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Abstract

This article addresses the optimal choice of the waiting period (or timeout) that a de-
vice should respect before entering sleep mode, so as to optimize a tradeoff between power
consumption and user impact. The optimal timeout is inferred by appropriate statistical
modeling of the times between user requests. In a test approach, these times are supposed
independent, and a constant optimal timeout is inferred accordingly. In a second approach,
some dependency is introduced through a hidden Markov chain, which also models spe-
cific activity states, like business hours or night periods. This model leads to a statistical
framework for computing adaptive optimal timeout values. Different strategies are assessed
using real datasets, on the basis of the power consumption, user impact and the frequency
of wrong decisions.

1 Introduction

The goal of this study is to determine a policy based on the analysis of user behavior achieving
a compromise between low power consumption of devices and limited user impact. We primarily
describe this with respect to the behavior of printers, however similar policies could also be
applied to other devices such as disk drives and displays. Currently, in most printers the time
period to wait before entering sleep mode is either set by the administrator or predefined by
the device manufacturer according to Energy Star1 environmental standards. Today, Energy
Star criteria do not take into account observed printer usage patterns. Those criteria rather set
power consumption requirements depending on the device features (e.g. functionalities, estimated
volume) and marking technology type (e.g. laser, solid ink, inkjet). In this paper, observed
printer usage patterns are taken into account through the sequence of print job submissions
(referred to as the print process). We model a device having several modes with different power
consumptions. For a printer, these might correspond to:

• Print mode: The device activates its marking engine, print path and controller and com-
pletes any print requests. Power consumption is typically the highest in this mode.

• Idle mode: The device is ready to print immediately and therefore a certain power con-
sumption is required to maintain the device in a state of readiness.

1 http://www.energystar.gov
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• Sleep modes : The device is not ready to print immediately which induces a delay between
the user request and the actual beginning of the print job. These modes are sometimes
referred to as standby or power-save modes. Depending on the printer, one or several such
modes are available. Power consumption is typically the lowest in one of these sleep modes.

The difference in power consumption between idle mode and sleep modes is often as large as
40%. Power consumption due to transitions between modes depends on the printing technology
(e.g. laser, solid ink) and is usually larger than the power consumption in idle mode. In the
sequel, the transition from sleep modes to idle mode is referred to as wakeup while the transition
from idle mode to sleep modes is referred to as shutdown. From the consumption point of view,
the device features are summarized by the power consumption in each of these modes as well as
the energy required to switch between these modes. Therefore, our goal amounts to inferring the
optimal inactivity interval (or timeout period) before entering into sleep modes, given both the
device power consumption model and observed usage patterns.

1.1 Consumption model and notations

Our approach relies on the following assumptions. Firstly, assuming that each print request is
processed as soon as possible,the power consumption during print jobs is independent from the
timeout period. Secondly, power consumptions during idle and sleep modes are supposed to be
constant. Finally, printing, shutdown and wakeup transitions are supposed to be instantaneous.
Therefore, the optimization focuses on the power consumption in idle and sleep modes and on
the energy consumption of the associated transitions. Two kinds of transition are assumed on
the printer:

• Transitions from one mode to the sleep mode with closest lower consumption.

• Transitions from one sleep mode to idle mode.

In reality, power consumption often takes the form of a series of pulses, as it is typically
thermostatically controlled. Since the timing of these pulses is hard to predict, we assume a
time-average power consumption for each mode. Figure 2 illustrates a real printer consumption
(Xerox Phaser 4500 with a single sleep mode) during 5 minutes of use (between 11 am and 11:05
am) and the corresponding power consumption model.

In this paper, we denote by:

• m the number of sleep modes,

• a the power consumption in idle mode (Watts),

• bj the power consumption in sleep mode j (Watts),

• cj the energy required to switch from sleep mode j − 1 to sleep mode j (Joules),

• dj the wakeup energy required to switch from sleep mode j to print mode (Joules),

with j = 1, . . . , m. Note that, in the above notations, sleep mode 0 corresponds to idle mode,
and thus one can define b0 = a. These notations are illustrated in Figure 1.

We limit ourselves to timeout strategies consisting in waiting a duration τ (j) from the latest
print onward, before switching into mode j. Since each print request must be processed imme-
diately, the actual switch only occurs if the time between latest print job completion and the
following print request is larger than τ (j). This requires that the sequence (τ (1), . . . , τ (m)) is
increasing. It is also assumed that the sequence (b0, . . . , bm) is decreasing, which implies that
mode j is only reachable from mode j − 1.
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Figure 1: Possible transitions between idle and sleep modes.

1.2 Related work

The issue of power saving strategies has already been addressed in several works. Although
most of them present a very general framework for power management, their applications mainly
focus on hardware device (e.g. CPU, monitors, hard disk drives). A wide range of approaches
are compared in [15], using the following typology of methods:

• Timeout. A timeout period is fixed either using a quantile of the residual time before next
request, or using a parametric function of times between the last two requests and / or
request and timeout [6, 11, 15].

• L-shape. This is a variant of timeout approaches dedicated to request patterns where short
busy periods tend to be followed by a long idle period [19].

• Exponential average. This approach relies on a prediction of next idle period, based on an
average of the previous idle periods with exponential weights [13].

• Stochastic model. These methods aim at finding an optimal probability distribution for
the different actions to perform, given the past actions, states of the system and the ex-
pected power consumption for each action. The different levels of consumption are related
to the notion of state. These approaches mainly rely on the theory of Markov decision
processes [20] or their different variants (continuous time, semi-Markov or piecewise homo-
geneous Markov processes).

• Competitive algorithm. A c-competitive power saving algorithm is such that the power
consumption is less than c times that of an oracle algorithm [14]. An oracle algorithm
considers all random variables, including future observations, as known, and achieves the
minimal possible power consumption.

• Learning tree. Adaptive learning trees transform sequences of idle periods into discrete
events and store them in tree nodes. They predict idle periods using finite-state machines.
This is similar to branch prediction used in microprocessors and selects a path which resem-
bles previous idle periods. At the beginning of an idle period, a learning tree determines
an appropriate sleeping state; this algorithm is capable of controlling multiple sleeping
states [5].

Our method belongs to the category of stochastic models, and combines the principles of continu-
ous time modeling, piecewise identically distributed times between requests and Markov decision
processes.

In [2], a function of a homogeneous Markov process with discrete time and discrete state
space is used to model the sequences of requests. The states represent different levels of requests
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of the device. Markov processes are directly used to model completions of those requests (or
service process), request queues, and decisions. The system performance is also assessed, based
on the waiting time before request completion, and on the number of requests in the queue. In
this context, a strategy is optimal if and only if it minimizes a function of the future expected
power consumption under a performance constraint (where the notions of power consumption
and performance can easily be exchanged). This optimization problem can be seen as a linear
programming optimization problem. Thus, an exact optimal solution can be found in polynomial
time with respect to input length (the input includes the number of actions, states, the number
of requests per time and the queue length).

An extension of this work was proposed in [4] to take into account possible violation of
the homogeneity assumption. This is addressed by a piecewise homogeneous Markov request
process. This work was further extended in [3] using semi-Markov processes for modeling the
dynamics of the states and events (typically the requests). These extensions are still discrete-time
approaches. Continuous-time models were proposed in [17] to represent the requests process (by
a homogeneous Poisson process), the service process and its queue (by Markov processes with
discrete state-space). This paper does not provide details about an algorithm to find a solution
to the optimization problem.

In [21], the decision is based on classification algorithms (logistic regression, k-nearest-neighbors
or classification trees). A sample of vectors is used to train the system. This vector is composed
of characteristics that reflect the state of activity of the user, and in the learning set, the action
to perform (turn the device on or off). The time since last request of the device was also added
to the vector of characteristics. This approach is compared with a so-called “timeout-based strat-
egy” as defined in [15]. All those approaches take into account the system performance to assess
the quality of the method for a given value of power saving, except [17]. In the context of power
management for printers, the duration of a CPU cycle is negligible compared to the time between
requests. Therefore, a continuous-time model is a natural way to model the request process.

