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Abstract

This article addresses the optimal choice of the waiting period (or timeout) that a de-
vice should respect before entering sleep mode, so as to optimize a trade-off between power
consumption and user impact. The optimal timeout is inferred by appropriate statistical
modeling of the times between user requests. In a first approach, these times are supposed
independent, and a constant optimal timeout is inferred accordingly. In a second approach,
some dependency is introduced through a hidden Markov chain, which also models spe-
cific activity states, like business hours or night periods. This model leads to a statistical
framework for computing adaptive optimal timeout values. Different strategies are assessed
using real datasets, on the basis of the power consumption, user impact and the frequency
of wrong decisions.

1 Introduction

The goal of this study is to determine a policy based on the analysis of user behavior achieving
a compromise between low power consumption of devices and limited user impact. We primarily
describe this with respect to the behavior of printers, however similar policies could also be
applied to other devices such as disk drives and displays. Currently, in most printers the time
period to wait before entering sleep mode is either set by the administrator or predefined by
the device manufacturer according to Energy Star1 environmental standards. Today, Energy
Star criteria do not take into account observed printer usage patterns. Those criteria rather set
power consumption requirements depending on the device features (e.g. functionalities, estimated
volume) and marking technology type (e.g. laser, solid ink, inkjet). In this paper, observed
printer usage patterns are taken into account through the sequence of print job submissions
(referred to as the print process). We model a device having several modes with different power
consumptions. For a printer, these might correspond to:

∗Corresponding author – Jean-Baptiste.Durand@inrialpes.fr
1 http://www.energystar.gov
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Print mode The device activates its marking engine, print path and controller and completes
any print requests. Power consumption is typically the highest in this mode.

Idle mode The device is ready to print immediately and therefore a certain power consumption
is required to maintain the device in a state of readiness.

Sleep modes The device is not ready to print immediately, which induces a delay between
the user request and the actual beginning of the print job. These modes are sometimes referred
to as standby or power-save modes. Depending on the printer, one or several such modes are
available. Power consumption is typically the lowest in one of these sleep modes.

The difference in power consumption between idle mode and sleep modes is often as large as
40%. Power consumption due to transitions between modes depends on the printing technology
(e.g. laser, solid ink) and is usually larger than the power consumption in idle mode. In the
sequel, the transition from sleep modes to idle mode is referred to as wake-up while the transition
from idle mode to sleep modes is referred to as shutdown. From the consumption point of view,
the device features are summarized by the power consumption in each of these modes as well as
the energy required to switch between these modes. Therefore, our goal amounts to inferring the
optimal inactivity interval (or timeout period) before entering into sleep modes, given both the
device power consumption model and observed usage patterns.

1.1 Consumption model and notations

Our approach relies on the following assumptions. Firstly, assuming that each print request is
processed as soon as possible, the power consumption during print jobs is independent on the
timeout period. Secondly, power consumptions during idle and sleep modes are supposed to be
constant. Finally, printing, shutdown and wake-up transitions are supposed to be instantaneous.
Therefore, the optimization focuses on the power consumption in idle and sleep modes and on
the energy consumption of the associated transitions. Two kinds of transition are assumed on
the printer:

• Transitions from one mode to the sleep mode with closest lower consumption.

• Transitions from one sleep mode to idle mode.

In reality, power consumption often takes the form of a series of pulses, as it is typically
thermostatically controlled. Since the timing of these pulses is hard to predict, we assume a
time-average power consumption for each mode. Figure 2 illustrates a real printer consumption
(Xerox Phaser 4500 with a single sleep mode) during 5 minutes of use (between 11 am and 11:05
am) and the corresponding power consumption model.

In this paper, we denote by:

• m the number of sleep modes,

• a the power consumption in idle mode (Watts),

• bj the power consumption in sleep mode j (Watts),

• cj the energy required to switch from sleep mode j − 1 to sleep mode j (Joules),

• dj the wake-up energy required to switch from sleep mode j to print mode (Joules),
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Figure 1: Possible transitions between idle and sleep modes.

with j = 1, . . . , m. Note that, in the above notations, sleep mode 0 corresponds to idle mode,
and thus one can define b0 = a. These notations are illustrated in Figure 1.

We limit ourselves to timeout strategies consisting in waiting a duration τ (j) from the latest
print onward, before switching into mode j. Since each print request must be processed imme-
diately, the actual switch only occurs if the time between latest print job completion and the
following print request is larger than τ (j). This requires that the sequence (τ (1), . . . , τ (m)) is
increasing. It is also assumed that the sequence (b0, . . . , bm) is decreasing, which implies that
mode j is only reachable from mode j − 1.

Figure 2: Top: Real power consumption of a printer (between 11 am and 11:05 am). During this period,
the device switches between 4 different states: sleep, wake-up, print and idle modes. Bottom:
simplified consumption model.

1.2 Related work

The issue of power saving strategies has already been addressed in several works. Although most
of them present a very general framework for power management, their applications mainly
focus on hardware device (e.g. CPU, monitors, hard disk drives). A wide range of approaches
are compared in [17], using the following typology of methods:

Timeout A timeout period is fixed either using a quantile of the residual time before next
request, or using a parametric function of times between the last two requests and / or request
and timeout [8, 12, 17, 4].

L-shape This is a variant of timeout approaches dedicated to request patterns where short
busy periods tend to be followed by a long idle period [24].

Exponential average This approach relies on a prediction of next idle period, based on an
average of the previous idle periods with exponential weights [14].
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Stochastic model These methods aim at finding an optimal probability distribution for the
different actions to perform, given the past actions, states of the system and the expected power
consumption for each action. The different levels of consumption are related to the notion of
state. These approaches mainly rely on the theory of Markov decision processes [25] or their
different variants (continuous time, semi-Markov or piecewise homogeneous Markov processes).

Competitive algorithm A c-competitive power saving algorithm is such that the power con-
sumption is less than c times that of an oracle algorithm [16]. An oracle algorithm considers all
random variables, including future observations, as known, and achieves the minimal possible
power consumption.

Learning tree Adaptive learning trees transform sequences of idle periods into discrete events
and store them in tree nodes. They predict idle periods using finite-state machines. This is
similar to branch prediction used in microprocessors and selects a path which resembles previous
idle periods. At the beginning of an idle period, a learning tree determines an appropriate
sleeping state; this algorithm is capable of controlling multiple sleeping states [7].

Our method belongs to the category of stochastic models, and combines the principles of
continuous time modeling, piecewise identically distributed times between requests and Markov
decision processes.

In [2], a function of a homogeneous Markov process with discrete time and discrete state
space is used to model the sequences of requests. The states represent different levels of requests
of the device. Markov processes are directly used to model completions of those requests (or
service process), request queues, and decisions. The system performance is also assessed, based
on the waiting time before request completion, and on the number of requests in the queue. In
this context, a strategy is optimal if and only if it minimizes a function of the future expected
power consumption under a performance constraint (where the notions of power consumption
and performance can easily be exchanged). This optimization problem can be seen as a linear
programming optimization problem. Thus, an exact optimal solution can be found in polynomial
time with respect to input length (the input includes the number of actions, states, the number
of requests per time and the queue length).

An extension of this work was proposed in [6] to take into account possible violation of the
homogeneity assumption. This is addressed by a piecewise homogeneous Markov request process.
This work was further extended in [23] and [3] using semi-Markov processes for modeling the
dynamics of the states and events (typically the requests). These extensions are still discrete-time
approaches. Continuous-time models were proposed in [19] to represent the requests process (by
a homogeneous Poisson process), the service process and its queue (by Markov processes with
discrete state space). This paper does not provide details about an algorithm to find a solution
to the optimization problem. In [21], the requests process is modeled by a Markov-modulated
Poisson process.

In [26], the decision is based on classification algorithms (logistic regression, k-nearest-neighbors
or classification trees). A sample of vectors is used to train the system. This vector is composed
of characteristics that reflect the state of activity of the user, and in the learning set, the action
to perform (turn the device on or off). The time since last request of the device was also added
to the vector of characteristics. This approach is compared with a so-called “timeout-based
strategy” as defined in [17]. All those approaches take into account the system performance to
assess the quality of the method for a given value of power saving, except [19]. In the context of
power management for printers, the duration of a CPU cycle is negligible compared to the time
between requests. Therefore, a continuous-time model is a natural way to model the request
process.
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In Section 2, we present a stochastic model for the requests that extends the piecewise ho-
mogeneous Markov process presented in [6]. A method is derived for optimally updating the
timeout period after each request in the case of one single sleep mode. The results are extended
to an arbitrary number of sleep modes. Then a model is proposed for assessing user impact.

