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ABSTRACT

A new speed control strategy is developed, based on a machine model that accounts for the magnetic
characteristic saturation. The control strategy includes a flux reference generator, designed to meet
optimal operational conditions, and a speed controller designed using nonlinear techniques. Both flux
generation and speed control laws involve the machine state variables. The performances of the
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1. Introduction

It is widely recognized that the induction motor is going to
become the main actuator for industrial purposes. Compared to
other motors (e.g. DC machine), the induction motor provides a
better power/mass ratio, simpler maintenance (no mechanical
commutators) and relatively lower cost. However, the induction
motor control problem is more complex, due to its multivariable
and highly nonlinear nature. Finally, not all machine state
variables are accessible to measurement.

Most previous control strategies for induction machine speed
regulation are based on standard models obtained under the
assumption that the machine magnetic characteristic is static and
linear. As a matter of fact, such a characteristic is nonlinear and
physical machines exhibit several nonlinear features e.g. flux
saturation (Fig. 1). Nevertheless, standard models can still be used
in speed control design, provided that the rotor flux regulation is
performed around a fixed nominal value. This was generally the
case, in previous control strategies, choosing a constant reference
flux (Espinosa, Ortega, & Nicklasson, 1997; Kim, Ortega, Charara, &
Vilain, 1997; Lubineau, Dion, Dugard, & Roye, 2000; Ortega &
Espinosa, 1993; Ortega, Nicklasson, & Espinosa-Perez, 1996; Von
Raumer, Dion, Dugard, & Thomas, 1994). In such a situation, the
machine efficiency is maximal only when the load torque is close
to its nominal value. However, in practical applications, the load
torque is usually not a priori fixed and may be subject to wide
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proposed control strategy are formally analyzed and its supremacy with respect to standard control
solutions is illustrated through simulation.

range variations (Leonard, 2001; Novotnak, Chiasson, & Bodson,
1999). Then, keeping the flux near the nominal value will result in
a useless energy stored in stator inductances, reducing the
machine efficiency, especially when the load torque is small
(compared to nominal load). Inversely, if the flux reference is
given a small value, the achievable machine motor torque will not
be sufficient to counteract large load torques. Therefore, speed
control strategies involving constant flux reference are unable to
guarantee optimal machine performances (optimality is generally
understood in the sense of efficiency, power factor and maximal
torque). To overcome the above shortcomings, it is necessary to
develop new speed control strategies involving online tuning of
the flux reference to track varying speed reference in presence of
load torque changes. When these are important (ranging from 0 to
nominal values), the optimal flux reference will in turn undergo
wide range variations implying large excursions of the working
point on the magnetic characteristic. Therefore, the development
of speed control strategies, guaranteeing optimal machine
performances, must rely on a machine model that takes into
account the nonlinear feature of the magnetic characteristic.
Fortunately, an example of such models was recently developed
and experimentally validated (Ouadi, Giri, & Dugard, 2004).

In the light of the above discussion, it becomes clear that speed
control strategies for induction machines involve two main
components: a speed/flux controller and an optimal flux reference
generator. As already mentioned, the flux and speed references are
generally chosen independently in earlier control strategies.
Typically, the flux reference is generally given a (non-optimal)
fixed value and the speed regulator is obtained (using various
design techniques) from the machine standard model, supposing



Flux norm (Wb)

0 5 10 15 20 25 30 35 40 45
Magnetic current (A)

Fig. 1. Magnetic characteristic experimentally obtained in Ouadi et al. (2004) for a
7.5KW induction motor: rotor flux norm @, (Wb) versus magnetic current I, (A).

a linear magnetic characteristic (e.g. Espinosa et al., 1997; Kim et
al., 1997; Leonard, 2001; Lubineau et al., 2000; Ortega & Espinosa,
1993; Ortega et al., 1996; Von Raumer et al., 1994). A serious
attempt to develop control strategies involving flux reference
optimization was reported in (Novotnak et al., 1999): based on a
field-oriented model accounting for magnetic saturation, a flux
reference generator was designed to obtain online the maximum
torque. As pointed out by the authors themselves, the saturation
effect was accounted for in a ‘somewhat ad hoc manner'.
Specifically, a model of the saturated magnetic characteristic
was just added to an existing (unsaturated) model of the
induction machine (just as suggested in Heinemann & Leonhard,
1990). This differs from the approach developed in (Ouadi et al.,
2004) where the magnetic characteristic is accounted for, together
with the basic electromagnetic laws, all along the modeling
procedure. Furthermore, it is known that field-oriented models,
like the one based upon in Novotnak et al. (1999), lead to
controllers that are highly sensitive to rotor resistance variations.
Finally, it is not formally proved in Novotnak et al. (1999) that the
proposed control strategy actually achieves the desired control
performances (closed-loop stability, speed and flux reference
tracking). An alternative control strategy, refereed to maximum
torque per Ampere, consists in obtaining stator current reference
generators that maximize the machine torque, see e.g. Kwon &
Sudhoff (2005) and Wasynczuk et al. (1998). There, the current
generators are designed, based on a standard field-oriented model
neglecting the magnetic saturation. It is clear that neglecting the
magnetic saturation effect contrasts with the objective of wide
range torque variation control. Indeed, such an objective necessi-
tates a wide range variation of the (d-axis) stator current which
entails large flux variations.