In Section 2, we present a stochastic model for the requests that extends the piecewise ho-
mogeneous Markov process presented in [4]. A method is derived for optimally updating the
timeout period after each request in the case of one single sleep mode. The results are extended
to an arbitrary number of sleep modes. Then a model is proposed for assessing user impact.

In Section 3, particular processes are considered to model the request process: independent
models, or hidden Markov models to account for possible temporal heterogeneity. We pay par-
ticular attention to parametric models which allow fast update of the timeout. For independent
Weibull-distributed times between requests, an explicit formula is provided for the optimal time-
out. More generally, the optimal timeout is the solution of a non-linear equation that depends
on the model parameters, as estimated by maximum likelihood. In this case, the optimal time-
out has no closed form and has to be approximated by numerical methods. In Section 4, two
methods are proposed for the comparison of power management strategies. The former is based
on out-of-sample prediction of power consumption under different policies. The latter is based
on the number of wrong decisions of both types, and on the numbers of shutdowns. The results
highlight the good performance of the method based of a fixed timeout period, computed from
a parametric statistical model. Possible extensions or alternatives to our approach are provided
in the discussion. Proofs are postponed to the Appendices A and B. In Appendix C, we show
how our approach is related to the theory of Markov decision processes.
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2 Stochastic model

The print process model is a particular case of a point process, similar to some reliability models,
see for instance [18], Chapter 7. In our framework, the failure sequence is replaced by the print
request sequence {Ti}i≥1, with the convention T0 = 0 and where i denotes the index of the print
request. Equivalently, the print process can be described by

• {Xi}i≥1, where Xi = Ti − Ti−1 is the time between the (i− 1)th and the ith print request,

• {Nt}t≥0, the counting process of print requests, where ∀t ∈ R+, Nt = max{i ∈ N; Ti ≤ t}
is the cumulative number of print requests between 0 and t.

As a consequence of the previous assumptions, the process {Nt}t≥0 is simple: there cannot be
more than one print request at a time with probability 1. The print process is depicted in
Figure 3. In the next section, we limit ourselves to a single-sleep-mode printer. This approach is
then extended to several sleep modes in Section 2.2 and to the quantification of the user impact
in Section 2.3.

2.1 Single sleep mode

We consider a framework with one sleep mode, so that m = 1, where the timeout period τ (1) may

be updated after each print request i. Consequently, this timeout period will be denoted by τ
(1)
i .

Given a probabilistic model for the print process {Xi}i≥1, we aim at optimizing over τ
(1)
i the ex-

pectation of the energy consumption, given the past of the print process X1:i−1 := (X1, . . . , Xi−1),
between two successive print jobs i − 1 and i. To compute this energy consumption, two cases
arise:

• Either the time Xi between two successive printings is larger than τ
(1)
i . Then the printer

stays in idle mode for τ
(1)
i before switching into sleep mode. After a delay Xi − τ

(1)
i , the

print job is processed and the printer returns to idle mode j = 0. Consequently, the energy

consumption in this case is aτ
(1)
i + c1 + b1(Xi − τ

(1)
i ) + d1.

• Or Xi is smaller than or equal to τ
(1)
i . Then the printer stays in idle mode for Xi before

processing the job. Consequently, the energy consumption in this case is aXi.

These two cases are illustrated in Figures 4(a) and 4(b). As a conclusion, the consumption h
between two successive printings is given by:

h(Xi, τ
(1)
i ) = (aτ

(1)
i + c1 + b1(Xi − τ

(1)
i ) + d1)11{Xi>τ

(1)
i

}
+ (aXi)11{Xi≤τ

(1)
i

}
. (1)

Let fXi|X1:i−1
be the density function of Xi given X1:i−1, FXi|X1:i−1

be its cumulative distribution
function, and

zXi|X1:i−1
(x) = lim

ε→0

P(x ≤ Xi ≤ x + ε|X1:i−1, Xi > x)

ε
=

fXi|X1:i−1
(x)

1 − FXi|X1:i−1
(x)

(2)

be the failure rate function in reliability theory [1], Chapter 2. In our case, it can be interpreted
as a printing rate function. We also define ∆t1 = (c1 + d1)/(a − b1). In a static analysis of
the printer energy consumption, ∆t1 is the time after which switching into sleep mode is less
expensive than staying in idle mode (see Figure 5).
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Lemma 1 The expected consumption between two successive printings given X1:i−1 is:

E

(

h(Xi, τ
(1)
i )|X1:i−1

)

= (a − b1)

[

(

1 − FXi|X1:i−1
(τ

(1)
i )
)(

∆t1 + τ
(1)
i

)

−

∫ +∞

τ
(1)
i

xfXi|X1:i−1
(x)dx

]

+ aE(Xi|X1:i−1).

(3)

Formally, an optimal timeout period is defined by:

τ̂
(1)
i ∈ arg min

τ
E(h(Xi, τ)|X1:i−1) (4)

and can be computed based on the following result.

Proposition 1 Two situations are examined, depending on the behavior of the printing rate
function.

• Suppose that the printing rate function zXi|X1:i−1
(x) is decreasing in x. Three cases occur:

– If
1

∆t1
< lim

x→+∞
zXi|X1:i−1

(x), then τ̂
(1)
i = +∞.

– If lim
x→+∞

zXi|X1:i−1
(x) ≤

1

∆t1
≤ zXi|X1:i−1

(0), then

τ̂
(1)
i is the unique solution of zXi|X1:i−1

(τ̂
(1)
i ) =

1

∆t1
.

– If zXi|X1:i−1
(0) <

1

∆t1
, then τ̂

(1)
i = 0.

• Suppose that zXi|X1:i−1
is increasing or constant. Four cases occur:

– If
1

∆t1
< zXi|X1:i−1

(0), then τ̂
(1)
i = +∞.

– If zXi|X1:i−1
(0) ≤

1

∆t1
≤ min

(

lim
x→+∞

zXi|X1:i−1
(x),

1

E(Xi|X1:i−1)

)

, then τ̂
(1)
i = +∞.

– If max

(

zXi|X1:i−1
(0),

1

E(Xi|X1:i−1)

)

<
1

∆t1
≤ lim

x→+∞
zXi|X1:i−1

(x), then τ̂
(1)
i = 0.

– If lim
x→+∞

zXi|X1:i−1
(x) <

1

∆t1
, then τ̂

(1)
i = 0.

It appears that three situations are possible. Either the times between printings are so small on

average that the printer should not enter sleep mode (τ̂
(1)
i = ∞), or they are large on average, and

the best strategy is to enter sleep mode immediately (τ̂
(1)
i = 0). The intermediate case provides

non-degenerate optimal timeouts defined by the equation zXi|X1:i−1
(τ̂

(1)
i ) = 1/∆t1. This result

highlights the separate roles of the printer characteristics (summarized by ∆t1) and the user
behavior (modeled through the printing rate function zXi|X1:i−1

).
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2.2 Multiple sleep modes

In this section, the results derived for single-mode printers are extended to multiple sleep mode
printers. As in the previous paragraph, each timeout period τ (j) may be updated after each

print request i and will be denoted by τ
(j)
i . To compute the energy consumption, three cases are

considered:

• If the time Xi between two successive printings is smaller than τ
(1)
i , then the printer stays

in idle mode for Xi before processing the job. Consequently, the energy consumption in
this case is aXi.

