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Abstract In the current work, we consider the inverse problem in scathetry which consists
in determining the feature shape from an experimentalsglipetric signature. The reformulation
of the given nonlinear identification problem was consideas a parametric optimization problem
using the Least Square criterion. In this work, a designguaace for global robust optimization is
developed using Kriging and global optimization approactobustness is determined by Kriging
model to reduce the number of real functional calculatidriseast Square criterion. The technical
of the global optimization methods is adopted to deternfieegtobal robust optimum of a surrogate
model.
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1 Introduction

The process control in microelectronics manufacturingiires real time monitoring
techniques. Among the different metrology techniquesterametry, based on the anal-
ysis of the light diffracted by microscale patterns usingdgample an ellipsometer, is
well suited. The problem of computing the signature fromwegistructure shape, which
is referred to as the direct problem, is dealt with using emtional Maxwell equations
solvers, generally based on modal methods [1]. On the ofgdbie inverse problem
[2],[3], which allows the determination of the feature sedmm an experimental sig-
nature is solved by parametric optimization problem usimg lteast Square objective
function. This inverse problem is difficult to solve. On onand, the problem is ill-
posed, which requires for example the use of regularizatiethods. On the other hand,
the use of traditional methods of optimization brings uskitaca local optimum and the
quality of the result depends on the initial point. To solwis toroblem, [7] developed a
precomputed library in order to find the best parameterglngiis library. Among the
disadvantages of this method, the computing time of thectipeoblem is too expensive
i.e. the long running times of the computer codes involveditae failure to simulate data
which coincides better with experimental.



To deal with the local optimum and the dependence of thealrpthint, we propose a
new approach based on the Kriging interpolation method aihuhe techniques of the
global optimization. The Kriging interpolation method [J&], developed by Matheron
and Krige [6] is based on the theory of regionalized variableis a stochastic interpo-
lation, which has proven to be reliable when approximatiaetgrministic behaviors [5].
Indeed, it attempts to obtain statistically the optimaldicton, i.e. to provide the best
linear unbiased estimator. The basic premise of the Krigitgrpolation method is that
every unknown point can be estimated by the weighted sumeokitiown points. The
method also provides a mechanism for estimating the ink&tipa error for any approx-
imated point. Thus, the use of this interpolation methodved to create the response
surface, and the global optimum of the problem is found usilggpbal optimization al-
gorithm.

The paper is organized as follows. In the second sectionresept the principles of
ellipsometric scatterometry and then talk about the daadtinverse problems. In section
4, we present the efficient global optimization (EGO) [8]aithm sequentially samples
results from an expensive calculation, does not requirazatere information, uses an
inexpensive surrogate obtained by techniques Kriging aockefor a global optimum. In
the final section, we present an application of the EGO algworto the simple synthetique
example and to the inverse problem of ellipsometry.

2 Ellipsometric signature and inverse problem

Scatterometry is used as a generic term for several metraf@hods, which may
be described as a measurement technique for a quantitaetilteaéion of the geometrical
or material properties of an object through the analysiseflight scattering from the
surface under test. Since no imaging optics is used, thacignd the shape have to be
reconstructed from intensity and/or polarization dat&dietd in the far field. In our case,
we use spectroscopic ellipsometry. The metrology deviaertteasures the polarization
change upon reflection by the sample is kept static whereamtident wavelength is
varying. As mentioned in the introduction, the direct peshlis used to establish signa-
tures from a given shape topography using a Maxwell solver.ugé the Modal Method
by Fourier Expansion to do that. This method is well adaptedife rectangular topogra-
phy of the samples used in the microelectronic manufaawinich are of primary inter-
est for us. During etching, the multi-wavelendththe direct problem gives numerically
intensityl, = (Is(A7)the0 15(A;)t"€0), Our goal is to solve the inverse problem [2, 3] which
allow the determination of the feature shape from an expentrallipsometric signature
m(Ai) = (Is(Ai))¥P, 1c(A))*P).

For this, we consider the objective function Least Squarihvban be written as a
difference between the theoretically computed direct igpemnd the real measure:

() = 53 O, ~ N &

whereL is the set of optimization parameters. The objective of wisk is to find the
global optimum for this objective functiahusing the response surface obtained by Krig-
ing techniques. For more details on the Kriging sged]. In our study, we have applied



the Kriging techniques fo the reconstruction of the ellipgtric signatures [11]. Now,
we present In the next section, the global optimization edoce.

3 Efficient Global Optimization Algorithm (EGO)

This section is inspired the work of Donald R.Jones, Ma#tt8ahonlau and William
J.Welch [8]. We give same technique developed in this paplee idea is based on the
optimization of the response surfaces constructed by Kgigiodel. The simplest way is
to fit a surface and to find the minimum of the surface. Howet&ve process for this
procedure, we can easily lead to a local minimum, and we havefarmation (idea) on
the uncertain areas of the response surface given by Krigietipod. It puts too much
emphasis on exploiting the predictor and no emphasis orogrgl points where we are
uncertain. To eliminate this problem, we must put some emsipltan sampling where we
are uncertain, as measured by the standard error of thectwedio combine the search
for local and global minimum and we take into account the waggties of the Kriging
surfaces. We use a criterion based of the balances betweahaond global search is
“expected improveméhtThis concept is introduced in the literature at 1978 in [je
EGO is a surrogate (or meta) modeling technique, where therestve objective function
evaluation is replaced with a model that is both cheap totcocisand to evaluate.