In Section 3, particular processes are considered to model the request process: independent
models, or hidden Markov models to account for possible temporal heterogeneity. We pay par-
ticular attention to parametric models which allow fast update of the timeout. For independent
Weibull or Pareto-distributed times between requests, an explicit formula is provided for the op-
timal timeout. More generally, the optimal timeout is the solution of a non-linear equation that
depends on the model parameters, as estimated by maximum likelihood. If the solution has no
closed form, it can be approximated by numerical methods. In Section 4, two methods are pro-
posed for the comparison of power management strategies. The former is based on out-of-sample
prediction of power consumption under different policies. The latter is based on the number
of wrong decisions of both types, and on the numbers of shutdowns. The results highlight the
good performance of the method based of a fixed timeout period, computed from a parametric
statistical model. Real-world implementation as well as possible extensions or alternatives to our
approach are provided in the discussion. Proofs are postponed to the Appendices A and B. In
Appendix C, we show how our approach is related to the theory of Markov decision processes.

2 Stochastic model

The print process model is a particular case of a point process, similar to some reliability models,
see for instance [20], Chapter 7. In our framework, the failure sequence is replaced by the print
request sequence {Ti}i≥1, with the convention T0 = 0 and where i denotes the index of the print
request. Equivalently, the print process can be described by

• {Xi}i≥1, where Xi = Ti − Ti−1 is the time between the (i− 1)th and the ith print request,

• {Nt}t≥0, the counting process of print requests, where ∀t ∈ R+, Nt = max{i ∈ N; Ti ≤ t}
is the cumulative number of print requests between 0 and t.

As a consequence of the previous assumptions, the process {Nt}t≥0 is simple: there cannot be
more than one print request at a time with probability 1. The print process is depicted in
Figure 3. In the next section, we limit ourselves to a single-sleep-mode printer. This approach is
then extended to several sleep modes in Section 2.2 and to the quantification of the user impact
in Section 2.3.

Figure 3: Print Process
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(a) When Xi ≤ τ
(1)
i

(b) When Xi > τ
(1)
i

Figure 4: Energy consumption between Ti−1 and Ti according to the position of Ti−1, Ti and Ti−1 + τ
(1)
i

2.1 Single sleep mode

We consider a framework with one sleep mode, so that m = 1, where the timeout period τ (1) may

be updated after each print request i. Consequently, this timeout period will be denoted by τ
(1)
i .

Given a probabilistic model for the print process {Xi}i≥1, we aim at optimizing over τ
(1)
i the ex-

pectation of the energy consumption, given the past of the print process X1:i−1 := (X1, . . . , Xi−1),
between two successive print jobs i − 1 and i. To compute this energy consumption, two cases
arise:

a) Either the time Xi between two successive printings is larger than τ
(1)
i . Then the printer

stays in idle mode for τ
(1)
i before switching into sleep mode. After a delay Xi−τ

(1)
i , the print job

is processed and the printer returns to idle mode j = 0. Consequently, the energy consumption

in this case is aτ
(1)
i + c1 + b1(Xi − τ

(1)
i ) + d1.

b) Or Xi is smaller than or equal to τ
(1)
i . Then the printer stays in idle mode for Xi before

processing the job. Consequently, the energy consumption in this case is aXi. These two cases
are illustrated in Figure 4.

The expected consumption between two successive printings is derived in Lemma 1 below.
Let fXi|X1:i−1

be the probability density function (pdf) of Xi given X1:i−1, F̄Xi|X1:i−1
be its

survival distribution function, and

zXi|X1:i−1
(x) =

fXi|X1:i−1
(x)

F̄Xi|X1:i−1
(x)

be the failure rate function in reliability theory [1], Chapter 2. In our case, it can be interpreted as
a printing rate function. We also define the asymptotic printing rate ℓi = limx→+∞ zXi|X1:i−1

(x)
and ∆t1 = (c1 + d1)/(a − b1). In a static analysis of the printer energy consumption, ∆t1 is
the time after which switching into sleep mode is less expensive than staying in idle mode (see
Figure 5). This is frequently called the break-even time.
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Lemma 1 The expected consumption between two successive printings given X1:i−1 is:

E(h(Xi, τ
(1)
i )|X1:i−1) = aE(Xi|X1:i−1)

+ (a − b1)F̄Xi|X1:i−1
(τ

(1)
i )(∆t1 + τ

(1)
i )

− (a − b1)

∫ +∞

τ
(1)
i

xfXi|X1:i−1
(x)dx.

Formally, an optimal timeout period is defined by:

τ̂
(1)
i ∈ arg min

τ
E(h(Xi, τ)|X1:i−1) (1)

and can be computed based on the following result.

Proposition 1 Two situations are examined, depending on the behavior of the printing rate
function.
a) Suppose that the printing rate function zXi|X1:i−1

(x) is decreasing in x. Three cases occur:

• If 1/∆t1 < ℓi, then τ̂
(1)
i = +∞.

• If ℓi ≤ 1/∆t1 ≤ zXi|X1:i−1
(0), then τ̂

(1)
i is the unique solution of zXi|X1:i−1

(τ̂
(1)
i ) = 1/∆t1.

• If zXi|X1:i−1
(0) < 1/∆t1, then τ̂

(1)
i = 0.

b) Suppose that zXi|X1:i−1
is increasing or constant. Four cases occur:

• If 1/∆t1 < zXi|X1:i−1
(0), then τ̂

(1)
i = +∞.

• If zXi|X1:i−1
(0) ≤ 1/∆t1 ≤ min (ℓi, 1/E(Xi|X1:i−1)), then τ̂

(1)
i = +∞.

• If max
(

zXi|X1:i−1
(0), 1/E(Xi|X1:i−1)

)

< 1/∆t1 ≤ ℓi, then τ̂
(1)
i = 0.

• If ℓi < 1/∆t1, then τ̂
(1)
i = 0.

Figure 5: Graphical interpretation of ∆t1
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It appears that three situations are possible. Either the times between printings are so small on

average that the printer should not enter sleep mode (τ̂
(1)
i = ∞), or they are large on average, and

the best strategy is to enter sleep mode immediately (τ̂
(1)
i = 0). The intermediate case provides

non-degenerate optimal timeouts defined by the equation zXi|X1:i−1
(τ̂

(1)
i ) = 1/∆t1. This result

highlights the separate roles of the printer characteristics (summarized by ∆t1) and the user
behavior (modeled through the printing rate function zXi|X1:i−1

).

2.2 Multiple sleep modes

The aim of this section is to extend to multiple sleep mode printers, the results derived for
single-mode printers. As in the previous paragraph, each timeout period τ (j) may be updated

after each print request i and will be denoted by τ
(j)
i . To compute the energy consumption, three

cases are considered.
a) If the time Xi between two successive printings is smaller than τ

(1)
i , then the printer stays

in idle mode for Xi before processing the job. Consequently, the energy consumption in this case
is aXi.

b) If Xi is larger than τ
(1)
i and smaller than τ

(m)
i , then the printer stays in idle mode for

τ
(1)
i before switching into the first sleep mode. Afterward, the printer successively switches into

the r following sleep modes where r is such that τ
(r)
i < Xi < τ

(r+1)
i . The time spent in each

sleep mode is τ
(j)
i − τ

(j−1)
i if 2 ≤ j ≤ r − 1 and Xi − τ

(j)
i if j = r. Consequently, the energy

consumption in this case is aτ
(1)
i +

∑r−1
j=1(cj + bj(τ

(j+1)
i − τ

(j)
i )) + cr + br(Xi − τ

(r)
i ) + dr.

c) Finally, if Xi is larger than τ
(m)
i , then the printer stays in idle mode for τ

(1)
i before switching

into the first sleep mode. Afterward, the printer successively switches into the m sleep modes.

