
HAL Id: hal-00412535
https://hal.science/hal-00412535v1

Submitted on 29 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System identification of tumor growth described by a
mixed effects model

Thierry Bastogne, Adeline Samson, Sophie Mézières-Wantz, Pierre Vallois,
Sophie Pinel, Muriel Barberi-Heyob

To cite this version:
Thierry Bastogne, Adeline Samson, Sophie Mézières-Wantz, Pierre Vallois, Sophie Pinel, et al.. System
identification of tumor growth described by a mixed effects model. 15th IFAC Symposium on System
Identification, SYSID 2009, Jul 2009, Saint-Malo, France. pp.CDROM. �hal-00412535�

https://hal.science/hal-00412535v1
https://hal.archives-ouvertes.fr


System identification of tumor growth

described by a mixed effects model

T. Bastogne ∗ A. Samson ∗∗ S. Mézières-Wantz ∗∗∗

P. Vallois ∗∗∗ S. Pinel ∗∗∗∗ M. Barberi-Heyob †

∗ Centre de Recherche en Automatique de Nancy (CRAN),
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† Centre de Recherche en Automatique de Nancy (CRAN),
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Abstract: System identification of treated tumor growth is addressed in this paper. Three
main difficulties are examined: (i) the determination of a suited dynamical model structure
(modeling problem), (ii) the inter-individual variability of the therapeutic responses (population
identification problem or longitudinal data analysis) and (iii) the effects of some categorical
factors on the model parameters. To solve these problems, a mixed effect model of tumor
growth, a two step identification approach and an estimation algorithm based on expectation
maximization, are proposed and applied to in vivo data. A double effect of treatments on the
tumor volume responses is pointed out. ∗
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1. INTRODUCTION

New cancer therapies cannot be developed efficiently un-
less it is possible to predict the therapeutic effects on
the tumor growth, in a reliable, robust and reproducible
manner. Reliability, robustness and reproducibility of the
therapeutic outcomes can be expressed as control prob-
lems. In de Pillis and Radunskaya (2001); Tervo et al.
(2007); Dua et al. (2008), control theory was applied to
cancer therapies. These control strategies require to con-
sider mathematical modeling of tumor growth. Such mod-
eling studies were developed in Fischer (1971); Thompson
and Brown (1987); Adam and Bellomo (1997); Drasdo and
Höhme (2005). The growth models proposed were most of
time kinetic and not dynamic. The effect of input variables
on the growth response, like the damage caused by the
treatment, was not explicitly taken into account. In this
control framework, the mathematical model of the system
must be simple enough so that it can be analyzed with
available mathematical techniques, and accurate enough
to describe the important aspects of the relevant dynam-
ical behavior. Moreover, size of the tumor growth data
sets is generally small which reasonably limits the model
complexity. The first problem addressed herein is thus to
determine a dynamic model structure able to correctly fit
dynamics of tumors and simple enough to be used in a
control perspective.

The second main issue is the inter-individual variability
of treatment responses. Indeed, in vitro as well as in vivo
experiments are always repeated to assess the reproduc-
tiveness degree of the experimental responses. Quantifying
the inter-individual variability of the model parameters is a
crucial point, in particular in the analysis of the biological
model. The problem is not to identify one biological system
but a batch of similar biological systems. The associated
inference problem is based on longitudinal data, i.e. data
observed over subjects as well as time. A first modeling
approach consists in estimating as many models as the
number of subjects, and then to statistically compute the
empirical distribution of the model parameters. The main
drawback of this approach is to increase the parameter-
to-observation ratio. Another approach is to use mixed
effects models. The latter have been largely employed for
the identification of static systems but their use in dy-
namic system identification problems is much more recent
(Lindstrom and Bates (1990); Samson et al. (2006, 2007)).

A third typical problem in experimental biology is to
assess the effects of biological factors on the model pa-
rameters. In other terms, that consists to identify some
deterministic causes of the response variability and their
influence degree. Some of these factors can be continuous
or categorical. In this application, the treatment mode
(radiotherapy and combined chemotherapy-radiotherpy) is
considered as a categorical factor.



In this paper, the system identification of treated tumor
growth described by a mixed model from in vivo longi-
tudinal data sets is proposed. The analysis of the mixed
model is performed using the Monolix 1 software. A basic
model structure of tumor growth based on cell population
dynamics, completed by a treatment function, is proposed
in section 2. The mixed effect model is presented in sec-
tion 3. The experimental setup and estimation data sets
are described in section 4. The SAEM algorithm used for
the identification of mixed effects models is presented in
section 5. Identification results are then shown and a dis-
cussion is held in section 6. Conclusions and perspectives
of this work are drawn in section 7.