In the present paper, a new control strategy is developed that
involves an optimal flux reference and a speed and flux controller.
Both components are designed using the model developed in
Ouadi et al. (2004) that accounts for magnetic saturation. The flux
reference optimality is to be understood in the sense of stator
current minimization. Therefore, the obtained optimal flux
reference law involves the machine stator currents which are
state variables. The speed/flux controller, designed by the back-
stepping technique, turns out to be quite different from previous
standard control strategies that assume linear magnetic char-
acteristic and involve constant flux references. The new controller

Table 1
List of acronyms.

LM-model: Linear magnetic characteristic model (i.e. model neglecting
magnetic saturation)
NLM-model: Nonlinear magnetic characteristic model (i.e. model accounting

for magnetic saturation)

LM-CF Control strategy based on LM-model with constant flux
strategy: reference (i.e. standard strategy)
LM-OF Control strategy based on LM-model, including optimal flux
strategy:  generator
NLM-CF Control strategy based on NLM-model, involving constant flux
strategy:  reference
NLM-OF: Strategy based on NLM-model with optimal flux generator (i.e.
new control strategy)
SDOF: State dependent optimal flux reference (i.e. newly proposed
optimal flux generator)
OCF: Optimal current-flux characteristic

is formally proved to be globally asymptotically stable and
enforces the speed to perfectly track its varying reference
trajectory, despite the changing load torque. It is also checked
through simulations that, in presence of load torque variations
and rotor resistance uncertainties, the new control strategy is
better than previous strategies, from the energetic viewpoint.

The paper is organized as follows: the induction machine
model is presented in Section 2. In Section 3, the proposed control
strategy is described and a flux reference optimization law is
developed. The machine speed and flux controller is designed and
formally analyzed in Section 4. The controller performances are
illustrated by simulation in Section 5. A conclusion and reference
list end the paper. For convenience, all acronyms used throughout
are described in Table 1.

2. Induction motor modeling

In Ouadi et al. (2004), a model accounting for the saturation
nature of the machine magnetic characteristic (Fig. 1) has been
developed and experimentally validated using a 7.5 KW induction
motor. This model, named NLM throughout the paper, is defined
by the following fifth order state-space representation:

isn = — Aalsy+ 0y, +a3pQp 5+ a3Ug, (1a)
isp = — Gyisp — azpQRa,, +0¢,5+0a3usp (1b)
bry = Arisy — LseqOcp, — pQP,g (2a)
by = risy — Leegdh, 5+ Qe (2b)
Q=BG — by - -1 0 @)

J ]

where iy, isg, are the «ff-components of the stator current, (state
variables); ¢,,,¢,; the rotor flux of-components, (state vari-
ables); Q the motor speed, (state variable); us,,uss the of-
components of the stator voltage, (control inputs); Rs,R; the
stator and rotor resistances; T; the load torque; f the friction
coefficient; p the number of pole pairs; and Lq the equivalent
inductance (of both stator and rotor leakage) as seen from the
stator.
In (1)-(3), the real constants a;’s are defined as follows:

R+R 1
Lseq ’ 37Lseq

a; =Ry, ap =

Furthermore, ¢ is a function of the rotor flux norm (see Fig. 2). In
Ouadi et al. (2004), this dependence was represented by a



polynomial function approximation, namely

5=W(@,) 4)

The b;’s are constant coefficients, experimentally identified in
Ouadi et al. (2004) using Fig. 1. &, is the amplitude of the
(instantaneous) rotor flux, denoted ¢,. Then, one has:

Dr =/ bt 45?/;
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Fig. 2. Characteristic (J, ®,). The crosses indicate the points obtained directly from
experimental data. The solid line represents the polynomial interpolation of
experimental points. Units: ¢ (Q H2), &, (Wb).

Table 2
Different speed control strategies.

Flux reference generator

In the light of the above description, it becomes clear that the
model (1)-(6) involves five state variables, i, isg, qu,qbr/; and Q,
and two control inputs, ug, and usg. Two outputs will be controlled
latter, 2 and ¢&,. All the state variables are supposed to be
measurable and all model parameters have known numerical
values. The latter are described in Table 3 and correspond to an
induction motor of 7.5 KW power (Ouadi et al., 2004). In practice,
the flux variables are generally not measurable. Then, a state
observer must be developed to get estimates of unmeasured
variables. Fortunately, such an observer is presently available
(Giri, Elfadili, Ouadi, Dugard, & Buche, 2008).