• If Xi is larger than τ
(1)
i and smaller than τ

(m)
i , then the printer stays in idle mode for τ

(1)
i

before switching into the first sleep mode. Afterward, the printer successively switches into

the r following sleep modes where r is such that τ
(r)
i < Xi < τ

(r+1)
i . The time spent in

each sleep mode is τ
(j)
i − τ

(j−1)
i if 2 ≤ j ≤ r − 1 and Xi − τ

(j)
i if j = r. Consequently, the

energy consumption in this case is

aτ
(1)
i +

r−1
∑

j=1

(

cj + bj(τ
(j+1)
i − τ

(j)
i )
)

+ cr + br(Xi − τ
(r)
i ) + dr.

• Finally, if Xi is larger than τ
(m)
i , then the printer stays in idle mode for τ

(1)
i before switching

into the first sleep mode. Afterward, the printer successively switches into the m sleep

modes. As in the previous case, the time spent in each sleep mode is τ
(j)
i − τ

(j−1)
i if

2 ≤ j ≤ m − 1 and Xi − τ
(j)
i if j = m. Consequently, the energy consumption is

aτ
(1)
i +

m−1
∑

j=1

(

cj + bj(τ
(j+1)
i − τ

(j)
i )
)

+ cm + bm(Xi − τ
(m)
i ) + dm.

To summarize, the consumption h between two successive print requests is given by:

h(Xi, τ
(1)
i , . . . , τ

(m)
i ) = aXi11{Xi≤τ

(1)
i

}

+
m−1
∑

r=1



aτ
(1)
i +

r−1
∑

j=1

(

cj + bj(τ
(j+1)
i − τ

(j)
i )
)

+ cr + br(Xi − τ
(r)
i ) + dr



 11
{τ

(r)
i

<Xi≤τ
(r+1)
i

}

+



aτ
(1)
i +

m−1
∑

j=1

(

cj + bj(τ
(j+1)
i − τ

(j)
i )
)

+ cm + bm(Xi − τ
(m)
i ) + dm



 11
{Xi>τ

(m)
i

}
. (5)

Introducing ∆tj = (cj + dj − dj−1)/(bj−1 − bj) for j = 1, . . . , m with the conventions b0 = a and
d0 = 0, we have:

Lemma 2 The expected consumption between two successive print requests given X1:i−1 is:

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

=

m
∑

j=1

(bj−1 − bj)

[

(

1 − FXi|X1:i−1
(τ

(j)
i )
)(

∆tj + τ
(j)
i

)

−

∫ +∞

τ
(j)
i

xfXi|X1:i−1
(x)dx

]

+ aE(Xi|X1:i−1). (6)
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It is remarquable that the expected energy consumption is expanded as the sum of m terms,
each of them depending on one and only one timeout. Thus, the optimization problem

(τ̂
(1)
i , . . . , τ̂

(m)
i ) = argmin

(τ
(1)
i

,...,τ
(m)
i

)

E(h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1) (7)

can be split into m optimization problems leading to explicit optimal timeouts.

Proposition 2 Two situations are examined, depending on the behavior of the printing rate
function.

• Suppose that the printing rate function zXi|X1:i−1
(x) is decreasing in x. For each j =

1, . . . , m three cases occur:

– If
1

∆tj
< lim

x→+∞
zXi|X1:i−1

(x), then τ̂
(j)
i = +∞.

– If lim
x→+∞

zXi|X1:i−1
(x) ≤

1

∆tj
≤ zXi|X1:i−1

(0), then

τ̂
(j)
i is the unique solution of zXi|X1:i−1

(τ̂
(j)
i ) =

1

∆tj
.

– If zXi|X1:i−1
(0) <

1

∆tj
, then τ̂

(j)
i = 0.

• Suppose that zXi|X1:i−1
is increasing or constant. For each j = 1, . . . , m four cases occur:

– If
1

∆tj
< zXi|X1:i−1

(0), then τ̂
(j)
i = +∞.

– If zXi|X1:i−1
(0) ≤

1

∆tj
≤ min

(

lim
x→+∞

zXi|X1:i−1
(x),

1

E(Xi|X1:i−1)

)

, then τ̂
(j)
i = +∞.

– If max

(

zXi|X1:i−1
(0),

1

E(Xi|X1:i−1)

)

<
1

∆tj
≤ lim

x→+∞
zXi|X1:i−1

(x), then τ̂
(j)
i = 0.

– If lim
x→+∞

zXi|X1:i−1
(x) <

1

∆tj
, then τ̂

(1)
j = 0.

2.3 Modeling user impact

In reality, transitions between sleep and idle modes may delay printing. The more frequently
the system switches between sleep and idle modes, the more the user will be impacted. We thus
propose to model this impact by a penalty term in the energy consumption. For the sake of
simplicity, let us consider the case of a single-sleep-mode printer. We further assume that the
user impact is proportional to the number of shutdown transitions. With such a model, the
consumption between two successive print requests (1) is replaced by the cost

g(Xi, τ
(1)
i ) = h(Xi, τ

(1)
i ) + δ11

{Xi>τ
(1)
i }

, (8)

where δ > 0 is the weight assigned to the user impact in the energy consumption. The expected
consumption including this user impact is given in the next Lemma.
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Lemma 3 The expected penalized consumption between two successive print requests given X1:i−1

is:

E

(

g(Xi, τ
(1)
i )|X1:i−1

)

= (a − b1)

[

(

1 − FXi|X1:i−1
(τ

(1)
i )
)(

∆̃t1 + τ
(1)
i

)

−

∫ +∞

τ
(1)
i

xfXi|X1:i−1
(x)dx

]

+ aE(Xi|X1:i−1)

(9)

with ∆̃t1 = (c1 + d1 + δ)/(a − b1).

It turns out that penalizing the consumption by the number of shutdowns can be interpreted as
increasing the transition consumption c1 + d1 by δ. As a consequence, Proposition 1 still holds
with ∆t1 replaced by ∆̃t1. In particular, when there is a non-degenerate optimal timeout period

such that zXi|X1:i−1
(τ̂

(1)
i ) = 1/∆̃t1, the optimal timeout period is an increasing function of δ.

3 Modeling the print process

According to the previous Section, the optimal timeout period depends on the model for the print
process through the printing rate function. In this Section, three different print process models
are proposed. In the first two approaches, times between printings are supposed independent.
In the last approach, a hidden Markov chain (HMC) is used to model dependencies between
printing times. The HMC states can be interpreted as specific states of activity like business
hours or night periods. While we only consider a single sleep mode, extension to multiple sleep
modes is straightforward.

3.1 Renewal process

In this paragraph, the times between print requests are supposed independent. The point process
{Nt}t≥0 is then a particular case of renewal process (see [18], Chapter 7). The random variable
modeling the times between printings is denoted by X , since its distribution does not depend
on the index i of the print job. Similarly, the optimal timeout period is denoted by τ̂ (1). In the
following, the optimal timeout is studied under the assumptions that X is Weibull or Gamma
distributed.

3.1.1 Weibull distribution

The probability density function of the two-parameter Weibull distribution is parameterized as

fX(x) = αλαxα−1e−(λx)α

for x ≥ 0, where λ > 0 is a scale parameter and α > 0 is referred to as the shape parameter.
Let us recall that, in this case the mean time between printings is E(X) = Γ(1 + 1/α)/λ and the
printing rate function is zX(x) = αλαxα−1 for x ≥ 0. Note that this function can be decreasing
if α ∈ (0, 1), increasing if α > 1 or constant if α = 1 (exponential distribution). As a consequence
of Proposition 1, we have

τ̂ (1) =

∣

∣

∣

∣

∣

∣

(αλα∆t1)
1/(1−α)

if α ∈ (0, 1)
0 if α ≥ 1 and ∆t1 < Γ(1 + 1/α)/λ
+∞ if α ≥ 1 and ∆t1 > Γ(1 + 1/α)/λ.

