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Wave propagation and spatial
dispersion in random media

Yves-Patrick Pellegrini*
Pascal Thibaudeau
D. Brian Stout
Commissariat a I’Energie Atomique, CESTA, BP 2,
88114 LE BARP, France.
(October 24, 1995)

The study of spatial dispersion in electromagnetic wave propagation in random media is ap-
proched via the quasi-crystalline approximation in the framework of multiple-scattering theory.
The longitudinal and transverse permittivity kernels are obtained explicitely by using a simplified
resonant model for the T-matrix of the scatterers. The transverse dispersion equation is solved
numerically for all its frequency-dependent solutions in a given domain of the complex plane. The
physical meaning of these solutions is discussed.

PACS 41.20.Jb, 77.22.Ch, 42.25.1, 61.43.}

I. INTRODUCTION

It is well known that standard effective-medium theories [1] are unable to account for the behaviour of random
materials exposed to an electromagnetic wave, as soon as one wants to go beyond the quasi-static regime: for high
frequencies, scattering effects on impurities become relevant and can not be correctly treated by such theories. Math-
ematically, this shows up as the appearance of new possible solutions of the dispersion equations: one equation for the
tranverse fields, and another one for the longitudinal fields. We shall mainly focus here on the transverse equation.
All standard effective-medium theories assume the transverse dispersion equation for the averaged fields to be of the
form k% — k2 = 0, where kZ = (w/c)%cept.. The frequency-dependent effective permittivity e, and permeability .
are obtained from the theory. This equation possesses only one (outgoing) solution with positive imaginary part.
However, what distinguishes an inhomogeneous medium from an homogeneous one is the presence of (at least) one
scale of length: say a, the radius of the impurities, for instance. In the space Fourier domain, this length generates a
dimensionless group ak on which k2 must depend. As a consequence, the transverse dispersion relation should read
k? — (w/c)®e L (k,w) = 0 and possesses in general more than one solution. The solutions which will effectively con-
tribute as propagation channels in the averaged medium are those with least imaginary parts. On physical grounds,
one expects that the more disordered the medium (that is: the higher the volumic concentration of impurities, and
their dielectric mismatch with the background), the higher the number of relevant solutions there is, invalidating
henceforth a description of the medium in terms of effective constitutive parameters. This picture is usually deliber-
atly ignored because of the lack of simple models allowing for a systematical study of these effects. The purpose of
the present communication is to introduce such a model, and to describe some of its basic features [2]. This model de-
scribes a system of spherical resonant scatterers with relative dielectric permittivity £, embedded in some background
medium with relative permittivity ,,. Both the scatterers and the background medium are assumed non-magnetic.
The model provides a simple non-local and frequency-dependent extension to the Maxwell-Garnett effective-medium
theory.

II. NON-LOCAL MAXWELL-GARNETT THEORY

We consider first the multiple-scattering equations for the Green operators of the electric fields, expressed in terms
of the T-matrices T; of the scatterers, i = 1...N [3]. Let G denote the full Green operator for the electric field in the
disordered medium and Gy its counterpart in the background bare propagation medium. Then,
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G=Go+Go Y T:G; (2.1a)

Gi=Go+Go Y _T;G;, (2.1b)
J#

where G; is the Green operator for the local field impinging on the scatterer i. Let also the averaging operator
< . > denote statistical averaging over all possible configurations of scatterers, and < . >is,...,ix . denote averaging over
all possible configurations letting the scatterers i;,...4 at fixed positions. Then the average Green function reads
< G >= Go+ NGo < T;G; >= Go+ NGy << T;G; >;i >, where < T;G; >;= T;Go + (N — 1)T:Go < T;Gj >i=
T;Go + (N — 1)T;Go < < T;Gj >i,; >i. A similar equation for < T;G; >; ; may be written, and so on with higher
order correlations between scatterers. The first order mean-field closure approximation < T;G;j >i =< T;G; >j,
known as the Quasi-Crystalline Approximation [4], permits to solve for < T;G; >;, hence for < G >, in terms of the
two-point correlation function of the scatterers.

We assume the scatterers to be spherical and identical, with radius a, and we represent them by a simplified
momentum independent, resonant, and energy-conserving point-like model [2,5]

Ti (ke [ks) = (—2;—)3%%; eila-ka)xig | (2.2)
s —Em

Qe = T L —e) (2.2b)

L = (1/3) — (4/15)(ak.)? — (2/9)i(akn,)>. (2.2¢)

The dyadic | is the 3 x 3 identity matrix. We choose the two-body normalized correlation function to be the unit
step g(r; —r;) = 8(|r; — r;j| — 2a), where ¢ denotes the Heaviside function. It implements volume exclusion between
two scatterers. We also introduce the volumic concentration of scatterers f = (4r/ 3)(N/V), where V is the volume
of the system. After all calculations have been performed in the thermodynamic limit (N, V — oo at f constant),
we find the translation-invariant QCA-averaged dyadic Green function to be < G > (kilks) = 8(k1 — k2)G(k; ), with
(k =k/k):

| - kk ki
B2 — (w/e)er(k)  (w/c)ey(k)’