As in the previous case, the time spent in each sleep mode is τ
(j)
i − τ

(j−1)
i if 2 ≤ j ≤ m − 1

and Xi − τ
(j)
i if j = m. Consequently, the energy consumption is aτ

(1)
i +

∑m−1
j=1 (cj + bj(τ

(j+1)
i −

τ
(j)
i ))+ cm + bm(Xi − τ

(m)
i )+dm. Introducing ∆tj = (cj +dj −dj−1)/(bj−1− bj) for j = 1, . . . , m

with the conventions b0 = a and d0 = 0, we have:

Lemma 2 The expected consumption between two successive print requests given X1:i−1 is:

E(h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1) = aE(Xi|X1:i−1)

+

m
∑

j=1

(bj−1 − bj)F̄Xi|X1:i−1
(τ

(j)
i )(∆tj + τ

(j)
i )

−

m
∑

j=1

(bj−1 − bj)

∫ +∞

τ
(j)
i

xfXi|X1:i−1
(x)dx.

It is remarkable that the expected energy consumption is expanded as the sum of m terms, each of

them depending on one and only one timeout. Thus, the minimization of E(h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1)

with respect to (τ
(1)
i , . . . , τ

(m)
i ) can be split into m optimization problems leading to explicit op-

timal timeouts.

Proposition 2 Two situations are examined, depending on the behavior of the printing rate
function.
a) Suppose that the printing rate function zXi|X1:i−1

(x) is decreasing in x. For each j = 1, . . . , m
three cases occur:

• If 1/∆tj < ℓi, then τ̂
(j)
i = +∞.
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• If ℓi ≤ 1/∆tj ≤ zXi|X1:i−1
(0), then τ̂

(j)
i is the unique solution of zXi|X1:i−1

(τ̂
(j)
i ) = 1/∆tj.

• If zXi|X1:i−1
(0) < 1/∆tj, then τ̂

(j)
i = 0.

b) Suppose that zXi|X1:i−1
is increasing or constant. For each j = 1, . . . , m four cases occur:

• If 1/∆tj < zXi|X1:i−1
(0), then τ̂

(j)
i = +∞.

• If zXi|X1:i−1
(0) ≤ 1/∆tj ≤ min (ℓi, 1/E(Xi|X1:i−1)), then τ̂

(j)
i = +∞.

• If max
(

zXi|X1:i−1
(0), 1/E(Xi|X1:i−1)

)

< 1/∆tj ≤ ℓi, then τ̂
(j)
i = 0.

• If ℓi < 1/∆tj, then τ̂
(1)
j = 0.

2.3 Modeling user impact

In reality, transitions between sleep and idle modes may delay printing. The more frequently
the system switches between sleep and idle modes, the more the user will be impacted. We
thus propose to model this impact by a penalty term in the energy consumption. For the
sake of simplicity, let us consider the case of a single-sleep-mode printer. We further assume
that the user impact is proportional to the number of shutdown transitions. With such a

model, the consumption between two successive print requests h(Xi, τ
(1)
i ) is replaced by the

cost g(Xi, τ
(1)
i ) = h(Xi, τ

(1)
i ) + δ11

{Xi>τ
(1)
i

}
, where δ > 0 is the weight assigned to user impact in

the energy consumption. The expected consumption including this user impact is given in the
next Lemma.

Lemma 3 The expected penalized consumption between two successive print requests given X1:i−1

is:

E(g(Xi, τ
(1)
i )|X1:i−1) = aE(Xi|X1:i−1)

+ (a − b1)F̄Xi|X1:i−1
(τ

(1)
i )(∆̃t1 + τ

(1)
i )

− (a − b1)

∫ +∞

τ
(1)
i

xfXi|X1:i−1
(x)dx

with ∆̃t1 = (c1 + d1 + δ)/(a − b1).

It turns out that penalizing the consumption by the number of shutdowns can be interpreted as
increasing the transition consumption c1 + d1 by δ. As a consequence, Proposition 1 still holds
with ∆t1 replaced by ∆̃t1. In particular, when the printing rate is a decreasing function and

there is a non-degenerate optimal timeout period such that zXi|X1:i−1
(τ̂

(1)
i ) = 1/∆̃t1, the optimal

timeout period is an increasing function of δ. Moreover, this property also allows user impact to
be accounted for in the break-even time. In practice, ∆̃t1 can be seen as the optimal timeout if
Xi follows a particular Pareto distribution – see Section 3.1.

3 Modeling the print process

According to the previous Section, the optimal timeout period depends on the model for the
print process through the printing rate function. Four different print process models are proposed
hereafter. In the first three approaches, times between printings are supposed independent. In
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the last approach, a hidden Markov chain (HMC) is used to model dependencies between printing
times. The HMC states can be interpreted as specific states of activity like business hours or
night periods. While we only consider a single sleep mode, extension to multiple sleep modes is
straightforward.

3.1 Renewal process

In this paragraph, the times between print requests are supposed independent. The point process
{Nt}t≥0 is then a particular case of renewal process (see [20], Chapter 7). The random variable
modeling the times between printings is denoted by X , since its distribution does not depend on
the index i of the print job. Similarly, the optimal timeout period in sleep mode j is denoted by
τ̂ (j). In the following, the optimal timeout is studied under the assumptions that X is Weibull,
Gamma or Pareto distributed.

3.1.1 Weibull distribution

The pdf of the two-parameter Weibull distribution is parametrized as fX(x) = αλαxα−1 exp[−(λx)α]
for x ≥ 0, where λ > 0 is a scale parameter and α > 0 is referred to as the shape parameter.
Let us recall that, in this case the mean time between printings is E(X) = Γ(1 + 1/α)/λ and the
printing rate function is zX(x) = αλαxα−1 for x ≥ 0. Note that this function can be decreasing
if α ∈ (0, 1), increasing if α > 1 or constant if α = 1 (exponential distribution). As a consequence
of Proposition 2, we have

τ̂ (j) =

∣

∣

∣

∣

∣

∣

(αλα∆tj)
1

1−α if α ∈ (0, 1)
0 if α ≥ 1 and ∆tj < E(X)
+∞ if α ≥ 1 and ∆tj > E(X).

Of course, in practical situations, the parameters α and λ are replaced by their maximum likeli-
hood estimates, see [15], Chapter 21 for their computation and Section 4 for examples.

3.1.2 Gamma distribution

The pdf of the two-parameter Gamma distribution is parametrized as fX(x) = β−αΓ(α)−1xα−1 exp(−x/β)
for x ≥ 0, where β > 0 is a scale parameter and α > 0 is the shape parameter. In this case,
we have E(X) = αβ but no closed-form expression for the printing rate function is available for
non-integral α. Nevertheless, it can be shown [1] that, similarly to the Weibull case, the printing
rate function is decreasing if α ∈ (0, 1), increasing if α > 1 or constant if α = 1 (exponential
distribution). Thus,

τ̂ (j) =

∣

∣

∣

∣

∣

∣

z−1
X (1/∆tj) if α ∈ (0, 1)

0 if α ≥ 1 and ∆tj < αβ
+∞ if α ≥ 1 and ∆tj > αβ,

the printing rate function zX(x) being evaluated numerically through the use of the incomplete
gamma function. The maximum likelihood estimates of α and β are computed following [15],
Chapter 17 and the computation of τ̂ (j) is achieved with a dichotomy procedure.

3.1.3 Pareto distribution

The pdf of the two-parameter Pareto distribution is parametrized as fX(x) = α
x

(

β
x

)α

for x ≥ β,

where β and α are two positive parameters. The associated printing rate function is zX(x) = α/x,
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which yields τ̂ (j) = α∆tj if ∆tj ≥ β/α (and τ̂ (j) = 0 otherwise). This result is consistent with
that in [4]. As a consequence, the break-even time can be seen as the optimal timeout for a
Pareto distribution with α = 1. The maximum likelihood estimators of the parameters are given
in [15], Chapter 20.

3.2 Hidden Markov model

The assumption of a constant printing frequency throughout day and night does not seem realistic
a priori. It can be expected that during given periods, users will tend to print more often or less
often than average. Such periods can be interpreted in terms of activity levels, corresponding to
different levels of printing rates: a) rush hours with short times between printings, mainly due to
users printing a sequence of documents in a short period of time; b) normal hours with medium
times between printings; c) off-peak times with long times between printings, due to night or
weekends.