(10)

Of course, in practical situations, the parameters α and λ appearing in (10) are replaced by their
maximum-likelihood estimates, see Section 4 for examples.
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3.1.2 Gamma distribution

The probability density function of the two-parameter Gamma distribution is parameterized as

fX(x) =
1

βαΓ(α)
xα−1e−x/β

for x ≥ 0, where β > 0 is a scale parameter and α > 0 is the shape parameter. In this case,
we have E(X) = αβ but no closed-form expression for the printing rate function is available for
non-integral α. Nevertheless, it can be shown [1] that, similarly to the Weibull case, the printing
rate function is decreasing if α ∈ (0, 1), increasing if α > 1 or constant if α = 1 (exponential
distribution). Thus,

τ̂ (1) =

∣

∣

∣

∣

∣

∣

z−1
X (1/∆t1) if α ∈ (0, 1)

0 if α ≥ 1 and ∆t1 < αβ
+∞ if α ≥ 1 and ∆t1 > αβ,

(11)

the printing rate function zX(x) being evaluated numerically through the use of the incomplete
gamma function. The computation of τ̂ (1) is achieved with a dichotomy procedure.

3.2 Hidden Markov model

The assumption of a constant printing frequency throughout day and night does not seem realistic
a priori. It can be expected that during given periods, users will tend to print more often or less
often than average. Such periods can be interpreted in terms of activity levels, corresponding to
different levels of printing rates:

• rush hours with short times between printings, mainly due to users printing a sequence of
documents in a short period of time;

• normal hours with medium times between printings;

• off-peak times with long times between printings, due to night or weekends.

This corresponds to a heterogeneous distribution of the times between printings, such that
there exist some homogeneous periods (i1, . . . , ik) where (Xi1 , ..., Xik

) have the same distribution.
Those characteristics can be modeled by a Hidden Markov Chain (HMC) print process. In this
model, activity periods are defined by non-visible factors, such as the amount of users at a given
time in the printer network (which is related to working hours and can vary with the company),
the type of users, country or even site specificities. In HMC modeling, these non-visible factors
must be deduced from the observed variables. In our case, one might imagine that periods with
comparable times between printings tend to correspond to the same level of activity.

3.2.1 Definition

The existence of different levels of activity is modeled through a discrete state-space process
(S1, ..., Sn) = S1:n, which is assumed Markovian. Here, Si represents the state of the process at
ith printing request. Since no direct information is available in the data about the precise level
of activity at a given time t, this Markov chain must be considered hidden. The hidden chain
is related to the print process (X1, ..., Xn) = X1:n through the conditional distributions of Xi

given Si = k for each possible value k of the Markov chain. Those distributions are specified by
a parametric family (fθ)θ∈Θ of probability density functions.

Formally, an HMC is defined by two processes X1:n (observed process) and S1:n (hidden
process) such that:

10



• S1:n is a homogeneous Markov chain with finite state space {1, . . . , K}, with transition
matrix A and a distribution π = (π1, ..., πK) for the initial state S1. Here, S1:n is assumed
ergodic, with stationary distribution π.

• given S1:n = s1:n, the Xi are mutually independent, and independent of the (Si′)i′ 6=i, with
conditional probability density functions fθsi

(called emission distributions).

The set of parameters of this model is η = (π, A, θ1, ..., θK).
Since stationarity is assumed for the hidden process, the observed process is also stationary.

However, the observed process is non-stationary given S1:n = s1:n; this is why the above HMC
can be used to model changes in the printing rate. Other models can also achieve this purpose,
e.g. the non-stationary (piecewise-stationary) Markovian model based on sliding windows in [4].

3.2.2 Parameter estimation

We use the general notation P() to denote either a probability mass function or a probability den-
sity function, the true nature of P() being obvious from the context. The parameter is estimated
by likelihood maximization, using the Expectation Maximization (EM) algorithm for hidden
Markov chains [8]. This iterative algorithm starts from an initial value η(0) of the parameter and
creates a sequence (η(m))m≥0 whose likelihood grows. The sequence (η(m))m≥0 converges to a
consistent solution of the likelihood equations when η(0) is close to the optimal solution. At each
iteration m, it proceeds as follows:

• Expectation (E) step: determination of the Q function defined by:

Q(η, η(m)) = Eη

[

log Pη(m)(Sn
1 = sn

1 , Xn
1 = xn

1 )|Xn
1 = xn

1

]

=
K
∑

k=1

log πkPη(m)(S1 = k|Xn
1 = xn

1 )

+

n−1
∑

i=1

∑

k,l

log Ak,lPη(m)(Si = k, Si+1 = l|Xn
1 = xn

1 )

+

n
∑

i=1

K
∑

k=1

log fθk
(x)Pη(m)(Si = k|Xn

1 = xn
1 ) (12)

• Maximization (M) step: maximization of Q(η, η(m)) with respect to η:

η(m+1) = argmax
η

Q(η, η(m)) (13)

3.2.3 Adaptive timeout period using HMCs

Since the case of printers with multiple sleep modes is not considered, the timeout period will
be denoted by τ rather than τ (j). This Section details how to exploit the hidden state values to
propose adaptive timeout periods τ̂i that are updated after each printing job i. Those strategies
basically consist in predicting the time to the next print request Xi, from the past observed
values X1:i−1. We propose three approaches to dynamically re-estimate τi.
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a) Viterbi-based approach. This approach consists in deriving a prediction Ŝi for the next
the state value as follows:

Ŝi = arg max
k

(

max
s1,...,si−1

P(S1:i−1 = s1:i−1, Si = k|X1:i−1)

)

= arg max
k

(

max
j

(

max
s1,...,si−2

AjkP(S1:i−2 = s1:i−2, Si−1 = j|X1:i−1)

))

(14)

This value is computed by the Viterbi algorithm [8]. The predicted distribution for Xi is then
fθ

Ŝi
.

b) Filtering-based approach. This approach also consists in predicting next state value Si,
and in deriving a prediction for the time to next print request Xi from its conditional distribution
given Si. It differs from the Viterbi-based approach in the prediction method for Si, characterized
by

S̃i = arg max
k

P(Si = k|X1:i−1) = arg max
k

K
∑

j=1

AjkP(Si−1 = j|X1:i−1) (15)

where the algorithm for computing P(Si−1 = j|X1:i−1) is the same than in the E step of the EM
algorithm (forward recursion in [8]). The predicted distribution for Xi is also fθ

Ŝi
.

c) Approach based on full conditional distribution. This approach consists in computing
the printing rate function of Xi given X1:i−1. The density function of this distribution is given
by:

fXi|X1:i−1
(x) =

K
∑

k=1

fθk
(x)βi(k) (16)

where βi(k) = P(Si = k|X1:i−1) is the filtered probability, computed in the forward recursion.
Thus, the cumulative distribution function is:

FXi|X1:i−1
(x) =

K
∑

k=1

Fθk
(x)βi(k) (17)

and the printing rate function is:

zXi|X1,...,Xi−1
(x) =

fXi|X1:i−1
(x)

1 − FXi|X1:i−1
(x)

(18)

Each of the three approaches results into an estimated density fi for the predictive distribution
of Xi, associated with a printing rate function zi. The optimal timeout period τ̂i is given by

Proposition 1, replacing τ̂
(1)
i by τ̂i and zXi|X1:i−1

by zi.
In the approach based on full conditional distributions, even in the case of Weibull or Gamma

observation distribution families (fθ)θ∈Θ, we could not derive general conditions on the param-
eters (θk)k=1,...,K , under which equation

zXi|X1:i−1
(τ̂

(1)
i ) =

1

∆t1

has a unique solution. Thus, numerical methods have to be used, to determine whether the
optimal timeout period is null, positive or infinite.
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4 Experiments

In this section, our methodology is illustrated by experiments on two real datasets. The ef-
ficiencies of the timeout strategies introduced in Section 3 are compared in terms of energy
consumption. These strategies are also compared with three alternatives called Energy star
method, oracle method and exhaustive search method. In the Energy star method, the timeout
period is fixed to 1800s in order to comply with the Energy Star standard. In the oracle method,
the future of the print process is supposed to be known. The printer switches into sleep mode
j before print job i if Xi > ∆tj . Let us highlight that this reference method provides a lower
bound on the consumption but cannot be used in practice. Finally, the exhaustive search method
consists in finding the timeout that minimizes the actual consumption thanks to an exhaustive
search. Moreover, the method mentioned in Section 3.1 will be called static method, while the
methods described in Section 3.2.3 will be referred to as the Viterbi method, filtering method and
conditional method.