Finally, notice that the standard model, referred to LM-model,
widely used in previous works is easily obtained from the above NLM-
model, letting o be a constant parameter in (1)-(3), and denoted Jy,
(Espinosa et al., 1997; Kim et al., 1997; Lubineau et al., 2000; Ortega
and Espinosa, 1993; Ortega et al., 1996; Von Raumer et al., 1994). The
fixed value of o, corresponds to the working point of interest on the
machine magnetic characteristic. Every time the LM-model is
considered in this paper, é; will correspond to the nominal flux value
of the machine used in Ouadi et al. (2004). There, the nominal flux is
1.1 Wb and the resulting value of 9, is given in Section 6, together will
all machine numerical characteristics (Table 3).

3. Speed control strategies

As mentioned previously, any control strategy for induction
machines is characterized by two main components: a flux reference
generator and a speed (and possibly flux) controller. Depending on
the way these components are designed, four control strategies are
considered, (see Table 2 and Figs. 3 and 4). In the existing literature
(Espinosa et al., 1997; Kim et al., 1997; Lubineau et al., 2000; Ortega
and Espinosa, 1993; Ortega et al.,, 1996; Von Raumer et al.,, 1994), the
most popular of them is the standard control strategy, here called
LM-CF which is characterized by a non-optimal constant flux
reference and a speed/flux controller designed from the LM-model.
There, the constant flux reference should normally be given the
machine flux nominal value (located at the elbow region on the
magnetic characteristic). As emphasized in the Introduction, the

Constant flux SDOF resulting control performances are not satisfactory from an energetic
L v o Vel viewpoint, especially in presence of small loads. .

NLM-model NLM-CF NLM-OF Recently, some works suggested LM-OF strategies (Table 2)
including state-dependent optimal flux generators (Kwon and
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Fig. 3. Control strategies with constant flux reference: the controller may be obtained
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Fig. 4. Control strategies with optimal flux reference: the controller may be obtained either from the standard model (SM-SDOF strategy) or from the NLM-model (NLM-OF

strategy).



Sudhoff, 2005; Novotnak et al., 1999; Wasynczuk et al., 1998).
However, the involved speed regulators are still obtained from the
standard model, which limits their capability to track the varying
optimal flux reference, leading to non-optimal machine perfor-
mances. Such shortcomings will be illustrated in Section 6.

The NLM-CF control strategy (Table 2) is characterized by a
constant flux setpoint and a speed regulator issued from the NLM-
model (Fig. 3). Such a strategy is practically useless as no benefit is
gained from model complexity if the flux reference is kept constant.

The present paper focuses on the new control strategy (NLM-
OF) that consists in designing an optimal flux reference generator
and a speed/flux controller (Fig. 4). The latter is designed using a
nonlinear control technique based on the NLM-model (1)-(6) that
takes into account the saturation feature of the machine magnetic
characteristic. The flux reference optimality, together with the
controller tracking ability (to match varying speed and flux
references), is expected to guarantee satisfactory machine
performances (efficiency, power factor, maximal torque,...).
Presently, the minimization of the stator current needed for
producing a given load torque is looked for. This will be performed
by acting on the rotor flux norm according to the control principle
scheme of Fig. 4. The proposed control strategy is presented in
detail in Sections 4 and 5.

4. Optimal flux reference generator

In the d-q oriented reference frame, the flux g-component is
null and all state variables are constant in steady-state. Then, the
machine electromagnetic torque T, is expressed as follows:

Te = pp,q4isg = pPrisq (7a)

On the other hand, it follows from (1) that the steady-state
current i;; can be given the following expression:

isg = Las—jq 0D, (7b)

In (7a-b), isg and iy denote the d- and g-components of the stator
current. Also, recall the stator current norm expression:

=i +ig (8)

Then, using (7) and (8), one gets the following expression of the
electromagnetic torque:

L 2
To = pdoy |2 ((%,Mr) ©)

Solving (9) with respect to I leads to

I, =Hr, (o)< \/ :

Fig. 5 shows the famlly of curves Is = Hr,(®;) that represents (for
the induction machine characterized by the numerical parameters
of Table 3) the stator current I; versus the flux &;, for various
values of the electromagnetic torque T.. For a given T, the best
choice of the flux reference is the abscissa of the lowest point on
the corresponding curve Is = Hr,(®,). Indeed, the absorbed stator
current is minimal at this point. That is, the best flux reference
value, for a given electromagnetic torque T, corresponds to the
abscissa of the minimum point on the curve I;=Hr,(P).
Fortunately, such a curve has (see Fig. 5) a unique global
minimum, simply denoted (I}, #7,). The coordinates of such a
minimum can theoretically be obtained by solving the following
>equation with respect to @;:

dHTE((pr)_ d Te 2 Lseq 2_
it )+ (ron) o

2
LS“' 5@,) (10)
a;

60 T T T T T
=40Nm
50 } Te,, = 30Nm 4
T,,,=20Nm
40+ 7, =10Nm
<
5
£ 30l Global minimum |
o 8 *
‘6 (quE‘BD, ITSSO)
5|
1%}
20 E
10 | e
0 1 1 1 1 ] 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Rotor flux(Wb)