2. DETERMINISTIC TUMOR GROWTH MODELING

Table 1. Main notations

Symb. Description

t time
v(t) model output (explained volume)
y(t) measured volume of the tumor
x(t) number of cancer cells of the tumor
xn(t) number of cells born during [0; t]
xm(t) number of dead cells during [0; t]
u(t) undergone damage induced by the treatment
δ(t) Dirac delta function (impulse)

x0 initial number of cells (in the graft)
d number of parameters
Θ vector of the model parameters in R

d

n number of observation
r number of repeated experiments

2.1 Non treated tumor: an autonomous system

A tumor can be regarded as a population of cancer cells.
Its growth may then be described by a model of cell
population dynamics defined by

x(t) = xn(t) − xm(t) (1)

ẋn(t) = fn

(
x(t)

)
(2)

ẋm(t) = fm

(
x(t), u(t)

)
(3)

xn(0) = x0 and xm(0) = 0. (4)

fn(·), fm(·) are two mathematical functions associated
with usual growth models presented in Walter and Lam-
precht (1978) and Thompson and Brown (1987). One of
the most commonly used growth model is probably the
Malthusian model, sometimes called the simple exponen-
tial growth model, in which reproduction and mortality are
supposed to be proportional to the total number of cells
(x) in the tumor. In this case, reproduction and mortality
dynamics are defined by

ẋn(t) = ax(t) (5)

ẋm(t) = bx(t). (6)

The model output variable v is the tumor volume and is
defined as proportional to the number of cancer cells in
the tumor,

v(t) = γ x(t). (7)

1 Monolix (MOdèles NOn LInéaires à effets miXtes) is a software
dedicated to the analysis of nonlinear mixed effects models. It
is designed for academic and industrial researchers or engineers,
concerned with the analysis of longitudinal data in various fields.
Monolix is developed by the Monolix group and is implemented in
Matlab c©. http://www.monolix.org
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Fig. 1. Two consecutive phenomena: therapy and tumor
growth

Solution of these differential equations is given by

v(t) = v0 eα t = f0(t) ∀t ≥ 0 (8)

where v0 = γ x(0) is the initial volume of the tumor. This
equation describes the autonomous or natural mode of a
(non treated) tumor growth. The parameter α = a − b is
related to the mean frequency of the cancer cell cycle, and
is defined positive. In other terms, a tumor is an unstable
system. The vector of unknown parameters for this model
is Θ = (v0, α).

2.2 Treated tumor: a controlled system

The anti-cancer treatment effect on the tumor volume is
described by a dynamical function added to (8) to give

v(s) =
v0

(s − α)
−

ν

s (s + ν)
e−τ su(s), (9)

where s is the Laplace variable. The first part of this
equation describes the natural behavior of the tumor
(equation (8)) while the second one corresponds to the
forced mode (treatment effect). ν is a positive parameter
related to the damage propagation velocity associated with
the anti-cancer treatment. τ denotes a time delay between
the end of the treatment and the beginning of its effects
on the tumor size. u(s) represents the undergone damage
variable. In practice, u is not exactly an input variable
since it cannot be directly controlled. Indeed as shown in
Figure 1, u is the consequence (i.e. the output variable)
of another process (radiation process for the radiotherapy,
chemical process for the chemotherapy and photoreaction
process for the photodynamic therapy) which is controlled
by treatment factors (essentially doses). This preliminary
process is not considered in this study since our objective
is to model the general behavior of a tumor after any kind
of treatment. Moreover, the damage variable u cannot be
measured online, i.e. without stopping the tumor growth
(mouse sacrifice), which makes the tumor growth model-
ing from experimental data a blind system identification
problem. However, one realistic assumption about u can
be stated. In practice, damage induced by the treatment
are caused during a short period of time (typically <1h)
compared to the response time of the tumor growth dy-
namics (about several ten-day periods). As a consequence,
u(t) may be approached by a Dirac pulse, u(t) = u0 δ(t)
where u0 denotes the magnitude of tumor damage caused
by the treatment. After application of the inverse Laplace
transform to (9) with u(s) = u0, we get

v(t) = f0(t) − fu(t), (10)

with:

f0(t) = v0 eα tH(t) (11)

fu(t) = u0

(
1 − e−ν(t−τ)

)
H(t − τ). (12)

H(t) =
∫ t

−∞
δ(z)dz is the Heaviside step function. Here-

after, the value of the explained volume vi(tj) of the



subject (mouse tumor) i observed at time tj will be noted
vij to simplify reading. Θ = (v0 u0 α ν τ) is the vector of
unknown model parameters.