In both datasets, times between printings are deduced from the print logs, recorded during the
whole of the year 2006 on XRCE print infrastructure which is composed of 14 printers and involves
155 users. These data have been collected by the Xerox Job Tracking Agent2. It is an office print
tracking tool that allows the capture and recording of information about end users’printing
behaviors. Additionally, real power consumption has been measured on two different printer
models with a specific power metering unit3. The first printer is a Xerox WorkCentre 238 model
with two sleep modes. Its power consumption is a1 = 270W in idle mode, b1 = 150W in the
first sleep mode and b2 = 50W in the second sleep mode. The energy required to switch from the
first and second sleep modes to idle mode are respectively d1 = 40kJ and d2 = 200kJ . Energies
to enter sleep modes are negligible, c1 = c2 = 0. The second printer is a Phaser 4500 model
with one single sleep mode. Its power consumption is a1 = 80W in idle mode, b1 = 16W in
sleep mode. The energy required to switch from sleep mode to idle mode is d1 = 25.3kJ and the
energy to enter sleep mode is negligible, c1 = 0.

Static, Viterbi, filtering and conditional methods require the selection of a distribution for
the times between print requests. This choice has been made using a goodness-of-fit χ2 test,
whose results are summed up in Table 1.

Distribution P-value
Phaser 4500 WorkCentre 238

Gamma 8e-02 8e-04
Weibull 1e-07 7e-04

Lognormal 2e-32 2e-04
Normal 5e-75 2e-11

Exponential 1e-89 8e-13

Table 1: P-values obtained with the χ2 goodness of fit test for the selection of a distribution for the
times between printings.

It appears that Weibull and Gamma are the most appropriate distributions. In the following,
a Weibull distribution is adopted to model the distribution of the times between printings, when
those are assumed independent. A Gamma distribution would also be suitable but would not
allow the derivation of an explicit timeout (see paragraph 3.1.2). The considered HMC model has

2http://www.consulting.xerox.com/print-tracking/
3Fluke 43B Power Quality Analyzer (http://us.fluke.com)
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also Weibull emission distributions, and three states, which can be interpreted as rush, normal
and calm periods, from the point of view of the print requests. Note that the number of states
could also be selected using penalized likelihood criteria [7] or cross-validation [10]. The M step
for parameter estimation by the EM algorithm is given in Appendix B. Paragraph 4.1 is dedicated
to the analysis of the out-of-sample performance of the above-mentioned methods without taking
user impact into account. In paragraph 4.2, the influence of the penalty term is examined under
several points of view: consumption, number of shutdowns, number of false wakeups and false
shutdowns.

4.1 Cross-validated assessment of different strategies

The goal of this experiment is to investigate the methods’ performance on future data, and thus to
assess their generalization capacities. We focus on the Xerox WorkCentre 238 dataset (n = 3910
print jobs) and user impact is not considered. Its predefined timeouts according to Energy Star
environmental standards is 15 minutes for the first sleep mode and 30 minutes for the second.
The test procedure is multi-fold cross-validation [22], as follows: the dataset is divided into L
contiguous subsamples of equal size. Then for each subsample ` ≤ L−1, the method parameters
are estimated on this subsample while the consumption is computed on subsample ` + 1. Three
cases are considered: L = 10 subsamples of size 391, L = 30 subsamples of size 121 and L = 60
subsamples of size 61. Results are summarized in Tables 2 and 3.

It appears on Table 2 that exhaustive search, static, filtering and conditional methods are
the most efficient ones in terms of consumption. The consumption associated to these methods
is about 4.5% larger than the lower bound given by the Oracle method. This slight increase of
the optimal consumption indicates that the Weibull distribution fits the inter-print distribution
well. Besides, exhaustive search, static and conditional methods are quite robust since they yield
a constant consumption whatever the subdivision is. Moreover, the standard deviation of the
consumption represents less than 2% of the total consumption. Among these three methods, the
static one is a thousand time faster than the other ones. Experiments were conducted in Matlab
on an Intel Pentium 4 running at 3GHz.

Focussing on Table 3, it appears that the timeout periods provided by the static and ex-
haustive search methods are approximatively independent from the subdivision of the sample,
for both methods. Let us emphasize that static timeouts benefit from small standard deviation
whereas exhaustive search timeouts suffer from a high variability. As a conclusion, static method
seems to be an accurate, reliable and fast method to select the optimal timeouts. A decrease of
about 20 % of power consumption can be achieved with regard to the Energy Star method.
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Total consumption Standard deviation Mean computation time
(kWh) of consumption by sample (ms)

Sample size 391 121 61 391 121 61 391 121 61

Energy Star 493 493 493 7.82 4.63 2.99 1.0e–01 1.2e–01 1.4e–01

τ (1) = τ (2) = 0 427 427 427 6.74 3.74 2.54 1.1e–01 1.3e–01 1.4e–01
Oracle 373 373 373 6.92 3.97 2.65 3.8e–01 3.4e–01 2.8e–01

Exhaustive search 404 406 405 6.81 3.97 2.65 8.6e+03 6.9e+03 6.6e+04
Static 404 404 405 6.76 3.96 2.66 1.2e+01 1.6e+01 1.9e+01
Viterbi 444 426 574 11.18 4.31 9.30 2.0e+05 7.6e+03 3.9e+03

Filtering 411 430 456 6.96 5.03 3.37 1.8e+04 7.3e+04 3.7e+03
Conditional 408 409 410 6.69 3.92 2.69 3.1e+04 1.2e+04 6.1e+03

Table 2: Energy consumption and mean computation time associated to the different strategies.

Mean timeouts Standard deviation
(s) of timeouts

Sample size 391 121 61 391 121 61

Exhaustive search
τ (1) 26 25 24 13 17 21

τ (2) 203 208 218 55 108 121

Static
τ (1) 11 12 12 2 5 7
τ (2) 179 188 192 33 64 84

Table 3: Timeout associated to the different strategies.

4.2 Assessment of user impact

In this Section, the behavior of the methods is compared when taking user impact into account
on the Phaser 4500 printer. Our test procedure is the following: The dataset (n = 2320) is
divided into 2 subsamples with the same size. Parameters of each method are estimated on the
first subsample, while the total consumption is computed on the second one as the penalty δ
varies (see Paragraph 2.3).