Fig. 5. The curves I 7HTE (&) for j=8,20,25 and 30. It is seen that each curve has

a global minimum (explicitly indicated for Te, and Te,,). The coordinates of the

minimum associated to T, are denoted (&7, 3, ). For instance (dﬁm,l;m =
i i ¢

(1.1Wb,16.22A) and (@}, ;) = (0.66 Wb, 7.45 A).

Table 3
Numerical values of considered motor characteristics.

Characteristic Symbol Value Unit
Nominal power Py 7.5 KW
Nominal voltage Usn 380 \%
Nominal flux Dy 1.1 Wb
Stator resistance R; 0.63 Q

Rotor resistance R, 0.4 Q

Inertia moment J 0.22 Kgm?
Friction coefficient f 0.001 Nmsrd~!
Number of pole pairs p 2

Leakage equivalent inductance lseq 7 mH

However, the analytical solution of this equation is difficult to find
because the quantity ¢ is itself a polynomial function of &, as
shown by (4)-(5).! Therefore, a graphical search of global minima
is privileged in the present study.

Based on the above remarks, a sample of 30 relevant torque
values T (j=1,...,30) has been a priori selected and the
correspondmg global minima (<I>* I3, ) can be graphically deter-

mined as illustrated by Fig. 5 where all the curves correspond to

the induction machine characterized by the numerical parameters

of Table 3. Doing so, a set of 30 global minima (&7 .1} )
GG

(G=1,...,30) has been obtained. Then a nth-order polynomial
function F(.), fitting in the least squares sense the set of minima
points, has been built. The degree n=14 turned out to be
convenient for the considered data. The polynomial thus con-
structed is denoted:

F(l) = hal? +hy 7 4 -+ hy L+ ho an
where the coefficients h; have the numerical values of Table 4 (for
the machine characterized by the parameters of Table 3). F(.) is
graphically plotted in Fig. 6 which will be referred to optimal
current-flux (OCF) characteristic. Recall that optimality is

! It is worthy recalling that the polynomial dependence of é on &, is a
consequence of the saturation feature of the machine magnetic characteristic.
Indeed, if such a feature is neglected 6 becomes a constant parameter.



Table 4
Coefficients of the polynomial K.) defined by (11).

his= —1.36 x 1073
hg=1.78 x 1077
hy= —1.74x 107

hi3=4.72 x 1072°
hg= —5.42 x 107*°
h3=9.97 x 107>

hiy= —7.35x 1026
h;=1.19 x 1072
hy = — 0.0040 hy

hy; =6.8 x 10723
hg= —1.89 x 1071°
=0.1041

hig= —417 x 1072
hs=2.16 x 10~
ho= —0.0895

Rotor flux amplitude (Wb)

0.4 R

02 1 1 1 1
5 10 15 20 25 30

Stator current amplitude (A)

Fig. 6. OCF characteristic obtained interpolating the points (tP* IT ) correspond-
ing to the machine characterized by Table 3.

understood in the sense of minimal absorbed stator current Is for a
given torque Te.

5. Speed and flux controller design and analysis

The problem of interest is the control of the rotor speed and flux
norm for the saturated induction machine described by (1)-(6). The
speed reference €, is any bounded and derivable function of time
with its two first derivatives available and bounded. These properties
can always be achieved by filtering the reference through second-
order linear filters. The flux reference @, is tuned online so that, if

D =Py (With &, = \/¢fa+¢fﬁ) the machine will operate in
optimal conditions (in the sense of absorbed stator current). In the
light of Section 3.2, it follows that such an optimality will be
guaranteed if the flux reference is computed online by the relation
s = F(I5) plotted in Fig. 6. The controller design is performed in
two steps using the backstepping technique (Krstic, Kanellakopou-
los, & Kokotovic, 1995) First, introduce the tracking errors:

e = Qref - Q (123)

(¢ro¢ +¢r/f) (12b)

Step 1. It follows from (1)—(3) that the errors e; and z; undergo
the differential equations:

Z1= ref

R . . . T,
€1=0 —jg(¢mls/f = Qrpisa) + TL +§Q 13)

21 =2y Prep — 201, 1y — 201515
=2 Drof — 2¢,,(—LieqSpy, + Arisy —
—2¢p(—Lseq0 3+ a1isp +0p,)
= 20 ,op Bep — 201 (P50 + P pisp) + 2Leeqd (P, + 453/;)

= 2(pref(.pref - 2(11 (¢ro¢i5f1 + ¢r/fis/f) + 2L59q5((p?ef -7 ) (1 4)