This corresponds to a heterogeneous distribution of the times between printings, such that
there exist some homogeneous periods (i1, . . . , ik) where (Xi1 , ..., Xik

) have the same distribution.
Those characteristics can be modeled by a HMC print process [9]. In this model, activity periods
are defined by non-visible factors, such as the amount of users at a given time in the printer
network (which is related to working hours and can vary with the company), the type of users,
country or even site specificities. In HMC modeling, these non-visible factors must be deduced
from the observed variables. In our case, one might imagine that periods with comparable times
between printings tend to correspond to the same level of activity.

3.2.1 Definition

Formally, an HMC is defined by two processes X1:n = (X1, . . . , Xn) (observed process) and
S1:n = (S1, . . . , Sn) (hidden process), such that:

a) S1:n is a homogeneous Markov chain with finite state space {1, . . . , K}, with transition
matrix A and a distribution π = (π1, ..., πK) for the initial state S1. Here, S1:n is assumed
stationary and ergodic. The marginal distribution of Si is denoted by π. Here, Si represents the
state of the process at ith printing request, which is not directly observed.

b) Given S1:n = s1:n, the Xi are mutually independent, and independent on the (Si′ )i′ 6=i,
with conditional pdf fθsi

(called emission distributions), where (fθ)θ∈Θ is a parametric family of
pdf.

The set of parameters of this model is η = (π, A, θ1, ..., θK); this is estimated by likelihood
maximization, using the Expectation Maximization (EM) algorithm for HMCs [9].

Since stationarity is assumed for the hidden process, the marginal distribution of Xi has pdf
∑

j πjfθj
, which does not depend on i; thus the observed process is also stationary. However,

the conditional distribution of Xi given S1:n = s1:n has pdf fθsi
, which depends on i; this is why

the above HMC can be used to model changes in the printing rate.
Our HMC model is closely related to the Markov-modulated Poisson process used in [21]. The

connection between both models is clarified in [22]. In the particular model considered in [21],
transitions between past and current states do not depend on past times between requests, so
their model actually is an HMC.

As an alternative, non-stationarity can be modeled by a sliding window approach inspired
by [6]. The model parameters of the renewal process in Section 3.1 are reestimated after each
request i, using dataset Xi−L+1:i, where L is called the window length.

11



3.2.2 Parameter estimation

We use the general notation P() to denote either a probability mass function or a probability den-
sity function, the true nature of P() being obvious from the context. The parameter is estimated
by likelihood maximization, using the Expectation Maximization (EM) algorithm for hidden
Markov chains [9]. This iterative algorithm starts from an initial value η(0) of the parameter and
creates a sequence (η(m))m≥0 whose likelihood grows. The sequence (η(m))m≥0 converges to a
consistent solution of the likelihood equations when η(0) is close to the optimal solution. At each
iteration m, it proceeds as follows:

• Expectation (E) step: determination of the Q function defined by:

Q(η, η(m)) = Eη

[

log Pη(m)(Sn
1 = sn

1 , Xn
1 = xn

1 )|Xn
1 = xn

1

]

=
K
∑

k=1

log πkPη(m)(S1 = k|Xn
1 = xn

1 )

+

n−1
∑

i=1

∑

k,l

log Ak,lPη(m)(Si = k, Si+1 = l|Xn
1 = xn

1 )

+

n
∑

i=1

K
∑

k=1

log fθk
(x)Pη(m)(Si = k|Xn

1 = xn
1 ) (2)

• Maximization (M) step: maximization of Q(η, η(m)) with respect to η:

η(m+1) = argmax
η

Q(η, η(m)) (3)

3.2.3 Adaptive timeout period using HMCs

Since the case of printers with multiple sleep modes is not considered, the timeout period will
be denoted by τ rather than τ (j). This Section details how to exploit the hidden state values to
propose adaptive timeout periods τ̂i that are updated after each printing job i. Those strategies
basically consist in predicting the time to the next print request Xi, from the past observed values
X1:i−1. We propose three approaches to dynamically re-estimate τi. The first two approaches
are based on a prediction Ŝi of the next state value from the past of the process X1:i−1 (using two
variants for the prediction). The predicted distribution for Xi is then fθ

Ŝi
. The third approach

considers all possible values of Si, and thus takes into account the uncertainty about its value.

Viterbi-based approach In this approach the next state value Ŝi is predicted as

argmax
k

(max
s1:i−1

P(S1:i−1 = s1:i−1, Si = k|X1:i−1)).

This value is deduced from the Viterbi algorithm [9].

Filtering-based approach This approach consists in predicting the next state value Si as

S̃i = arg max
k

βi(k). (4)

where βi(k) = P(Si = k|X1:i−1) is the filtered probability. This quantity is deduced from
P(Si−1 = j|X1:i−1) (forward recursion in [9]).
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Approach based on full conditional distribution This approach consists in computing
the printing rate function of Xi given X1:i−1. The pdf of this distribution is given by:

fXi|X1:i−1
(x) =

K
∑

k=1

fθk
(x)βi(k). (5)

Thus, the survival distribution function is:

F̄Xi|X1:i−1
(x) =

K
∑

k=1

F̄θk
(x)βi(k) (6)

and the printing rate function follows from (5) and (6).
Each of the three approaches results into an estimated pdf fi for the predictive distribution

of Xi, namely fθ
Ŝi

in a) and b), and fXi|X1:i−1
in c). Each pdf is associated with a printing rate

function zi. The optimal timeout period τ̂i is given by Proposition 1, replacing τ̂
(1)
i by τ̂i and

zXi|X1:i−1
by zi.

In the approach based on full conditional distributions, even in the case of Weibull, Gamma
or Pareto observation distribution families (fθ)θ∈Θ, we could not derive general conditions on
the parameters (θk)k=1,...,K , under which equation zXi|X1:i−1

(τ̂i) = 1/∆t1 has a unique solution.
Thus, numerical methods have to be used, to determine whether the optimal timeout period is
null, positive or infinite.

4 Experiments

Our methodology is illustrated, in the sequel, by experiments on two real datasets. The efficien-
cies of the timeout strategies introduced in Section 3 are compared in terms of energy consump-
tion. These strategies are also compared with four alternatives called Energy star method, oracle
method, c-competitive algorithm and exhaustive search method. In the Energy star method, the
timeout period is fixed so as to comply with the Energy Star standard, depending on the printer
features. In the oracle method, the future of the print process is supposed to be known. The
printer switches into sleep mode j before print job i if Xi > ∆tj . Let us highlight that this ref-
erence method provides a lower bound on the consumption but cannot be used in practice. The
strategy consisting in setting the timeout at ∆tj is referred to in [17] and [4] as a c-competitive
algorithm (in the sense of [16]). Since this is a deterministic algorithm, here c = 2. Finally, the
exhaustive search method consists in finding the timeout that minimizes the actual consumption
thanks to an exhaustive search. Moreover, the method mentioned in Section 3.1 will be called
static method, while the HMC-based methods described in Section 3.2.3 will be referred to as
the Viterbi method, filtering method and conditional method. The sliding window method, also
described in Section 3.2.3, is also considered in the experiments.

In both datasets, times between printings are deduced from the print logs, recorded during
the whole of the year 2006 on XRCE print infrastructure which is composed of 14 printers and
involves 155 users. These data have been collected by the Xerox Job Tracking Agent2. It is an
office print tracking tool that allows the capture and recording of information about end users’
printing behaviors. Additionally, real power consumption has been measured on two different
printer models with a specific power metering unit3. The first printer is a Xerox WorkCentre
238 model with two sleep modes. Its power consumption is a1 = 270W in idle mode, b1 = 150W

2http://www.consulting.xerox.com/print-tracking/
3Fluke 43B Power Quality Analyzer (http://us.fluke.com)
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in the first sleep mode and b2 = 50W in the second sleep mode. The energy required to switch
from the first and second sleep modes to idle mode are respectively d1 = 40kJ and d2 = 200kJ .
Energies to enter sleep modes are negligible, c1 = c2 = 0. The second printer is a Phaser 4500
model with one single sleep mode. Its power consumption is a1 = 80W in idle mode, b1 = 16W
in sleep mode. The energy required to switch from sleep mode to idle mode is d1 = 25.3kJ and
the energy to enter sleep mode is negligible, c1 = 0.