The variations of the number of shutdowns (or equivalently wakeups) as a function of the
penalty δ are depicted in Figure 6. Clearly, the larger δ is, the smaller the number of shutdown
is. Unsurprisingly, small numbers of shutdowns correspond to large timeouts (Figure 7) and thus
large consumptions (Figure 8). Even though, for a fixed penalty δ, the different methods yield
different numbers of shutdowns and different consumptions, it appears on Figure 9 that, for a
fixed number of shutdowns, the consumption is about the same whatever the method used. To
compare the different methods, we propose a graphical comparison based on an adaption of ROC
(Receiver Operating Characteristic) curves [12] to our framework. To this end, let us denote by

α = P(Xi > ∆t|Xi < τi) the probability of a type I error at ith print request. In this context,
this error occurs when a printer stays in idle mode, whereas it should enter into sleep mode.
Similarly, the probability of a type II error is given by β = P(Xi < ∆t|Xi > τi). In the case
of type II errors, the printer enters into sleep mode, whereas it should stay idle. Note that the
number Nwd of errors of type II is used in [15] as a measure of performance of several algorithms
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for power management. In practice, α and β are estimated by their empirical counterparts. The
ROC curve (Figures 10 and 11) is built for each method by drawing 1− β as a function of α by
letting the penalty δ vary. The best method is the one whose ROC curve is the closest to the
vertical line α = 0 and to the horizontal line 1 − β = 0. At the opposite, the worst method is
the one whose ROC curve is the closest to the diagonal line 1 − β = α. Here, it appears that
static and Viterbi methods are the best ones, since they yield the best compromise between the
two risks. Keeping in mind the conclusions of the previous paragraph, it seems that the static
method should be preferred since it is the simplest and most robust one.

In the case where no penalty due to user impact is applied (δ = 0), the consumption corre-
sponding to the Energy Star timeout is 20 % higher than that corresponding to the static method.
Moreover, the optimal timeout period provided by the static method is τ = 10s. The associated
value of the consumption (78.1kWh) is only 0.5% lower that the consumption achieved by setting
τ = 0s, which corresponds to the so-called eager policy in [2]. The eager policy, considered as
“often unacceptable” by the authors in their context, is actually nearly optimal for our dataset.
However, this result is specific to the considered printer and user behavior: in paragraph 4.1, the
eager policy yields a waste of 5.2% in the energy consumption, compared to the static method
(see Table 2).

5 Conclusion and discussion

In this paper, we have proposed a statistical cost-based analysis to determine optimal timeout
period for devices. This method takes into account the real usage patterns in order to optimize
power consumption. In a first approach, times between requests were supposed independent and
the timeout period inferred accordingly. We also proposed three approaches to dynamically re-
estimate an optimal timeout period using a hidden Markov chain to model print events. Finally,
a methodology to take into account user impact due to power saving exit transitions is also
included. It allows the dynamic timeout period methods to achieve a trade-off between user
impact and power consumption, depending on the user’s priorities.
From the application of our methods to two real datasets composed of printing requests, it
can be remarked that the static method is the fastest and most accurate method to select the
optimal timeout periods. Moreover it is rather simple to set up in practice. Indeed, it only learns
the parameters of the distribution of the times between printings by the Maximum likelihood
estimation method, and deduces the optimal timeout period according to the estimated value of
the printing rate.

The theoretical formulation of power consumption in terms of a print process can be consid-
ered as a stepping stone for more complex models that will allow the model to progressively gain
completeness in the consideration of other several cost factors, as for example device aging due
to increased transitions from power saving mode due to a more dynamic power saving policy. We
have also established the foundations to develop in the future a power saving strategy capable
of performing accurate prediction of power saving entry as described in this article, but also of
optimal power saving exit.

Other refinements of our approach may include the use of covariates (e.g. hour, day of the
week), to adapt the timeout period to different conditions identified a priori (contrary to HMCs
where the conditions can be interpreted a posteriori). The sliding windows approach of [4] is
also an alternative for adaptive timeout computation.

Instead of a continuous-time framework where the decision corresponds to the value of a
timeout period, a discrete-time framework could be considered. After each time step, the decision
would consist in switching or not the printer into sleep mode. This is the approach chosen in [21].
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The authors claim that the timeout-based policies “not only waste power during the periods of
inactivity, but also needlessly annoy the user when they turn off components at inappropriate
times”. This is only true when the times of future requests are considered as known (oracle point
of view). In the case of unknown times of future requests, the power used to maintain a device
into idle mode cannot be considered a priori as wasted. However, some generalization of our
classical timeout-based approach could be achieved, with potentially better results, by replacing
the assumption of a deterministic timeout period by a stochastic one, whose optimal distribution
would have to be determined.

A further extension of this work is the challenging issue of optimal redirection of print jobs
and power saving policy within a network of printers managed by a server. Given a printing
request, this consists in determining on which printer the job has to be processed, and after what
delay each printer has to be turned into sleep mode, so as to minimize the global consumption.
Modelling this problem should take into account constraints due to user impact, that are partially
related to network connectivity.

Finally, our approach deals separately with model identification (parameter estimation from
trajectories of user requests) and computation of the optimal timeout periods (in a framework
with fixed parameters). As an alternative, a unified model for handling both model identification
and decision taking would be provided by the Bayesian Partially-Observed Markov Decision
Processes (POMDPs) in [16]. Here the non-observed part of the MDP would consist in, firstly, the
unknown parameters, considered as stochastic in a Bayesian framework, and secondly, potential
unknown states as in the HMC models. The benefit of Bayesian POMDPs to our application
would come from taking into account simultaneously the different sources of uncertainty: states
of the printer and of the user, value of the parameter and of the reward.
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A Appendix: Proofs

Proof of Lemma 1. From (1), we have

E
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h(Xi, τ
(1)
i )|X1:i−1

)

= E

((

aτ
(1)
i + c1 + b1(Xi − τ

(1)
i ) + d1

)

11
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}
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(1)
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)

+ b1E
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}
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=
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)

+ aE(Xi|X1:i−1) + (b1 − a)E
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Xi11{Xi>τ
(1)
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}
|X1:i−1

)

.
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Letting ∆t1 = (c1 + d1)/(a − b1), the expected consumption can be rewritten as

E

(

h(Xi, τ
(1)
i )|X1:i−1

)

= (a − b1)
(

(∆t1 + τ
(1)
i )P

(

Xi > τ
(1)
i |X1:i−1

)

− E

(

Xi11{Xi>τ
(1)
i

}
|X1:i−1

))

+ aE(Xi|X1:i−1)

= (a − b1)

(

(

1 − FXi|X1:i−1
(τ

(1)
i )
)

(∆t1 + τ
(1)
i ) −

∫ +∞

τ
(1)
i

xfXi|X1:i−1
(x)dx

)

+ aE(Xi|X1:i−1),

and the conclusion follows.

Proof of Proposition 1. Differentiating E(h(Xi, τ
(1)
i )|X1:i−1) with respect to τ

(1)
i yields

dE

(

h(Xi, τ
(1)
i )|X1:i−1

)

dτ
(1)
i

= (a − b1)
(

1 − FXi|X1:i−1
(τ

(1)
i )
)(

1 − ∆t1zXi|X1:i−1
(τ

(1)
i )
)

. (19)

Let us recall that a > b1. Two main cases are considered.

• Suppose that zXi|X1:i−1
is decreasing. Three situations occur:

– If 1/∆t1 < lim
x→+∞

zXi|X1:i−1
(x), then the derivative (19) is negative, the expected con-

sumption is a decreasing function of τ
(1)
i and thus τ̂

(1)
i = +∞.

– If lim
x→+∞

zXi|X1:i−1
(x) ≤ 1/∆t1 ≤ zXi|X1:i−1

(0), then the following equation

zXi|X1:i−1
(τ

(1)
i ) = 1/∆t1 (20)

has an unique root in (0, +∞) and the expected consumption is a concave function of

τ
(1)
i . As a consequence, τ̂

(1)
i is the unique solution of (20).

– Finally, if zXi|X1:i−1
(0) < 1/∆t1, then the derivative (19) is positive, the expected

consumption is an increasing function of τ
(1)
i and thus τ̂

(1)
i = 0.

• Suppose that zXi|X1:i−1
is increasing or constant. Three situations occur:

– If 1/∆t1 ≤ zXi|X1:i−1
(0), then the derivative (19) is non-positive, the expected con-

sumption is a non-increasing function of τ
(1)
i and thus τ̂

(1)
i = +∞.