OPp)

In (13) and (14), the quantities (p/)),yisp — Prpisx) and
201 (yyisa+ Prgisp) stand for virtual control signals. If they were
the actual control signals, the error system (13)-(14) could be
globally asymptotically stabilized by letting (p/))(¢,,isp —

bypisn) =ty and 2a1(ey iy +Pygisg) = vi With

. T,
M1gC1€1+Qref+TL+§Q (15)
vi¥dz 2@ o D rof + 2Lseq (P — 21) (16)

where c¢; and d; are any positive design parameters. Indeed,
considering the Lyapunov function:

=Xe+2%) 17)

One would get from (13)-(16), letting (p/))(Pyisp — Prpise) = i
and 2a;(yyisa+ Pypisp) = 1

V] = —C]e% — d]Z% (18)

This would prove the global asymptotic stability of the system
(13)-(16). As the quantities (p//)(P,yisp — ¢pise) and 2071 (P,yisy +
¢rpisp) are not the actual control signals, they cannot be let equal
to 11 and v,, respectively. Nevertheless, the expressions of y; and
v, are retained as first stabilizing functions and the new errors are
introduced:

ey =l — jg(%is/; — Pppisa) (19)

2z = V1 = 201 (Prydsa+ Prpisp) (20)

Then, using the notations (15)-(20), the dynamics of the errors
e; and zy, initially described by (13)-(16), can be rewritten as
follows:

é] = —(C1e1+6e (213)

Z1= —d]Z] +25 (21b)

Similarly, the time-derivative of V; can be expressed as a function
of the new errors as follows:

V1 = — C]E% — d1z%+e1ez +212» (22)

Step 2. The second design step consists in choosing the actual
control signals, ug, and ugg, so that all errors (ey, 21, e3,2;) converge
to zero. To this end, one has to manage in such a way that these
errors depend on the actual control signals (U, tsp). Let us first
focus on ey; it follows from (19) that:

€ = fiy —§(¢rais/f+¢rais/f — Prpisn — Prpisa) 23)

Using (1a-b)-(3) and (15), one gets from (23):

T . 2 2
e2 = (Clel +Qref+ J +:]; ) (¢rals/f ¢r/flsoc) _?(d’mlsﬂ - ¢r/jlsoc)
=c1(=c1e; +e2)+Qref+ ] f( (@rylsp — Prplsa)
T . .
- TL —jJ:Q) T ((=Lseq0pyy +a1isy — w0 pisp

—(— Lseqéq’)rﬂ +a, is/j + (Uq-’)m)isot)



_§¢m(5¢rﬂ —as w¢ra — @ is/f +as us/f)

+ Je¢r/f(5¢m +a30¢, 5 — Gzlsy +a3Use) (24)

For convenience, this equation is given the following compact form:

éZ =+ ?‘13(45”;”5(1 - ¢rdus/f) (25)

with

Uy =C1(—Creq +€2)+Qref+ f ( (Pryisp — Prpise) — fQ)
] ] e T/ ] J

- ? (—Lseq5¢m +0a1isy — w¢r/3)is/3 + _7 (—Lseq5¢r/3 +a; ig/} +w¢m)isa
_‘?qsm((sqsr/f - a3w¢m¢ - azis/f)+ ?qsr/f((sqsm +a3w¢r/§ — Oaisy)
(26)

Similarly, it follows from (20) and (1a-b)-(3) that z, undergoes
the following differential equation:

—-2m (q.srotisot+¢ml:so¢ +Q.5r;is/f +¢r/fl:s/f) (27)
Using (1a-b)-(3) and (16), it follows from (27):

Z..'2=\.)1

23 = d121 + 2 Dyeg Brey + 2075+ 2Lscqd 2 Prep D ey
—Z1)+ 2Lseq5((pref —21) — 2a1((—Lseq0¢p,, +a1isy, — w¢r/;)isa
+ ¢y (0P +a300P, 5 — Aals +A3sy)
+(=Lseqd0 Py +a1isp + 0Py, isp
+ ¢85 — A3y, — Gaisp+a3lip)) (28)

where the derivative of ¢ is obtained from (4):
_ do do; _ Pra ¢r/;
= d(pr dt d(IJ ( ¢ro¢ r ¢r/f> (29)

Note that the derivative do/d®; is easily computed due to the
polynomial nature of (5). Also, the derivatives ¢,,, db,/; are readily
obtained using model equations (2a-b).