This technique uses a Kriging surrogate model to predicvéhees of the objective
function as a few, sparsely distributed sample pdings; ), ..., y(xn). These sample points
are generally chosen by a space filling sampling method. Tigeng technique is essen-
tially a method of interpolation between known points thigeg a mean predictioy(X),
in addition to a measure of the variability of the predictisfx), the error estimate stan-
dard. Another suitable global optimization technique is tfirect method [10], which
is employed to solve an auxiliary problem to find the next h@ate to sample for a
minimum primary objective function. The secondary objextiunction used to solve
the auxiliary problem in this application is the Expectedhovement E[l]) objective
function. The improvement functiaf) is defined as the improvement of the current pre-
diction, y(x), at pointx over the minimum value of the current set of sampigss, i.e

| = maxymin — ¥(x),0). )
The expected improvement, defined as the expectation ofrtheivement, is given by :
oy Ymin — ¥(x) Ymin — Y(X)
E[I] - (Ymm y) (p( S(X) ) + S(X)CD( S(X) ) (3)

Whereg s the standard normal cumulative density function, @rid the standard normal
probability density function.

The point at which the value of the expected improvement igimized gives the
best point at which to calculate the true objective functidhe expected improvement
is construceted to search for both local and global mininja T®e surrogate model is
then updated to include the newest sampled point, and thatigeis repeated until the
sampling point has not been found. An overview of the alarits given as follows:

Algorithm 1.



. An initial set of input parameters is selected.

. The true objective function y is evaluated for all new mersiof the set.

. A Kriging surrogate model is fitted to the values of the otdye function.

. Maximization of the expected improvement objectivetimmcriterion EJl],

. The result of the maximization ( the next input parameteost likely to improve
the true objective function) is added to the set.

. The process repeats from step 2 until a predetermined aumbiterations is

Max(E[l]) _s

reached or

OO~ WN P

»

Ymin
4 Numerical results

4.1 Synthetic numerical results

In order to validate and to explain the EGO algorithm, we asting with a simple
synthetic example. We consider the true function

f(x) = x.sin(x) 4+ x.cogx). 4)

the objective is to find the global optimum of the true funot{d) (the blue sold line in
Figure 1). We consider that we have just the same points gtatkeby this true function
(y(x1),¥(X2),...,¥(X7)) (the red star in Figure 1), and we create response surfaocg ts
Kriging techniques (the black shaded line in Figure 1) aisgethe standard errddSE
(the green line in Figure 1). Now, we apply the global optiati@an algorithm described

Kriging
o
MSE

Figure 1: The true function (blue solid line), the set poumed for the kriging interpola-
tion (red star), the surface Kriging (black dashed line) tmedestimator error (green solid
line)

above for the problem constructed by the set the real pdirtts ), ...,y(x7)) and the
surfacey(x) obtained by Kriging. In the next figure, we present the exgg:zhprovement
criterionE[l (x)] (the green sold line in the figure 2) and, where it's maximjzeel added
another point in the set, this point is evaluated by the tunetion 4 (the black triangle
in the right Figure 2). We repeated this process, the EGO maldtls run using an initial
sampling of 7 points to build the surrogate (the shaded InEigure 3). A further 5
expensive function evaluation (the triangle in Figure 3yeveequired to find the global



Kriging

Figure 2: The true function (blue solid line), the set of geinsed for the kriging in-
terpolation (red star), the Kriging surface (black daslireg))| the Expected Improvement
criterion (green sold line) and in the right the true funotath the add point (the triangle)

Figure 3: In the left the EGO convergence with 7 points andhértght the convergence
with 2 points are shown

minimum. Now, we apply the EGO method with an initial samglof 2 points and the
EGO is able to find reasonable solution in 13 function evabnat

4.2 Real case : a film plan of thickness

Now, we applied the global optimization algorithm combineth the Kriging model
in order to find the thickness of the film plan when we know thgoaindicesn andk.
We have the objective function described in section 2 by eod.

To highlight the method, we compare it with the conventionathod of optimization
(classical regression). The thickness approximated j33#8. By the classical method
based on conjugate gradient method, we found the followesglts :

« If the initial point is 150, the method converge to,4861 with 32 number of eval-
uations.



« If the initial point is 170, the method converge to 38@35 with 1474 number of
evaluations.

We remark that this method is dependent on the initial poimt, at’s gives the local
minimum.

Now, we present the results of the global optimization méth&'e show in the next
figure, the initial points and the point which are added byg techniques. In the Figure
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Figure 4: In the left, the EGO with 9 values for initial points the right, the EGO with
6 initial points

4, we initiate the algorithm by 9 points (red star in figure Ajlave have the convergence
after 21 evaluations (blue plus in the figure4). By 6 pointsifalization, the algorithm
EGO converges after 26 evaluations. Now, we apply the EGOadetvith an initial

50

Figure 5: In the left, the EGO with 4 values for initial points the right, the EGO with

2 initial points

sampling of 4 and 2 points and the EGO is able to find reasorsalidion in 32 and 36

function evaluations 5.
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5 conclusions and future work

The advantage of this algorithm EGO, that's no dependeihtsiititial points and it's
good mean to find the next best place to sample for a minimuectipg function. The
algorithm is tested on a dimension greater than one, whigksgjood results which will
be published.
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