Static, Viterbi, filtering, conditional and sliding window methods require the selection of a
distribution for the times between print requests. This choice has been made using a goodness-
of-fit χ2 test, whose results are summed up in Table 1.

Distribution P-value
Phaser 4500 WorkCentre 238

Gamma 8e-02 8e-04
Weibull 1e-07 7e-04

Lognormal 2e-32 2e-04
Pareto 3e-07 3e-04
Normal 5e-75 2e-11
Cauchy 7e-110 2e-25

Table 1: P-values obtained with the χ2 goodness of fit test for the selection of a distribution for the
times between printings.

It appears that Weibull and Gamma are the most appropriate distributions. In the following,
a Weibull distribution is adopted to model the distribution of the times between printings, when
those are assumed independent. A Gamma distribution would also be suitable but would not
allow the derivation of an explicit timeout (see paragraph 3.1.2). The considered HMC model
has also Weibull emission distributions, and three states, which can be interpreted as rush,
normal and calm periods, from the point of view of the print requests. Note that the number
of states or the family of emission distributions could also be selected using penalized likelihood
criteria [11] or cross-validation [5]. The M step for parameter estimation by the EM algorithm is
given in Appendix B. Section 4.1 is dedicated to the analysis of the out-of-sample performance
of the above-mentioned methods without taking user impact into account. In paragraph 4.2, the
influence of the penalty term is examined under several points of view: consumption, number of
shutdowns, number of wrong wake-ups and wrong shutdowns.

4.1 Cross-validated assessment of the strategies

The goal of this experiment is to investigate the methods’ performance on future data, and
thus to assess their generalization capacities. We focus on the Xerox WorkCentre 238 dataset
(n = 3910 print jobs) and user impact is not considered. Its predefined timeouts according to
Energy Star environmental standards is 900s for the first sleep mode and 1,800s for the second.
The test procedure is multi-fold cross-validation [27], as follows: the dataset is divided into L
contiguous sub-samples of equal size. Then for each sub-sample ℓ ≤ L−1, the method parameters
are estimated on this sub-sample while the consumption is computed on sub-sample ℓ + 1. The
length of the sliding window Lℓ is one of the parameters; this is also estimated on sub-sample ℓ
only, by minimizing the consumption over Lℓ. Three cases are considered: L = 10 sub-samples
of size 361, L = 30 sub-samples of size 121 and L = 60 sub-samples of size 61. Results are
summarized in Tables 2 and 3. The computation times include the computation of the actual
consumption for the dataset.
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It appears on Table 2 that exhaustive search, static, filtering, conditional and sliding window
methods are the most efficient ones in terms of consumption. The consumption associated to
these methods is about 12% larger than the lower bound given by the Oracle method. This slight
increase of the optimal consumption indicates that the Weibull distribution fits the (xi)1≤i≤n well.
Besides, exhaustive search, static, conditional and sliding window methods are quite robust since
they yield a constant consumption, whatever the subdivision. Moreover, the standard deviation
of the consumption represents less than 2% of the total consumption. Among these four methods,
the static one is at least thousand time faster than the other ones. Experiments were conducted
in Matlab on an Intel Pentium Dual Core running at 2.5GHz.

Focusing on Table 3, it appears that the timeout periods provided by the static and exhaus-
tive search methods are approximately independent on the subdivision of the sample, for both
methods. Let us emphasize that static timeouts benefit from small standard deviation whereas
exhaustive search timeouts suffer from a high variability. As a conclusion, static method seems
to be an accurate, reliable and fast method to select the optimal timeouts. A decrease of about
12% of power consumption can be achieved with regard to the Energy Star method. The gain
with regard to the competitive algorithm is about 6%.

Total consumption Standard deviation Mean computation time
(kWh) of consumption by sample (ms)

Sample size 361 121 61 361 121 61 361 121 61

Energy Star 500 500 500 7.99 4.73 3.04 1.2e+00 1.0e+00 2.0e+00

τ (1) = τ (2) = 0 498 498 498 6.77 3.76 2.55 2.0e+00 1.0e+00 1.0e+00
Exhaustive search 446 446 447 6.86 4.17 2.76 6.6e+04 1.5e+05 2.7e+05

Oracle 399 399 399 7.13 4.11 2.72 2.0e+00 2.0e+00 2.0e+00
c-competitive 471 471 471 7.66 4.54 2.94 5.0e-01 1.0e+00 2.0e+00

Static 446 446 446 7.02 4.13 2.77 2.0e+01 5.0e+01 9.0e+01
Sliding window 445 445 444 7.02 4.18 2.77 5.2e+05 1.5e+05 6.6e+04

Viterbi 471 464 462 8.07 3.97 2.64 1.0e+04 4.3e+03 2.8e+03
Filtering 472 462 462 8.29 3.93 2.62 1.3e+03 1.7e+02 1.9e+02

Conditional 456 454 450 5.62 4.04 2.72 5.8e+04 5.4e+04 6.0e+04

Table 2: Energy consumption and mean computation time associated to the different strategies.

Mean timeouts Standard deviation
(s) of timeouts

Sample size 361 121 61 361 121 61

Exhaustive τ (1) 26 25 24 13 17 21

search τ (2) 203 208 218 55 108 121

Static
τ (1) 11 12 12 2 5 7

τ (2) 179 188 192 33 64 84

Table 3: Timeout associated to the different strategies.
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4.2 Assessment of user impact

In what follows, the behavior of the methods is compared when taking user impact into account
on the Phaser 4500 printer. Our test procedure is the following: The dataset (n = 2, 320) is
divided into 2 sub-samples with the same size. Parameters of each method are estimated on the
first sub-sample, while the total consumption is computed on the second one as the penalty δ
varies (see Section 2.3).

The variations of the number of shutdowns (or equivalently wake-ups) as a function of the
penalty δ are depicted in Figure 6. Given a delay of 8 s caused by each transition on this
printer model, the y-axis in Figure 6 also corresponds to an upper bound of the total delay,
from the users’ point of view. Even though, for a fixed penalty δ, the different methods yield
different numbers of shutdowns and different consumptions, it appears on Figure 7 that, for a
fixed number of shutdowns, the consumption is about the same whatever the method used. To
compare the different methods, we propose a graphical comparison based on an adaption of ROC
(Receiver Operating Characteristic) curves [13] to our framework. To this end, let us denote by

α = P(Xi > ∆t|Xi < τi) the probability of a type I error at ith print request. In this context,
this error occurs when a printer stays in idle mode, whereas it should enter into sleep mode.
Similarly, the probability of a type II error is given by β = P(Xi < ∆t|Xi > τi). In the case
of type II errors, the printer enters into sleep mode, whereas it should stay idle. Note that the
number Nwd of errors of type II is used in [17] as a measure of performance of several algorithms
for power management. In practice, α and β are estimated by their empirical counterparts. The
ROC curve (Figures 8 and 9) is built for each method by drawing 1 − β as a function of α by
letting the penalty δ vary. The best method is the one whose ROC curve is the closest to the
vertical line α = 0 and to the horizontal line 1−β = 0. At the opposite, the worst method is the
one whose ROC curve is the closest to the diagonal line 1− β = α. Here, it appears that Viterbi
and static methods (including the c-competitive method) are the best ones, since they yield
the best compromise between the two risks. Keeping in mind the conclusions of the previous
paragraph, it seems that the static methods should be preferred since they are the simplest and
most robust ones.

In the case where no penalty due to user impact is applied (δ = 0), the consumptions
corresponding to the Energy Star and to the c-competitive timeouts are 20 % and 7 % higher,
respectively, than that corresponding to the static method. Moreover, the optimal timeout period
provided by the static method is τ = 10s. The associated value of the consumption (78.1kWh)
is only 0.5% lower that the consumption achieved by setting τ = 0s, which corresponds to the
so-called eager policy in [2]. The eager policy, considered as “often unacceptable” by the authors
in their context, is actually nearly optimal for our dataset. However, this result is specific to the
considered printer and user behavior: in paragraph 4.1, the eager policy yields a waste of 5.2%
in the energy consumption, compared to the static method (see Table 2).