– If zXi|X1:i−1
(0) < 1/∆t1 < lim

x→+∞
zXi|X1:i−1

(x) then equation (20) has an unique root in

(0, +∞) and the expected consumption is a convex function of τ
(1)
i . As a consequence,

τ̂
(1)
i = 0 if E (h(Xi, 0)|X1:i−1) < lim

x→∞
E (h(Xi, x)|X1:i−1) and τ̂

(1)
i = +∞ otherwise.

Since

E (h(Xi, 0)|X1:i−1) − lim
x→∞

E (h(Xi, x)|X1:i−1) = (a − b1)(∆t1 − E(Xi|X1:i−1)),

the conclusion follows.

– Finally, if lim
x→+∞

zXi|X1:i−1
(x) ≤ 1/∆t1, then the derivative (19) is non-negative, the

expected consumption is a non-decreasing function of τ
(1)
i and thus τ̂

(1)
i = 0.
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Proof of Lemma 2. Equation (5) and letting a = b0 yield
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= E (Xi|X1:i−1) − E

(

Xi11{Xi>τ
(1)
i

}
|X1:i−1

)

the expected consumption can be rewritten as

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −
m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+
(

1 − FXi|X1:i−1
(τ

(m)
i )

)





m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm





+

m−1
∑

r=1





(

FXi|X1:i−1
(τ

(r+1)
i ) − FXi|X1:i−1

(τ
(r)
i )
)





r
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr







+ b0E(Xi|X1:i−1).

Splitting the second right-hand term into two parts yields

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+

m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm

+ b0E(Xi|X1:i−1) +

m
∑

r=2

FXi|X1:i−1
(τ

(r)
i )





r−1
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr−1





−

m
∑

r=1

FXi|X1:i−1
(τ

(r)
i )





r
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dr




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and collecting the two last right-hand terms we obtain

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+ b0E(Xi|X1:i−1) +





m
∑

j=1

(

τ
(j)
i (bj−1 − bj) + cj

)

+ dm





− FXi|X1:i−1
(τ

(1)
i )

(

τ
(1)
i (b0 − b1) + d1

)

−

m
∑

j=2

FXi|X1:i−1
(τ

(j)
i )

(

τ
(j)
i (bj−1 − bj) + cj + dj − dj−1

)

.

Finally, letting ∆tj = (cj + dj − dj−1)/(bj−1 − bj) with the convention d0 = 0, we have

E

(

h(Xi, τ
(1)
i , . . . , τ

(m)
i )|X1:i−1

)

= −

m
∑

j=1

(bj−1 − bj)E
(

Xi11{Xi>τ
(j)
i

}
|X1:i−1

)

+

m
∑

j=1

(τ
(j)
i + ∆tj)(bj−1 − bj)

−

m
∑

j=1

(bj−1 − bj)FXi|X1:i−1
(τ

(r)
i )(τ

(j)
i − ∆tj) + b0E(Xi|X1:i−1)

=

m
∑

j=1

(bj−1 − bj)

[

(

1 − FXi|X1:i−1
(τ

(j)
i )
)(

∆tj + τ
(j)
i

)

−

∫ +∞

τ
(j)
i

xfXi|X1:i−1
(x)dx

]

+ b0E(Xi|X1:i−1), (21)

and the conclusion follows.

B Appendix: M step of the EM algorithm for Weibull HMCs.

This paragraph describes the M step of EM algorithm, dedicated to parameter re-estimation in
HMCs, in the case of Weibull emission distributions.
It can be seen from equations (13) and (12), that the re-estimation procedure for the πk and
Ak,l parameters is not specific to Weibull distributions. Consequently the usual formulae (6.14)

and (6.15) in [8] hold. For all k = 1, .., K the new values of parameters (λ
(m+1)
k , α

(m+1)
k ) after m

iterations of the EM algorithm cancel the partial derivatives of the Q function, and thus satisfy
the system:











∑

t
Pη(m)(St = k|Xn

1 = xn
1 )

∂

∂λk
log fλk,αk

(x) = 0

∑

t
Pη(m)(St = k|Xn

1 = xn
1 )

∂

∂αk
log fλk,αk

(x) = 0.
(22)

Let ξ
(t)
k = Pη(m)(St = k|Xn

1 = xn
1 ). Since for Weibull emission distributions,

log fλk,αk
(x) = log(αk) + αk log(λk) + (αk − 1) log(x) − (λkx)αk ,

we have
∂ log fλk,αk

(x)

∂λk
=

αk

λk
− αkxαkλαk−1

k

and
∂ log fλk,αk

(x)

∂αk
=

1

αk
+ log(λk) + log x − (log(λkx))(λkx)αk .
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The first equation of the system (22) can be rewritten as

∑

t

ξ
(t)
k

∂

∂λk
log fλk,αk

(xt) =
∑

t

ξ
(t)
k

[

αk

λk
− αkxαk

t λαk−1
k

]

= 0

⇔
αk

λk

∑

t

ξ
(t)
k − αkλαk−1

k

∑

t

ξ
(t)
k xαk

t = 0 ⇔
∑

t

ξ
(t)
k = λαk

k

∑

t

ξ
(t)
k xαk

t (23)

⇔ λk =

[

∑

t ξ
(t)
k xαk

t
∑

t ξ
(t)
k

]− 1
αk

. (24)

Replacing the expression of λk obtained in equation (24) into the second equation of the sys-
tem (22) yields

0 =
∑

t

ξ
(t)
k

∂

∂αk
log fλk,αk

(xt) =
∑

t

ξ
(t)
k

[

1

αk
+ log λk + log xt − (log(λkxt))(λkxt)

αk

]

=
∑

t

ξ
(t)
k

(

1

αk
+ log xt + log λk

)

− λαk

k

∑

t

ξ
(t)
k xαk

t (log λk + log xt)

=
∑

t

ξ
(t)
k

(

1

αk
+ log xt

)

− λαk

k

∑

t

ξ
(t)
k xαk

t log xt

+ logλk

[

∑

t

ξ
(t)
k − λαk

k

∑

t

ξ
(t)
k xt

αk

]

. (25)

Using equations (23) and (24) in (25) yields

0 =
∑

t

ξ
(t)
k log xt −







∑

t
ξ
(t)
k

∑

t
ξ
(t)
k xαk

t







∑

t

ξ
(t)
k xαk

t log xt +
1

αk

∑

t

ξ
(t)
k

⇔ 0 = αk







∑

t
ξ
(t)
k log xt

∑

t
ξ
(t)
k

−

∑

t
ξ
(t)
k xαk

t log xt

∑

t
ξ
(t)
k xαk

t






+ 1. (26)

Equation (26) has no known solution; hence it has to be solved numerically, by the algorithm
described in [9] in the circumstances.

C Appendix: Markov decision processes

In this Section, a connection between our approach and the theory of Markov decision processes
(MDPs) is established. More specifically, the problem of determining the optimal timeout period
by minimizing the expected consumption up to following request, defined by equation (4), is
shown to be a particular case of an MDP with a continuous action space, if the times between
printings are independent random variables. The value function with (finite) horizon 1 of the
corresponding MDP is shown to be the opposite of the expected future cost. Moreover, this
MDP has a single possible state, which explains why an explicit solution of this problem could
be derived in Section 2.1.
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C.1 General principle

Markov decision processes are a class of optimization problems for controlling the temporal
evolution of an agent in a given environment characterized by a set of states S. At each time
step t, given the state St of the environment, the agent is allowed to perform an action At chosen
from a set A. The chosen action may modify the next state St+1 of the environment, and brings
a scalar reward Rt+1 to the agent. All the quantities At, St and Rt constitute a homogeneous
random process. The problem is to determine the distribution for At that maximizes the expected
future rewards given the current state St.