Eq. (28) can be given the following compact form:

23 =Vy — 201a3(,glUsp + Prylisy) (30a)
with

. <2 . .
V= d1(—d1Z1 +ZZ)+2(pref(pref+2(pref +2Lseq5(2(pref(pref - Z1)

+2Lseq5((pref Z1) - 2‘11 ((_Lseq5¢ra +a; iSOt - w¢r/§)isd
+(—Lseq0¢p,5+arisg +0,)isp) + P (5P — 2isp)

+¢ra¢(5¢m - aZisot) (30b)
The derivatives dJ,ef and @,ef are obtained using (11) i.e.:
@rop = F(ly) = ho+hils+hal2+ - +hyl! (31
Specifically, one has:

_dF(l) _ dFd5)dls  dF() isyisy +ispiss
Pre= g = dI, dt ~ di, Is (322)
and
(i _ sz(Is) isaisa+is/fis/f dF(Is (lsot)z +lso¢lso¢+(ls/f) +ls/fls/f

ref = TP I dI; I
dF(l;) (isalsn + is/il:s/f)2
~ L, E (32b)

Note that the derivatives dF/dl; and d’F/dI? are easily obtained
thanks to the polynomial nature of (31). To analyze the error

system, composed of equations (21a-b), (25) and (30a), the
following augmented Lyapunov function candidate is considered:

Vo=Vi+1(e3+23) (34)
Its time-derivative along the trajectory of the state vector (e;, z1,
e, Zz) is

Vy=eié1+e6,+2121+252, (35)

Using (22), (25) and (30a), Eq. (35) becomes
Vo= —cre? —diz3+e; (6'1 +Uy + 1303(¢r/fusa - ¢mus/f)>
+22(21 4+ V2 — 2a103(hry Usy + P rplsp)) (36a)

Adding cze2 — c2e2 +dyz3
rearranging terms, yields:

—d»Zz3 to the right side of (36a) and

Va= — 162 — cae3 — 122 — dpZ3
+e; (6'1 +Caez+ iy + ?‘13(@/;“5& — Oy us/f))

+22(21+dazp + V2 — 2a103(Pr 5 sy + Prplisp)) (36b)

where ¢, and d, are new arbitrary positive real design parameters.
Eq. (36b) suggests that the control signals u,, us; must set to zero
the two quantities between curly brackets (on the right side of
(36b)). Letting these quantities equal to zero and solving the
resulting second-order linear equation system with respect to
(usq, usp), gives the following control law:

u Jo ] ' [—e1 —coer —
SOt _ 0 1 1 2€2 125) (37)
Usp )Lz )LB —Z1 — dzZz —Vy
with
Jo=" h=-Pasg,; =2 ;
0= 703¢r/ﬁ 1= —7‘134%1’ 2= —20103¢;,;
)LB = — 2(1](1345”; (38)

Notice that the matrix

Ao

Ay 23
is nonsingular. Indeed, it is easily checked that its determinant is
D = AgAs — Aidy = — 2(p/)a a3 <I>f which never vanishes in prac-

tice because of the machine remnant flux. Substituting the control
law (37) to (us, tsg) on the right side of (36b) yields:

VZ = — C]E% — Czeg — d]Z% — dzZ% (39)

As this is a negative definite function of the state vector
(e1,21,€2,22), the closed-loop system is globally asymptotically
stable (Khalil, 2003). The result thus established is more precisely
formulated in the following theorem:

Theorem 1. (Main result) Consider the closed-loop system composed
of the induction machine, described by the model (1)-(6), and of the
nonlinear controller defined by the control law (37). Then, the
following properties are ensured:

(1) The closed-loop error system undergoes, in the (e1,z1,€3,22)
coordinates, the following equations:

é1= —cie1+ey (40a)
Z1=—-diz1+ 2, (40b)
ey = —e1 — 26, (40¢)
Zy=—21 —dyzy (40d)



(2) The above linear system is globally asymptotically stable with
respect to the Lyapunov function V, = (€2 +22 +e3 +2%)/2. Con-
sequently, all errors vanish exponentially fast, whatever the
initial conditions.

Proof. Eqs. (40a-b) are immediately obtained from (21a-b).
Eq. (40c) is obtained substituting the control law (37) to
(usu, usp) on the right side of (25). Eq. (40d) is obtained
substituting the control law (37) to (usy,uss) on the right side of
(30a). This proves Part 1. On the other hand, it is readily seen from
(17), (34) and (39) that V,=(e?+z2+e%+22)/2 is a Lyapunov
function of the error system (40a-d). As V, is a negative definite
function of the state vector (e;,zi,e3,2z3), the error system is
globally asymptotically stable. But the asymptotic stability
implies exponential stability due to the system linearity (Khalil,
2003). Theorem 1 is established. O

Remark 1. It is known that the exponential nature of stability
guarantees stability robustness with respect to modeling and
measurements errors (Khalil, 2003).

6. Simulation results

This section illustrates the supremacy of the new control
strategy (NLM-OF), involving state-dependent optimal flux
reference, over control strategies with a constant flux reference,
e.g. LM-CF or NLM-CF (see Table 2). The comparison is performed,
using a 7.5kW induction machine whose characteristics are
summarized in Table 3. Then, it is shown that perfect tracking of
a varying flux reference is always achieved with the NLM-OF
controller (because it is based on a model that accounts for
magnetic saturation) but generally not with the LM-OF design
(which is based on the standard model that neglects the magnetic
saturation). Finally, it will be checked that the NLM-OF strategy
preserves its main features in presence of small rotor resistance
variation.