3. MIXED EFFECTS MODEL

In practice, i.e. in in vivo context, uncertainty about the
tumour growth is large and comes from several sources.
Main causes are probably measurement errors, model-
ing approximations and biological variability, i.e. inter-
individual and uncontrolled variations of the response.
Indeed, one particularity in experimental biology is the
repetition of experiments on similar subjects in order to
assess reproducibility of results. In this context, inter-
subject variations of responses are unavoidable and system
identification becomes an inference problem from longitu-
dinal data. The inference problem is not based on time
series only but on longitudinal data (observed over time as
well as over subjects). This particular issue can be solved
by using mixed effects models. In our case, the mixed
model of the tumor growth is given by:

yij = vij(Θi) + a eij with eij ∼i.i.d. N (0, 1) (13)

where yij ∈ R is the jth observation (measured volume)
of subject i, 1 ≤ i ≤ r with r the number of subjects
(repeated in vivo experiments), and 1 ≤ j ≤ ni with ni

the number of observations (time points) of subject i. As
previously presented, vij is the jth model output value
(defined in (10)) of subject i. eij is the within-group error.
To deal with the inter-individual variability, the vector Θi

of individual random parameters is decomposed in fixed
and random effects:

Θi = λ+ β ci + ηi with ln(ηi) ∼i.i.d. N (0, Ω) (14)

λ is an unknown vector of length d, composed of the
nominal or mean values of the model parameters. β is an
unknown vector of coefficients. ci is a categorical covariate
associated with the treatment mode, that takes the value
1 for radiotherapy and 2 for a combined chemotherapy-
radiotherapy. Fixed effects are defined in µ = (λ, β). ηi

denotes a vector of random effects. It is supposed that
eij and ηij are mutually independent. Ω is the covariance
matrix of the random effects and is defined herein as a
diagonal matrix. Accordingly, the lth individual parameter
θil of subject i can be decomposed as

θil = λl + βl ci + ηil with ln(ηil) ∼i.i.d. N (0, ω2
l ) (15)

where ω2
l = Ω(l, l). Finally, the model hyper-parameters

to estimate from experimental data are gathered in ψ =
(µ, Ω, a).

4. ESTIMATION METHOD BY THE SAEM
ALGORITHM

The parameter estimation of nonlinear mixed model is
complex: the likelihood has no closed form because of
the nonlinearity of the regression function in the indi-
vidual parameters. Let us denote y = (yij)1≤i≤r,1≤j≤ni

the vector of whole data. The Expectation-Maximization
(EM) algorithm is a classical approach to estimate pa-
rameters of models with non-observed or incomplete
data, Dempster et al. (1977). For non-linear mixed mod-
els, the non-observed vector is the individual parame-
ter vector Θ = (Θ1, . . . ,Θr) and the complete data
of the model is (y,Θ). Let us define the function

Q(ψ|ψ′) = E(Lc(y,Θ;ψ)|y;ψ′), where Lc(y,Θ;ψ) is the
log-likelihood of the complete data. At the m-th iteration
of the EM algorithm, the E step is the evaluation of

Qm(ψ) = Q(ψ | ψ̂m), whereas the M step updates ψ̂m

by maximizing Qm(ψ). For cases in which the E step
has no analytic form, Delyon et al. (1999) introduce a
stochastic version of the EM algorithm that evaluates the
integral Qm(ψ) by a stochastic approximation procedure.
The authors prove the convergence of this SAEM algo-
rithm under general conditions if Lc(y,Θ;ψ) belongs to a
regular curved exponential family:

Lc(y,Θ;ψ) = −Λ(ψ) + 〈S(y,Θ), Φ(ψ)〉,

where 〈., .〉 is the scalar product and S(y,Θ) is the
minimal sufficient statistic of the model. The E step is
then divided into a simulation step (S step) of the non-

observed data Θ(m) under the conditional distribution
p(Θ|y; ψ̂m) and a stochastic approximation step (SA step)

of E
(
S(y,Θ)|ψ̂m

)
:

sm+1 = sm + γm(S(y,Θ(m)) − sm), (16)

using (γm)m≥0 a sequence of positive numbers decreasing

to 0. The M step is thus the update of the estimate ψ̂m:

ψ̂m+1 = argmax
ψ

(−Λ(ψ) + 〈sm+1, Φ(ψ)〉) .