5 Conclusion and discussion

In this paper, we have proposed a statistical cost-based analysis to determine optimal timeout
period for devices. This method takes into account the real usage patterns in order to optimize
power consumption. In a first approach, times between requests were supposed independent and
the timeout period inferred accordingly. We also proposed three approaches to dynamically re-
estimate an optimal timeout period using an HMC to model print events. Finally, a methodology
to take into account user impact due to power saving exit transitions is also included. It allows
the dynamic timeout period methods to achieve a trade-off between user impact and power
consumption, depending on the user’s priorities.
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Figure 6: Number of shutdown transitions (left vertical axis) and total delay for users (right vertical
axis) as the penalty δ increases.
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Figure 7: Consumption as a function of the number of shutdown transitions obtained with the different
methods.
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Figure 9: Close-up of upper left part of Figure 8 (ROC curves obtained by varying the penalty δ).

0 20 40 60 80 90
0

200

400

600

800

Expected increase (in %) of the number of switches
 compared to the case δ=0

E
xp

ec
te

d 
de

cr
ea

se
 (

in
 %

) 
of

 c
on

su
m

pt
io

n 
co

m
pa

re
d 

to
 th

e 
ca

se
 δ

=
0

Figure 10: Expected decrease (in %) of the consumption as a function of the expected increase (in %)
of the number of transitions. The reference model is a renewal process without penalty.
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From the application of our methods to two real datasets composed of printing requests, it
can be remarked that the static method is the fastest and most accurate method to select the
optimal timeout periods. Moreover it is rather simple to set up in practice. Indeed, it only learns
the parameters of the distribution of the times between printings by the Maximum likelihood
estimation method, and deduces the optimal timeout period according to the estimated value of
the printing rate.

The theoretical formulation of power consumption in terms of a print process can be consid-
ered as a stepping stone for more complex models that will allow the model to progressively gain
completeness in the consideration of other several cost factors, as for example device aging due
to increased transitions from power saving mode due to a more dynamic power saving policy. We
have also established the foundations to develop in the future a power saving strategy capable
of performing accurate prediction of power saving entry as described in this article, but also of
optimal power saving exit.

5.1 Real-world implementation

Large device fleets accounting for two or three thousand printers can be managed by dedicated
servers in charge of several tasks. For instance, some device management servers (e.g. Xerox
Device Manager, Xerox CentreWare Web) include status retrieval for monitoring purposes, page
meter and job accounting retrieval for billing purposes, configuration checking for security and
compliance purposes... One can propose to extend these capabilities of device management soft-
ware by performing the timeout optimization on the servers dedicated to these tasks. The typical
power consumption of this type of servers ranges from 140 Watts to 400 Watts. The algorithm
production execution environment will be different from Matlab and probably implemented in
.NET or Java environments. In the case of Xerox, the production prototype has implemented the
static method in .NET using a high performance mathematical library. The execution time of
the .NET implemented prototype with respect to Matlab is on average 10 times slower. It should
be noticed that the prototype implementation has shown that auxiliary tasks as database access,
remote device timeout setup or power consumption estimations attached to the execution of the
method are notably more processing intensive. To summarize, one run of the static method on a
400 Watts server represents 400 milliseconds of CPU time, i.e. 4.4e− 5 kWh which is negligible
with respect to the energy consumption of a printer. A real-world experimentation has been
conducted on 100 Xerox Phaser 4500 printers where 47,000 print jobs have been collected. On
this basis, a predictive model has been built, based on the renewal process approach. Using
this model, the probability of shutdown of the printer can be computed, as well the associated
consumption and timeout, for any value of the penalty. Figure 10 shows the expected decrease
of the consumption as a function of the expected increase of the number of transitions. The
reference model is a renewal process without penalty (using the estimated optimal timeout for
δ = 0). To illustrate the variability of these gains, their values have been represented on a
histogram (Figure 11), corresponding to the gain on each of the 100 printers. Consequently, the
users can now specify which increase (in %) in the number of shutdowns they are ready to accept
(or equivalently which increase of an upper bound of the time they are ready to wait). Then the
model deduces the corresponding penalty, timeout and consumption.

5.2 Extensions

Refinements of our approach may include the use of covariates (e.g. hour, day of the week), to
adapt the timeout period to different conditions identified a priori (contrary to HMCs where
the conditions can be interpreted a posteriori). These conditions may be related to the print
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process, as well as the penalty associated with user impact. The transition delays can also be
used as covariates to model user impact.

Instead of a continuous-time framework where the decision corresponds to the value of a
timeout period, a discrete-time framework could be considered. After each time step, the decision
would consist in switching or not the printer into sleep mode. This is the approach chosen in [26].
The authors claim that the timeout-based policies “not only waste power during the periods of
inactivity, but also needlessly annoy the user when they turn off components at inappropriate
times”. This is only true when the times of future requests are considered as known (oracle point
of view). In the case of unknown times of future requests, the power used to maintain a device
into idle mode cannot be considered a priori as wasted. However, some generalization of our
classical timeout-based approach could be achieved, with potentially better results, by replacing
the assumption of a deterministic timeout period by a stochastic one, whose optimal distribution
would have to be determined.

A further extension of this work is the challenging issue of optimal redirection of print jobs
and power saving policy within a network of printers managed by a server. Given a printing
request, this consists in determining on which printer the job has to be processed, and after what
delay each printer has to be turned into sleep mode, so as to minimize the global consumption.
Modeling this problem should take into account constraints due to user impact, that are partially
related to network connectivity.

Finally, our approach deals separately with model identification (parameter estimation from
trajectories of user requests) and computation of the optimal timeout periods (in a framework
with fixed parameters). As an alternative, a unified model for handling both model identification
and decision taking would be provided by the Bayesian Partially-Observed Markov Decision
Processes (POMDPs) in [18]. Here the non-observed part of the MDP would consist in, firstly, the
unknown parameters, considered as stochastic in a Bayesian framework, and secondly, potential
unknown states as in the HMC models. The benefit of Bayesian POMDPs to our application
would come from taking into account simultaneously the different sources of uncertainty: states
of the printer and of the user, value of the parameter and of the reward.

A Appendix: Proofs.

Proof of Lemma 1

In view of Section II.A, the consumption between two successive printings is given by

h(Xi, τ
(1)
i ) = (aXi)(1 − 11

{Xi>τ
(1)
i

}
)

+ (aτ
(1)
i + c1 + b1(Xi − τ

(1)
i ) + d1)11{Xi>τ

(1)
i

}
. (7)

Introducing ∆t1 = (c1 + d1)/(a − b1), the consumption can be rewritten as

h(Xi, τ
(1)
i ) = aXi

+ (a − b1)(∆t1 + τ
(1)
i − Xi)11{Xi>τ

(1)
i

}
.
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As a consequence, the expected consumption between two successive printings given X1:i−1 is

E(h(Xi, τ
(1)
i )|X1:i−1) = aE(Xi|X1:i−1)

+ (a − b1)F̄Xi|X1:i−1
(τ

(1)
i )(∆t1 + τ

(1)
i )

− (a − b1)

∫ +∞

τ
(1)
i

xfXi|X1:i−1
(x)dx.

and the result is proved.

Proof of Proposition 1

Differentiating the above expected consumption with respect to τ
(1)
i yields

dE(h(Xi, τ
(1)
i )|X1:i−1)

dτ
(1)
i

=

(a − b1)F̄Xi|X1:i−1
(τ

(1)
i )(1 − ∆t1zXi|X1:i−1

(τ
(1)
i )). (8)

Let us recall that a > b1. Two main cases are considered:
(i) Suppose that zXi|X1:i−1

is decreasing. Three situations occur:
- If 1/∆t1 < lim

x→+∞
zXi|X1:i−1

(x), then the derivative (8) is negative, the expected consumption

is a decreasing function of τ
(1)
i and thus τ̂

(1)
i = +∞.

- If lim
x→+∞

zXi|X1:i−1
(x) ≤ 1/∆t1 ≤ zXi|X1:i−1

(0), then the following equation

zXi|X1:i−1
(τ

(1)
i ) = 1/∆t1 (9)

has an unique root τ
(1)
i in (0, +∞) which is the unique minimum of the expected consumption.

- Finally, if zXi|X1:i−1
(0) < 1/∆t1, then the derivative (8) is positive, the expected consumption

is an increasing function of τ
(1)
i and thus τ̂

(1)
i = 0.