6.1. Supremacy of NLM-OF strategy over LM-CF strategy (Table 2)

The simulation protocol is conceived so that the machine
operates in different conditions which are determined by the
load variation law (Fig. 7) and speed reference (Fig. 8). Recall that
the NLM-OF controller includes the optimal flux generator
described by the characteristic @, = F(I5) (plotted in Fig. 6) and
the control law (37). The design parameters are given the
following values which proved to be convenient: ¢; =5, ¢; =
4000,d, =18, d, = 1500.

For comparison purpose, a LM-CF controller involving
constant flux reference is considered. This is simply obtained by
considering in (37):

e the flux reference constant and equal to 1.1 Wb, which is the
machine nominal flux,

e the parameter ¢ constant and equal to J; =780,

e and the other design parameters with the following values
that proved to be convenient for this controller: ¢; =15,
¢, =4000, di =18, d; = 1500.

The controlled induction machine is represented by model
(1)-(6) with the characteristics of Table 3. In that model, J is
varying with the rotor flux according to the relations (4)-(5).
Accordingly, 6 takes the particular value ¢, =780 whenever
the machine operates around the nominal operation point
corresponding (on the magnetic characteristic) to a flux value of
1.1 Wb. Therefore, it is expected that the LM-CF controller will

perform well whenever the flux reference is constant and equal
to 1.1 Wbh.

Fig. 8 shows that both controllers (NLM-OF and LM-CF)
perform well as long as speed reference tracking is concerned.
Indeed, the speed response obtained with both controllers are
very close to each other. To distinguish the two responses it is
necessary to make a zoom as done in Fig. 9.

Fig. 10 shows the resulting NLM-OF flux reference &, = F(ls)
and the LM-CF constant flux reference. It is clearly seen that the
state-dependent flux reference (SDOF) varies significantly,
matching the changes of load torque and machine speed.
Figs. 11 and 12 show the flux tracking performance for both
controllers. Both controllers ensure a good asymptotic tracking of
their respective flux references. Figs. 13 and 14 illustrate,
respectively, the stator currents and resulting Joule loss power
when the machine is controlled with each controller. Joule loss
power is computed by the usual expression 3Rs[2/2 (W). It is
clearly observed that, in all operation conditions, the NLM-OF
controller involves smaller current and Joule loss power compared
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Fig. 7. Applied load torque.
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Fig. 8. Speed reference tracking performances obtained with NLM-OF and LM-CF
control strategies. Dashed: speed reference. Solid: LM-CF response. Discontinuous:
NLM-OF response. The speed responses obtained by LM-CF and NLM-OF strategies
are presently too close to each other to be distinguished.
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Fig. 9. Zoom on the speed responses of Fig. 8, over the time interval [0 18s].
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Fig.10. Rotor flux norm reference (Wb). Solid: LM-CF. Dashed: NLM-OF @ = F(I;).

the LM-CF. Fig. 15 shows the variation of absorbed apparent power
S=3Vs/2 (VA) when the machine is controlled by each
controller. It is again seen that energy consumption is lower
when the machine is controlled by the NLM-OF controller. The
energy saving achieved by this controller (compared with LM-CF)
is evaluated in percent as follows:

fOT Sim-cr(t) dt — fOT Snim-or(t) dt
Jo Snim-or(t) dt

x 100 =36.12% (41)

where T =25s (duration of the experiment), S;y.cr and Syim-or
denote the apparent electric power absorbed by the machine
when this is steered by the controllers LM-CF and NLM-OF,
respectively. That is, the benefit of the NLM-OF control strategy is
a quite significant energy saving.

Remark 2. (a) It is worth pointing out that the difference between
the two control strategies, from the energy saving viewpoint, is
more significant in presence of small load torques. This is
explained by the fact that the difference between the SDOF
reference and the constant flux reference is maximal in presence
of small loads.
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time

Fig. 11. Flux regulation with the LM-CF control strategy (that involves constant
flux reference).
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Fig. 12. Flux tracking with NLM-OF controller. Dashed: online generated flux
reference @ ¢ = F(I). Solid: measured flux response.
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Fig. 13. Absorbed stator current. Solid: LM-CF controller. Dashed: NLM-OF
controller.