The process (At, St, Rt)t∈N is supposed to obey the Markov property. Moreover, under the
three following assumptions:

1. the action At+1 is independent on the past of the three processes up to time t, and on
Rt+1, given state St+1;

2. the reward Rt+1 is independent on the past of the three processes up to time t given the
states St and St+1, and given At;

3. St+1 is independent on the past of the three processes up to time t given St and At;

an MDP is totally specified by the following distributions:

• the transition probabilities Pa
ss′ = P(St+1 = s′|St = s, At = a), which define how next

state is affected by current state s and the chosen action a;

• the policy function π(s, a) = P(At = a|St = s), which defines what action to choose given
current state s;

• the reward distribution, i.e. the distribution of Rt+1 given St = s, At = a and St+1 = s′.

The optimization problem associated with this MDP consists in finding the policy π : S ×
A → [0, 1] that maximizes the expected future rewards (under the constraints

∑

a π(s, a) = 1
and ∀(a, s), π(a, s) ≥ 0). The future rewards are modelled through the random variable Rt =
∑∞

k=0 γkRt+k+1, where ∀k, γk represents the weight of the reward after k + 1 time steps. The
sequence (γk)k∈N is referred to the discount sequence. The function to be maximized is called
the value function and is denoted by V π; it corresponds to the expectation of Rt given the value
s of current state. This leads to the following formal definitions:

V π(s) = E(Rt|St = s) =
∞
∑

k=0

γkE(Rt+k+1|St = s) (27)

and π̂(s, .) = arg max
π(s,.)

V π(s). (28)

The reward distribution P(Rt+1|St = s, At = a, St+1 = s′) is only involved through its expec-
tation Ra

ss′ = E(Rt+1|St = s, At = a, St+1 = s′); consequently, only Ra
ss′ needs to be defined

explicitly.
There are two particular cases of interest for the sequence (γk)k∈N:

• ∀k, γk = γk, where 0 ≤ γ < 1. In this case, V π(s) satisfies a fixed point equation known
as the Bellman equation. Generally, no closed form is available for the optimal policy.
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• ∀k, γk = δ0(k) =

{

1 if k = 0

0 otherwise
, where δ denotes the Kronecker symbol. Then, it is

easily shown that:

V π(s) =
∑

a

π(s, a)
∑

s′

Pa
ss′Ra

ss′ . (29)

Lemma 4 In the case where the sequence (γk)k∈N is defined by γk = δ0(k), the optimal policy
is:

π̂(s, a′) =







1 if a′ = arg max
a

∑

s′

Ra
ss′Pa

ss′

0 otherwise.

In the case where the state space is reduced to a singleton S = {1} and where ∀k, γk = γk, the
optimal policy is:

π̂(1, a′) =







1 if a′ = argmax
a

Ra
1,1

0 otherwise.

Proof of Lemma 4. In the case where γk =

{

1 if k = 0

0 else
, then

V π(s) = E(Rt+1|St = s)

=
∑

a

π(s, a)
∑

s′

E(Rt+1|St = s, St+1 = s′, At = a)P(St+1 = s′|St = s, At = a)

=
∑

a

π(s, a)
∑

s′

Ra
ss′Pa

ss′ . (30)

The optimal policy is the policy π maximizing the value function V π:

π̂ = arg max
π

(

∑

a

π(s, a)
∑

s′

Ra
ss′Pa

ss′

)

with
∑

a

π(s, a) = 1 and π(s, a) ≥ 0 ∀(s, a).

In the case where the state space is reduced to a singleton S = {1}, and if γk = γk ∀k, the
optimal policy is, from Bellman equation (see [20]):

V π(1) =
∑

a

π(s, a)
∑

s′

Pa
ss′ [Ra

ss′ + γV π(s′)]

=
∑

a

π(1, a)Ra
1,1 + γV π(1)

∑

a

π(1, a)

since S = {1} and ∀a, Pa
ss′ = 1. Remarking that

∑

a π(1, a) = 1, we have

(1 − γ)V π(1) =
∑

a

π(1, a)Ra
1,1

⇔ V π(1) =
1

(1 − γ)

∑

a

π(1, a)Ra
1,1. (31)
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In both equations (30) and (31), for each s, V π(s) is a linear function with respect to π(s, a).
Thus, a classical result of the optimization theory states that the maximum of V π(s) is achieved

on an endpoint of an edge of the simplex

{

π(s, a)|a ∈ R, π(s, a) ≥ 0 and
∑

a

π(s, a) = 1

}

.

As a consequence, in the case where the sequence (γk)k∈N is defined by γk = δ0(k), the optimal
policy is:

π̂(s, a′) =







1 if a′ = arg max
a

∑

s′

Ra
ss′Pa

ss′

0 otherwise.

In the case where the state space is reduced to a singleton S = {1} and where ∀k, γk = γk, the
optimal policy is:

π̂(1, a′) =







1 if a′ = arg max
a

Ra
1,1

0 otherwise.

Thus, the optimal policy corresponds to a deterministic strategy. Given current state s, the

chosen action systematically is the one that maximizes
∑

s′

Ra
ss′Pa

ss′ or Ra
1,1 (depending on the

sequence (γk)k∈N), with respect to a.

C.2 Connection of our approach with MDPs

In this paragraph, our approach is shown to be a particular case of MDP. The proof is derived
in the case of one single sleep mode printer for the sake of simplicity, but can easily be extended
to an arbitrary number of sleep modes.

In our context, the set of actions for the printer is the timeout period a ∈ A = R+, which
corresponds to τ (1) in previous paragraphs. The decision is taken after each print job, after
which the printer is necessarily in idle mode. Consequently, the state space is S = {idle}. In
our problem, the reward is minus the cost between two successive printings. It only depends on
the time between printings Xi and on the action a, i.e. the timeout period.

The time index i ∈ N represents the number of past printings requests. Hence, even if the
times of requests Ti take continuous values, the MDP is essentially a discrete-time problem,
where decisions are taken after each print job only.

Let the expected reward be defined as Ra = −E(h(Xi, a)), where h is the cost between two
successive print jobs defined by equation (1) (or (5) in the case of multiple sleep modes). The
transition probabilities are Pa

ss′ = 1, ∀ a, s and s′, since the printer is always in idle state when
a decision is taken.
As a consequence, from equation (29), the value function V π(s) for γk = δ0(k) is:

V π(s) = −
∑

a

π(s, a)E(h(Xi, a)),

and according to Lemma 4, the optimal policy is:

π(s, a′) =

{

1 if a′ = arg maxa −E(h(Xi, a)) = arg mina E(h(Xi, a))

0 otherwise,

which corresponds to the optimization problem in equation (4) in the case where the times
between printings Xi are independent random variables.
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To conclude, our approach is a degenerate case of an MDP problem with a continuous action
space and with one single state. Using the particular discount sequence γk = δ0(k), the expected
future cost coincides with the value function of the MDP with (finite) horizon 1. Since the state
space is reduced to a single state, an explicit solution of this problem can be derived. This
solution is given in Proposition 1.
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Figure 2: Top: Real power consumption of a printer (between 11 am and 11:05 am). During this period,
the device switches between 4 different states: sleep, wakeup, print and idle modes. Bottom:
simplified consumption model.
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Figure 3: Print Process

(a) When Xi ≤ τ
(1)
i

(b) When Xi > τ
(1)
i

Figure 4: Energy consumption between Ti−1 and Ti according to the position of Ti−1, Ti and Ti−1 + τ
(1)
i
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Figure 5: Graphical interpretation of ∆t1
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Figure 6: Number of shutdown (or equivalently wakeup) transitions as the penalty δ increases.
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Figure 7: Timeout as the penalty δ increases.
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Figure 8: Consumption as the penalty δ increases.
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Figure 9: Consumption as a function of the number of shutdown transitions.
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Figure 10: ROC curves obtained by varying the penalty δ.
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Figure 11: Close-up of upper left part of Figure 10
(ROC curves obtained by varying the penalty δ).
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