(ii) Suppose that zXi|X1:i−1
is increasing or constant. Three situations occur:

- If 1/∆t1 ≤ zXi|X1:i−1
(0), then the derivative (8) is non-positive, the expected consumption is a

non-increasing function of τ
(1)
i and thus τ̂

(1)
i = +∞.

- If zXi|X1:i−1
(0) < 1/∆t1 < lim

x→+∞
zXi|X1:i−1

(x) then equation (9) has an unique root in (0, +∞)

and the expected consumption is a concave function of τ
(1)
i . As a consequence, τ̂

(1)
i = 0 if

E (h(Xi, 0)|X1:i−1) < lim
x→∞

E (h(Xi, x)|X1:i−1) and τ̂
(1)
i = +∞ otherwise. Since

E (h(Xi, 0)|X1:i−1) − lim
x→∞

E (h(Xi, x)|X1:i−1)

= (a − b1)(∆t1 − E(Xi|X1:i−1)),

the conclusion follows.
- Finally, if lim

x→+∞
zXi|X1:i−1

(x) ≤ 1/∆t1, then the derivative (8) is non-negative, the expected

consumption is a non-decreasing function of τ
(1)
i and thus τ̂

(1)
i = 0.
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Proof of Lemma 2. As a consequence from the equations in Section 2.2, the consumption h
between two successive print requests is given by:

h(Xi, τ
(1)
i , . . . , τ

(m)
i ) = aXi11{Xi≤τ

(1)
i

}

+
∑m−1

r=1

(

aτ
(1)
i +

∑r−1
j=1

(

cj + bj(τ
(j+1)
i − τ

(j)
i )
)

+ cr + br(Xi − τ
(r)
i ) + dr

)

11
{τ

(r)
i

<Xi≤τ
(r+1)
i

}

+
(

aτ
(1)
i +

∑m−1
j=1

(

cj + bj(τ
(j+1)
i − τ

(j)
i )
)

+ cm + bm(Xi − τ
(m)
i ) + dm

)

11
{Xi>τ

(m)
i

}
. (10)

Letting a = b0 yields

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= b0E

(

Xi11{Xi<τ
(1)
i

}
|X1:i−1

)

+

m−1
∑

r=1

brE

(

Xi11{τ
(r)
i

<Xi≤τ
(r+1)
i

}
|X1:i−1

)

+ bmE

(

Xi11{Xi>τ
(m)
i

}
|X1:i−1

)

+
m−1
∑

r=1

P

(

τ
(r)
i < Xi ≤ τ

(r+1)
i |X1:i−1

)





r
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr





+ P

(

Xi > τ
(m)
i |X1:i−1

)





m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm



 .

Taking account of

E

(

Xi11{τ
(r)
i

<Xi≤τ
(r+1)
i

}
|X1:i−1

)

= E

(

Xi11{Xi>τ
(r)
i

}
|X1:i−1

)

− E

(

Xi11{Xi>τ
(r+1)
i

}
|X1:i−1

)

,

E

(

Xi11{Xi<τ
(1)
i

}
|X1:i−1

)

= E (Xi|X1:i−1) − E

(

Xi11{Xi>τ
(1)
i

}
|X1:i−1

)

the expected consumption can be rewritten as

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −
m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+
(

1 − FXi|X1:i−1
(τ

(m)
i )

)





m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm





+

m−1
∑

r=1





(

FXi|X1:i−1
(τ

(r+1)
i ) − FXi|X1:i−1

(τ
(r)
i )
)





r
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr







+ b0E(Xi|X1:i−1).

Splitting the second right-hand term into two parts yields

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+

m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm

+ b0E(Xi|X1:i−1) +

m
∑

r=2

FXi|X1:i−1
(τ

(r)
i )





r−1
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr−1





−

m
∑

r=1

FXi|X1:i−1
(τ

(r)
i )





r
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr
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and collecting the two last right-hand terms we obtain

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+ b0E(Xi|X1:i−1) +





m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm





− FXi|X1:i−1
(τ

(1)
i )

(

τ
(1)
i (b0 − b1) + d1

)

−

m
∑

j=2

FXi|X1:i−1
(τ

(j)
i )

(

τ
(j)
i (bj−1 − bj) + cj + dj − dj−1

)

.

Finally, letting ∆tj = (cj + dj − dj−1)/(bj−1 − bj) with the convention d0 = 0, we have

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+

m
∑

j=1

(τ
(j)
i + ∆tj)(bj−1 − bj)

−

m
∑

j=1

(bj−1 − bj)FXi|X1:i−1
(τ

(r)
i )(τ

(j)
i − ∆tj) + b0E(Xi|X1:i−1)

=

m
∑

j=1

(bj−1 − bj)

[

(

1 − FXi|X1:i−1
(τ

(j)
i )
)(

∆tj + τ
(j)
i

)

−

∫ +∞

τ
(j)
i

xfXi|X1:i−1
(x)dx

]

+ b0E(Xi|X1:i−1), (11)

and the conclusion follows.

Proof of Proposition 2 is quite similar to that of Proposition 1, and thus is omitted in this
report. This is also the case for lemma 3, which proof is similar to that of lemma 1.

B Appendix: M step of the EM algorithm for Weibull

HMCs.

This paragraph describes the M step of EM algorithm, dedicated to parameter re-estimation in
HMCs, in the case of Weibull emission distributions.
It can be seen from equations (3) and (2), that the re-estimation procedure for the πk and Ak,l

parameters is not specific to Weibull distributions. Consequently the usual formulae (6.14) and

(6.15) in [9] hold. For all k = 1, .., K the new values of parameters (λ
(m+1)
k , α

(m+1)
k ) after m

iterations of the EM algorithm cancel the partial derivatives of the Q function, and thus satisfy
the system:











∑

t

Pη(m)(St = k|Xn
1 = xn

1 )
∂

∂λk

log fλk,αk
(x) = 0

∑

t

Pη(m)(St = k|Xn
1 = xn

1 )
∂

∂αk

log fλk,αk
(x) = 0.

(12)

Let ξ
(t)
k = Pη(m)(St = k|Xn

1 = xn
1 ). Since for Weibull emission distributions,

log fλk,αk
(x) = log(αk) + αk log(λk) + (αk − 1) log(x) − (λkx)αk ,

we have
∂ log fλk,αk

(x)

∂λk

=
αk

λk

− αkxαkλαk−1
k
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and
∂ log fλk,αk

(x)

∂αk

=
1

αk

+ log(λk) + log x − (log(λkx))(λkx)αk .

The first equation of the system (12) can be rewritten as

∑

t

ξ
(t)
k

∂

∂λk

log fλk,αk
(xt) =

∑

t

ξ
(t)
k

[

αk

λk

− αkxαk

t λαk−1
k

]

= 0

⇔
αk

λk

∑

t

ξ
(t)
k − αkλαk−1

k

∑

t

ξ
(t)
k xαk

t = 0 ⇔
∑

t

ξ
(t)
k = λαk

k

∑

t

ξ
(t)
k xαk

t (13)

⇔ λk =

[

∑

t ξ
(t)
k xαk

t
∑

t ξ
(t)
k

]− 1
αk

. (14)

Replacing the expression of λk obtained in equation (14) into the second equation of the sys-
tem (12) yields

0 =
∑

t

ξ
(t)
k

∂

∂αk

log fλk,αk
(xt) =

∑

t

ξ
(t)
k

[

1

αk

+ log λk + log xt − (log(λkxt))(λkxt)
αk

]

=
∑

t

ξ
(t)
k

(

1

αk

+ log xt + log λk

)

− λαk

k

∑

t

ξ
(t)
k xαk

t (log λk + log xt)

=
∑

t

ξ
(t)
k

(

1

αk

+ log xt

)

− λαk

k

∑

t

ξ
(t)
k xαk

t log xt

+ logλk

[

∑

t

ξ
(t)
k − λαk

k

∑

t

ξ
(t)
k xt

αk

]

. (15)

Using equations (13) and (14) in (15) yields

0 =
∑

t

ξ
(t)
k log xt −







∑

t

ξ
(t)
k

∑

t

ξ
(t)
k xαk

t







∑

t

ξ
(t)
k xαk

t log xt +
1

αk

∑

t

ξ
(t)
k

⇔ 0 = αk







∑

t

ξ
(t)
k log xt

∑

t

ξ
(t)
k

−

∑

t

ξ
(t)
k xαk

t log xt

∑

t

ξ
(t)
k xαk

t






+ 1. (16)

Equation (16) has no known solution; hence it has to be solved numerically, by the algorithm
described in [10] in the circumstances.