The transverse (L) and longitudinal (||) permittivity kernels, which both tend to the same value when k — 0 as
implied by statistical isotropy [6], allow one to define non-local dielectric permittivity and magnetic permeability
kernels e(k) = ¢y (k), p~1(k) = 1 — (w/c)?[eL (k) — g (k)]/k2, such that the statistical-averaged fields in the medium
be linked by spatially non-local constitutive relations in direct space: < D > (r) = ¢ Jd¥ e(lr - x']) < E > (¢),
and <H > (r) = (1/p0) [ d*%' p~(Ir = r'|) < B > (v'). Thus spatial dispersion implies in principle the existence of
an induced magnetic-like response (even in the medium is initially non-magnetic), whose physical origin lies in the
presence of polarization currents due to the dielectric contrast between the impurities and the background. The two
kernels read here:

Gk) = (2.3)

1+ (2/3)fec1 + (1/2)Q ) (¥)]

Pl ) = T 8) FarlT = Qi (4] (24
Quk)=1-3(1- 2iakm)ez’2akm_j1£i_‘;:k) 4382, 1 - eizak"‘[cos(];?:f)én%akm Jo(2ak)] (2.50)
Qk) = -2+6(1- 2iakm)ef2°kmj—1%‘;i). _ (2.5b)

The ji, I = 0,1, are spherical Bessel functions [7]. We check that, as expected: 1) Q@ (k) is non-singular when
k — km; 2) QL(k) and Q)(k) both tend to the same expression when & — 0; 3) these two quantities both tend to 0
when a = 0, so that (2.4) reduces to the well-known quasi-static Maxwell-Garnett effective-medium formula in this
limit. The transverse (resp. longitudinal) modes in the time-harmonic regime which contribute to the coherent part
of the fields are the solutions k(w) of the dispersion equation k? — (w/c)2e (k,w) = 0 (resp. gy(k,w) = 0).
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FIG. 1. Solutions of the transverse dispersion relation in the region of the upper complex plane —30 < Re(2ak) < 30,
0 < Im(2ak) < 10, for reduced frequencies 0 < 2akm < 20. The solutions move from left to right as the frequency increases,
past the resonant regime. See text.

In Fig. 1 are displayed the paths followed by the all the solutions of the transverse dispersion equation in the
displayed region of the upper complex plane (retarded solutions). The dispersion relation has an infinite number
of solutions. Since it is an even function of k, advanced solutions —k also exist in the lower complex plane. The
solutions are computed numerically [8] for a moderate concentration f = 0.10 and dimensionless frequency variable
2ak,, ranging from 0 to 20. For testing purposes, we chose frequency-independent permittivities ¢,, = 1 and &, = 5.
The solutions in Fig. 1 are of two different types: 1) the solution we term as the perturbative one (for it could be
perturbatively obtained as a series in powers of f), which starts from the origin at w = 0, an whose imaginary part
displays a peak at the resonance freqency; 2) non-perturbative solutions, which are identified in the limit w — 0 with
the roots of the function 1~ fa,j;(2ak)/(2ak). In this limit, the infinite set {k,}, ez of these roots, may be computed
asymptotically [9] as

kn = un — 2iIn(us) — uy ' [14 41n(us)] + O (u;2In%(un)) (2.6a)

(2.6b)

. 21
with up = (2n+1)r+:ln (3 fae)
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FIG. 2. Real parts Re(2ak) of the solutions of the transverse dispersion relation, displayed vs. 2aks,.

The imaginary part of these solutions explodes as —In(f) when f — 0, while the solutions themselves become
irrelevant, as they must. Pairing the solutions with equal imaginary part and opposite real part, we obtain standing
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waves to be identified as proper static modes for the electric field between particles. As the frequency increases, each
pair decouples and leads finally to the opening of two different propagation channels (a new outgoing wave is allowed
as soon as the real part of its propagation constant becomes positive). These solutions have a minimum imaginary
part in the resonant regime, where they become most relevant, since closer from the perturbative solution.

Another light is shed on the solutions by Fig. 2, where their real parts are displayed as functions of 2ak,, (compare
to Fig. 1). This plot emphasizes their regularity. Actually, such a regularity is a direct consequence of the quasi-
crystalline approximation: being of the mean-field type, this approximation indeed amounts to consider the averaged
polarizability < T;G; >;; of the scatterer ¢ to be independent of the locations of the other scatterers j. This
implements an artificial crystalline structure in the system, for such an hypothesis can only be realized in truly
periodic crystalline systems; hence the name. However, we expect our model to allow for a qualitatively correct
understanding of the main features of spatial dispersion effects in random media.

A detailled analysis of the model will be presented elsewhere [8].
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