For non-linear mixed models, the simulation step is com-
plex because the posterior distribution p(Θ|y;ψ) has no
analytical form. In this case, a Monte Carlo Markov Chain
is used to simulate Θ. At the m-th iteration, the S

step is the simulation of Θ(m) with use of a Metropolis-
Hastings algorithm which constructs a Markov Chain,

with p(Θ|y; ψ̂m) as the unique stationary distribution (see
Kuhn and Lavielle (2005) for more details). Kuhn and
Lavielle (2005) prove that under general hypotheses, the

sequence (ψ̂m)m≥0 obtained by the SAEM-MCMC algo-
rithm converges almost surely towards a (local) maximum
of the likelihood. This algorithm is implemented in the
Monolix software.

5. EXPERIMENTAL SETUP

5.1 Output variable

In practice, the tumor volume is estimated from the
measurement by an electronic caliper of two distances d1

and d2 which are supposed to be the small and large
axis of an ellipse respectively. The depth axis of the
ellipsoid tumor is not accessible to the experimenter. The
estimation formula of the tumor volume is then given by

y =
d2 d2

1

2
with d1 < d2. (17)

5.2 Material and method

Female nude mice were used for tumor implantation. The
model of human malignant glioma was obtained using
U87 cells, xenografted in mice. Treatments started when
tumors reached a volume of 250± 50 mm3 and were based
on the combination of topotecan (daily intraperitoneal
injection of 0.15µg/g, 5 days/week) with ionising radiation
(2 Gy/day, 5 days/week) delivered for four weeks. The
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Fig. 2. Longitudinal data sets: tumor volume responses,
(a) the control group, (b) radiotherapy group, (c)
combined chemotherapy-radiotherapy group

complete biological and medical protocol is defined in Pinel
et al. (2006). Measurements were carried out until tumors
reached a size of 2cm3, at which time mice were sacrificed
by cervical dislocation.

In this study, the system identification of anticancer re-
sponses is decomposed into two successive parts. In a
first step, the autonomous growth model (f0, see (8)),
composed of two parameters v0 and α, is identified from
the control data set. No covariate is included in this case.
Secondly, parameters or more exactly hyper-parameters
of the treated tumor model (f0 and fu, see (10)) are esti-
mated from the treated data set. The treatment covariate
(radiotherapy / combined therapy) is then included. The
two identification steps were carried out with Monolix.

5.3 In vivo data sets

In vivo kinetic responses of the tumor volume for the con-
trol and the two treated groups are presented in Figure 2.
The control data set contained 15 kinetic responses while
the treated data sets were composed of 7 responses.

6. IDENTIFICATION RESULTS

6.1 Identification of the natural tumor growth

Identification results of the natural tumor growth, ob-
tained from the control data set, are presented in Table 2.
s.e and r.s.e mean the empirical standard deviation and the
empirical variation coefficient respectively. ωv0

and ωα are
two diagonal elements of the covariance matrix Ω, defined
in (14). Figure 3 presents a scatterplot of the observed
values with the median predicted response and its 90% pre-
diction interval. The prediction interval is computed with
the population parameters in the sample. Some estimated
responses using the population parameters and the indi-
vidual parameters are exhibited in Figure 4 and compared
with measured responses. Figure 5 displays the empirical
distributions of the population and individual weighted
residuals (PWRES and IWRES respectively). Quantile-
quantile plots are also indicated to assess the gaussian
assumption about the output residual (see equation (13)).