C Appendix: Markov decision processes

In this Section, a connection between our approach and the theory of Markov decision processes
(MDPs) is established. More specifically, the problem of determining the optimal timeout period
by minimizing the expected consumption up to following request, defined by equation (1), is
shown to be a particular case of an MDP with a continuous action space, if the times between
printings are independent random variables. The value function with (finite) horizon 1 of the
corresponding MDP is shown to be the opposite of the expected future cost. Moreover, this
MDP has a single possible state, which explains why an explicit solution of this problem could
be derived in Section 2.1.
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C.1 General principle

Markov decision processes are a class of optimization problems for controlling the temporal
evolution of an agent in a given environment characterized by a set of states S. At each time
step t, given the state St of the environment, the agent is allowed to perform an action At chosen
from a set A. The chosen action may modify the next state St+1 of the environment, and brings
a scalar reward Rt+1 to the agent. All the quantities At, St and Rt constitute a homogeneous
random process. The problem is to determine the distribution for At that maximizes the expected
future rewards given the current state St.

The process (At, St, Rt)t∈N is supposed to obey the Markov property. Moreover, under the
three following assumptions:

1. the action At+1 is independent on the past of the three processes up to time t, and on
Rt+1, given state St+1;

2. the reward Rt+1 is independent on the past of the three processes up to time t given the
states St and St+1, and given At;

3. St+1 is independent on the past of the three processes up to time t given St and At;

an MDP is totally specified by the following distributions:

• the transition probabilities Pa
ss′ = P(St+1 = s′|St = s, At = a), which define how next

state is affected by current state s and the chosen action a;

• the policy function π(s, a) = P(At = a|St = s), which defines what action to choose given
current state s;

• the reward distribution, i.e. the distribution of Rt+1 given St = s, At = a and St+1 = s′.

The optimization problem associated with this MDP consists in finding the policy π : S ×
A → [0, 1] that maximizes the expected future rewards (under the constraints

∑

a π(s, a) = 1
and ∀(a, s), π(a, s) ≥ 0). The future rewards are modelled through the random variable Rt =
∑∞

k=0 γkRt+k+1, where ∀k, γk represents the weight of the reward after k + 1 time steps. The
sequence (γk)k∈N is referred to the discount sequence. The function to be maximized is called
the value function and is denoted by V π; it corresponds to the expectation of Rt given the value
s of current state. This leads to the following formal definitions:

V π(s) = E(Rt|St = s) =
∞
∑

k=0

γkE(Rt+k+1|St = s) (17)

and π̂(s, .) = arg max
π(s,.)

V π(s). (18)

The reward distribution P(Rt+1|St = s, At = a, St+1 = s′) is only involved through its expec-
tation Ra

ss′ = E(Rt+1|St = s, At = a, St+1 = s′); consequently, only Ra
ss′ needs to be defined

explicitly.
There are two particular cases of interest for the sequence (γk)k∈N:

• ∀k, γk = γk, where 0 ≤ γ < 1. In this case, V π(s) satisfies a fixed point equation known
as the Bellman equation. Generally, no closed form is available for the optimal policy.
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• ∀k, γk = δ0(k) =

{

1 if k = 0

0 otherwise
, where δ denotes the Kronecker symbol. Then, it is

easily shown that:

V π(s) =
∑

a

π(s, a)
∑

s′

Pa
ss′Ra

ss′ . (19)

Lemma 4 In the case where the sequence (γk)k∈N is defined by γk = δ0(k), the optimal policy
is:

π̂(s, a′) =







1 if a′ = arg max
a

∑

s′

Ra
ss′Pa

ss′

0 otherwise.

In the case where the state space is reduced to a singleton S = {1} and where ∀k, γk = γk, the
optimal policy is:

π̂(1, a′) =







1 if a′ = argmax
a

Ra
1,1

0 otherwise.

Proof of Lemma 4. In the case where γk =

{

1 if k = 0

0 else
, then

V π(s) = E(Rt+1|St = s)

=
∑

a

π(s, a)
∑

s′

E(Rt+1|St = s, St+1 = s′, At = a)P(St+1 = s′|St = s, At = a)

=
∑

a

π(s, a)
∑

s′

Ra
ss′Pa

ss′ . (20)

The optimal policy is the policy π maximizing the value function V π:

π̂ = arg max
π

(

∑

a

π(s, a)
∑

s′

Ra
ss′Pa

ss′

)

with
∑

a

π(s, a) = 1 and π(s, a) ≥ 0 ∀(s, a).

In the case where the state space is reduced to a singleton S = {1}, and if γk = γk ∀k, the
optimal policy is, from Bellman equation (see [25]):

V π(1) =
∑

a

π(s, a)
∑

s′

Pa
ss′ [Ra

ss′ + γV π(s′)]

=
∑

a

π(1, a)Ra
1,1 + γV π(1)

∑

a

π(1, a)

since S = {1} and ∀a, Pa
ss′ = 1. Remarking that

∑

a π(1, a) = 1, we have

(1 − γ)V π(1) =
∑

a

π(1, a)Ra
1,1

⇔ V π(1) =
1

(1 − γ)

∑

a

π(1, a)Ra
1,1. (21)
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In both equations (20) and (21), for each s, V π(s) is a linear function with respect to π(s, a).
Thus, a classical result of the optimization theory states that the maximum of V π(s) is achieved

on an endpoint of an edge of the simplex

{

π(s, a)|a ∈ R, π(s, a) ≥ 0 and
∑

a

π(s, a) = 1

}

.

As a consequence, in the case where the sequence (γk)k∈N is defined by γk = δ0(k), the optimal
policy is:

π̂(s, a′) =







1 if a′ = arg max
a

∑

s′

Ra
ss′Pa

ss′

0 otherwise.

In the case where the state space is reduced to a singleton S = {1} and where ∀k, γk = γk, the
optimal policy is:

π̂(1, a′) =







1 if a′ = arg max
a

Ra
1,1

0 otherwise.

Thus, the optimal policy corresponds to a deterministic strategy. Given current state s, the

chosen action systematically is the one that maximizes
∑

s′

Ra
ss′Pa

ss′ or Ra
1,1 (depending on the

sequence (γk)k∈N), with respect to a.

C.2 Connection of our approach with MDPs

In this paragraph, our approach is shown to be a particular case of MDP. The proof is derived
in the case of one single sleep mode printer for the sake of simplicity, but can easily be extended
to an arbitrary number of sleep modes.

In our context, the set of actions for the printer is the timeout period a ∈ A = R+, which
corresponds to τ (1) in previous paragraphs. The decision is taken after each print job, after
which the printer is necessarily in idle mode. Consequently, the state space is S = {idle}. In
our problem, the reward is minus the cost between two successive printings. It only depends on
the time between printings Xi and on the action a, i.e. the timeout period.

The time index i ∈ N represents the number of past printings requests. Hence, even if the
times of requests Ti take continuous values, the MDP is essentially a discrete-time problem,
where decisions are taken after each print job only.

Let the expected reward be defined as Ra = −E(h(Xi, a)), where h is the cost between two
successive print jobs defined by equation (7) (or by equation (10) in the case of multiple sleep
modes). The transition probabilities are Pa

ss′ = 1, ∀ a, s and s′, since the printer is always in
idle state when a decision is taken.
As a consequence, from equation (19), the value function V π(s) for γk = δ0(k) is:

V π(s) = −
∑

a

π(s, a)E(h(Xi, a)),

and according to Lemma 4, the optimal policy is:

π(s, a′) =

{

1 if a′ = arg maxa −E(h(Xi, a)) = arg mina E(h(Xi, a))

0 otherwise,

which corresponds to the optimization problem in equation (1) in the case where the times
between printings Xi are independent random variables.
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To conclude, our approach is a degenerate case of an MDP problem with a continuous action
space and with one single state. Using the particular discount sequence γk = δ0(k), the expected
future cost coincides with the value function of the MDP with (finite) horizon 1. Since the state
space is reduced to a single state, an explicit solution of this problem can be derived. This
solution is given in Proposition 1.
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