Σ∞) and theinitial pore volume fra
tion of the fra
ture domain (φ0). While the former isidenti�ed for the two tested 
on
rete samples, the latter has not been measuredexperimentally, thus appearing in our model as an unknown parameter.For 
on
rete samples, best �ts have been obtained with φ0 = 0.33 (Sam-ple 1) and φ0 = 0.37 (Sample 2). Obviously, to be fully predi
tive, the pro-posed multi-s
ale modelling needs φ0, or equivalently λ0 owing to (11), notto remain an unknown parameter. This goes through experimental 
hara
ter-ization of the initial fra
ture pore volume, using imaging te
hniques for in-stan
e [Viggiani et al., 2004℄. From these authors, X-ray mi
rotomography ob-servations made on �ne-grained geomaterials proved that un
on�ned fra
turethi
knesses are in the order of 10-100 µm. This 
hara
teristi
 size may be inter-preted as that of the grains lo
ated on ma
ro-
ra
k lips whi
h are responsiblefor the surfa
e roughness. A

ording to (11), its value is 
onsistent with aninitial fra
ture porosity φ0 ranging from 0.2 to 1 for the tested samples. Val-ues of φ0 ≈ 0.35 that have been obtained by the mi
rome
hani
s reasoning aretherefore 
ompatible with these mi
rostru
tural observations. In a �rst approxi-mation, theoreti
al results derived in the framework of the dilute approximation(no 
ra
k intera
tion) de�ned by φ0 ≪ 1 provide a fairly a

eptable approxima-tion of experimental data. This is interesting in the sense that the model is thenpredi
tive as regards the permeability evolution, in spite of the indeterminationon φ0. A

ording to our mi
rome
hani
s modelling, this simpli�
ation is dire
tlyrelated to the obvious 
orrelation between me
hani
al and hydrauli
 behaviorsof the fra
tured 
on
rete samples. This is related to negligible tortuosity e�e
tsupon the hydrauli
 response of the tested samples.Many experimental observations ([Cook, 1992℄ for instan
e) show that �owthrough a fra
ture may de
rease more rapidly. [Bernabe and Bra
e, 1982℄ proved24



that hydrauli
 behaviors are strongly in�uen
ed by the type of geomaterials
onsidered. Even within the 
rystalline ro
ks familly, experimental data show astrong disparity. A possible explanation has been given by [Sisavath et al., 2003℄through the study of 
reeping �ow through a fra
ture of varying aperture byintrodu
ing sinusoidally-varying walls. Our point of view rather 
onsiders thattortuosity e�e
ts are responsible for the observed disparity of the hydrauli
 be-havior of fra
tured geomaterials. Therefore, in order to dis
us the e�e
t of lo
al
ra
ks 
onne
tedness that a

ounts for the existen
e of a tortuous �ow pathwithin the fra
ture domain, mi
rome
hani
s requires a 3D morphologi
al rep-resentation of these 
ra
ks [Montemagno and Pyrak-Nolte, 1995℄. While thismorphologi
al assumption would have negligible impa
t on the me
hani
al re-sponse of fra
tured geomaterials, the de
rease of hydrauli
 
ondu
tivities shouldbe enhan
ed. In parti
ular, the in�uen
e of the initial 
ra
k aspe
t ratio dis-tribution should have a strong in�uen
e [Tsang, 1984℄. In parallel, the questionof hydrauli
 per
olation ([Pyrak-Nolte et al., 1988℄,[Walsh et al., 1997℄) shouldbe adressed in order to explain de
reases of several orders of magnitude alongthe progressive re
losure of a 
lass of fra
tured geomaterials. All these openquestions will be analysed in a further paper.A
knowledgmentsThe authors are grateful to both EDF (Fren
h Ele
tri
ity Supply Company)and Andra (Fren
h Agen
y for Nu
lear Waste Management) for funding theexperimental resear
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5 AppendixWe re
all hereafter the mi
rome
hani
s de�nition of both me
hani
al and hy-drauli
 behaviors of fra
tured geomaterials when assuming that the 
ra
k-likepores within the fra
ture domain do not intera
t [Lemar
hand et al., 2007℄.Con
erning the lo
al me
hanism of 
ra
ks re
losure, 
lassi
al results ([Neuzil and Tra
y, 1981℄,[Myer, 2000℄, [Rutqvist and Stephansson, 2003℄) are retrieved.5.1 the me
hani
al behaviorWithin the dilute approximation, the set of open 
ra
ks O(Σ) given by (25) inthe limit ϕ ≈ φ0 ≪ 1 is 
ontrolled by the following 
ra
k 
losure law [Deudé et al., 2002℄:
X = X0 − X0

cℓ(Σ) with X0
cℓ(Σ) = αs

n (Σ − Σ0) (42)A

ording to (42), the 
losure of a given 
ra
k family o

urs as soon as theapplied stress rea
hes the value Σcℓ(X0) = Σ0+X0/αs
n 
orresponding to X = 0.Owing to (42), (14) may be rewritten as :

ϕ =

∫ ∞

X0

cℓ
(Σ)

Xǫ(X0)dX0 (43)From (43), we may give another de�nition of the 
ra
k density parameter ǫ(X0).Indeed, a double derivative of (43) with respe
t to Σ yields :
ǫ(X0) =

1

(αs
n)2

d2ϕ

dΣ2 |Σ=Σcℓ(X0)
(44)Eventually, taking advantage of (12) together with the assumption J ≈ 1, (44)may be rewritten as (φ0 ≪ 1) :

ǫ(X0) =
φ0

(αs
n Σ∞)2

exp(−
X0

αs
nΣ∞

) (45)5.2 the hydrauli
 permeabilityTaking the lo
al 
ra
k 
losure law (45) into a

ount, estimate for the longitudinalma
ros
opi
 permeability 
oe�
ient given by (39) may be rewritten as :
Khom

xx =
a2φ0

3(αs
nΣ∞)2

∫ ∞

Xcℓ(Σ)

(

X0 − αs
n(Σ − Σ0)

)3
exp(−

X0

αs
nΣ∞

)dX0 (46)The assumed 
ontinuous distribution of initial 
ra
k aspe
t ratios eventuallyallows us to obtain the monotoni
 de
reasing fun
tion of Σ :
Khom

xx (Σ) = 2φ0(aαs
nΣ∞)2 exp((Σ0 − Σ)/Σ∞) = 2(aαs

nΣ∞)2ϕ(Σ) (47)The initial longitudinal ma
ros
opi
 permeability 
oe�
ient also reads :
Khom

xx,0 = Khom
xx (Σ = Σ0) = 2φ0(aαs

nΣ∞)2 (48)26



so that the normalized longitudinal ma
ros
opi
 permeability 
oe�
ient is stri
tly
ontrolled by parameter Σ∞ a

ording to :
Khom

xx

Khom
xx,0

=
ϕ(Σ)

φ0
= exp

(

Σ0 − Σ

Σ∞

) (49)
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