Table 2. Estimation results (control group)

parameter estimate s.e. r.s.e.(%)

v0 339 19 6

α 0.121 0.0038 3

ωv0
0.193 0.038 20

ωα 0.0575 0.039 69

a 130 8.5 7
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Fig. 3. Predicted response and 90% uncertainty interval
(control group)
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Fig. 4. Measured (+) and estimated responses using the
population parameters (· − ·) and the individual pa-
rameters (−) (control group)

6.2 Identification of the treated tumor growth

Identification results of the two treated groups (radiother-
apy and combined-therapy) are presented in Table 3. β are
the coefficients of the treatment covariate. Note in bold
text in Table 3 that uncertainty about u0 and ν is too
large to consider these estimates as relevant. This result
mainly puts into question the choice of the model structure
and particularly the dynamical part associated with the
treatment. Four estimated responses using the population
parameters and the individual parameters are exhibited
in Figure 6 and compared with measured responses. It
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Fig. 5. Empirical distributions of the population and
individual weighted residuals and quantile-quantile
plots (control group)

is shown that the delayed treatment effect is correctly
fitted. Figure 7 displays the empirical distributions of
the population and individual weighted residuals and the
quantile-quantile plots. As for the control group, there is
no significant fact to reject the Gaussian hypothesis about
the output residual distribution. Figure 8 displays the em-
pirical distributions of four model parameters (v0, α, u0, τ)
for the two treated groups.

Table 3. Estimation results (treated group)

parameter est. value s.e. r.s.e.(%)

v0 386 34 9

βv0
(CAT 2) -0.293 0.13 44

α 0.0578 0.004 7

βα (CAT 2) 0.732 0.096 13

u0 1.6e+04 1.4e+05 893

βu0
(CAT 2) -159 6.4e+03 4.02e+03

ν 0.00774 0.071 916

τ 21.4 1.3 6

βτ (CAT 2) -0.51 0.089 17

ωv0
0.18 0.046 25

ωα 0.099 0.037 38

ωu0
12.9 3.4e+07 2.61e+08

ων 0.442 4.1 930

ωτ 0.129 0.036 28

a 118 7.8 7

7. DISCUSSION

Three main points emerge from these estimation results:

• the intracellular damages caused by the anticancer
treatment cannot be measured on-line, i.e. without
a mouse sacrifice before the end of the experiment.
Estimating u0 from in vivo data allows to quantify
the damage amount. According to Figure 8 and the
empirical distribution of u0, alterations caused by
the combined-therapy are more important than the
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Fig. 6. Measured (+) and estimated responses using the
population parameters (−) and the individual param-
eters (· − ·) (treated groups)
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Fig. 7. Empirical distributions of the population and
individual weighted residuals and quantile-quantile
plots (treated groups)

ones due to the radiotherapy only. However, since
the estimated values of u0 are very uncertain, this
remark should be considered with great care, analysis
on more subjects could confirm this fact in the future;

• the anticancer treatment effect on the tumor volume
response is well fitted by the proposed model. Two
parameters: ν and τ of the treatment function fu are
meaningful. The first one (ν) denotes the rate of the
volume decrease caused by the treatment. The second
one (τ) informs about the growth delay due to the
treatment. Like u0, the ν estimate is very uncertain
while τ is more accurately estimated. The empirical
distribution of τ confirms that the combined therapy
increases the treatment time delay compared to the
radiotherapy. ν and τ describe the most noticeable
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Fig. 8. Estimated distributions of the main model parame-
ters (1:− combined-therapy group, 2:−− radiotherapy
group, )

effect of the therapy on the tumor volume response,
but another effect is perceptible in these estimation
results;

• indeed, by comparing the empirical distributions of α
for the control and treated groups, it clearly appears
a significant decrease of its value. The minimum
value of α is obtained for the combined-therapy. In
other words, this anticancer treatment also slows
down the cycle frequency of the cancer cells before to
potentially decrease the tumor volume as previously
described.

8. CONCLUSION

Empirical modeling of tumor growth from in vivo lon-
gitudinal data sets was investigated in this paper. The
proposed dynamical model structure is composed of two
parts associated with autonomous and forced regimes,
composed of two and three parameters respectively. Inter-
individual variability of the tumor growth responses is
taken into account by introducing mixed effects into the
parametric model. The parameter estimation is carried
out by an expectation maximization algorithm based on
a stochastic approximation and implemented in Monolix,
a free Matlab software. The proposed model showed a
good fit of the tumor volume responses. However, the
large uncertainty on two parameters put into question the
treatment part of the model structure. Nevertheless, the
estimated distributions of the other parameters clearly
pointed out two specific consequences of the treatments
(radiotherapy and combined radiotherapy-chemotherapy)
on the tumor growth responses. The first effect is a quasi-
instantaneous slowing down of the cancer cell cycle. The

second therapeutic action is a delayed decrease of the tu-
mor volume. Perspectives drawn from these results mainly
concern model-based control in oncology.
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