(b) It can similarly be checked that the NLM-OF strategy is
better, from an energetic viewpoint, than the NLM-CF strategy.
Actually, there is no difference in steady-state behavior between
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Fig. 14. Joule losses power (W). Solid: LM-CF controller. Dashed: NLM-OF
controller.
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Fig. 15. Absorbed electrical power (VA). Solid: LM-CF controller. Dashed: NLM-OF
controller.
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Fig. 16. Flux tracking performance of the LM-OF controller. Dashed: flux reference
@or = F(I5). Solid: measured flux with LM-OF.

the NLM-CF and LM-CF control strategies as long as the (constant)
flux reference is at its nominal value 1.1 Wb. As both controllers
ensure perfect flux reference tracking, it follows that the real rotor

flux converges to its nominal value. Then, the quantity J in the
NLM-model converges to the specific value §; =780. Hence, the
NLM-model reduces to the LM-model.

6.2. Supremacy of NLM-OF strategy over LM-OF strategy

The simulation protocol is similar to the one given in Section
6.1 (Figs. 7 and 8). Recall that the NLM-OF controller is defined by
the control law (37) together with the optimal flux generator
s = F(I5) (plotted in Fig. 6). The controller design parameters are
given the following values which proved to be convenient:
c1 =5, cp =4000, d; =18, d, =1500. The NLM-OF controller is
now compared with a controller of the LM-OF type (Table 1). The
later is simply obtained making the following modifications in
(37):

e the flux reference is given by the optimal flux generator
(pref =Fs) (Fig- 6)-

e the parameter 0 in (37) is kept constant and equal to é; = 780,
and

e the remaining design parameters are given the following
values that proved to be convenient for this controller:
c1 =5, ¢ =4000, d; =18, d; = 1500.

Figs. 16 and 17 show the flux tracking quality achieved with the
NLM-OF and LM-OF control strategies, respectively. It is observed
that the former generally ensures a tighter flux tracking than the
latter. Fig. 18 shows that both controllers ensure a perfect
asymptotic tracking of the speed reference signal. Fig. 19 shows
that stator current is smaller with the NLM-OF controller. This is
particularly true in presence of small load torques because the
machine operational conditions are then very different from the
nominal conditions. The supremacy of the NLM-OF controller,
from the energetic viewpoint, is further illustrated by Fig. 20
where the absorbed power is plotted for both controllers. The
energy saving achieved with the NLM-OF controller during the
present simulation is evaluated as follows:

fOT Sim-or(t) dt — fOT Snim-or(t) dt
fOT Snim-or(t) dt

x 100 = 18.41% (42)

where the different notations are similar to (41). Again, the energy
saving obtained with the NLM-OF controller strategy, compared to
the LM-OF, is quite significant.

Flux (Wb)

time

Fig. 17. Flux tracking performance of the NLM-OF controller. Dashed: flux
reference @ s = F(Is). Solid: response with NLM-OF.
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Fig. 21. Load torque variation when rotor resistance uncertainty is considered.
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controller. of rotor resistance uncertainty. Dashed: flux reference. Solid: measured flux.
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Fig. 24. Flux tracking performance of the LM-CF controller operating in presence
of rotor resistance uncertainty. Dashed: flux reference. Solid: measured flux.
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Fig. 25. Absorbed stator current with LM-CF and LMN-OF controllers operating in
presence of rotor resistance uncertainty. Solid: LM-CF controller. Dashed: NLM-OF
controller.

6.3. Robustness of considered control strategies

In real life operation, rotor resistance is subject to (small)
variations due to changes in operating conditions. Then, it is of
practical interest to investigate how robust the new control
strategy NLM-OF is with respect to rotor resistance uncertainty
and to compare its sensitivity to that of the classical LM-CF
strategy. To this end, consider again the NLM-OF and LM-CF
controllers used in Subsection 6.1 of the present section. The
simulation protocol is the following:

e the load torque changes significantly during the simulation as
shown in Fig. 21 and

e the rotor resistance R, varies around its nominal value 0.55 Q, it
deviates up to + 5% (Fig. 22).

Obviously, the rotor resistance variations are not accounted for
in the controllers i.e. R; is kept constant therein, with its nominal
value.
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Fig. 26. Speed tracking performance of NLM-OF and LM-OF controllers in presence
of rotor resistance uncertainty. Dashed: speed reference. Solid: LM-OF speed
response. Discontinuous: NLM-OF speed response. The responses of both
controllers are too close to each other to be distinguished.
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Fig. 27. Zoom on the speed responses of Fig. 25, over the time interval [1s 13s].

Fig. 23 shows the flux tracking quality of the NLM-OF controller.
A small tracking error, less than 5%, is observed whenever the rotor
resistance deviates from its nominal value (used in the controller).
A roughly similar sensitivity level is observed in Fig. 24 for the
LM-CF controller. Interestingly, the sensitivity of both controllers
(to resistance uncertainties) is much smaller when it comes to stator
current absorption (Fig. 25). This means, in particular, that current
optimization is still ensured by the NLM-OF controller and, from this
viewpoint, the NLM-OF is quite better than the LM-CF. Finally, it
follows from Figs. 26 and 27 that the good speed tracking capability
of both controllers is insensitive to resistance uncertainty.

7. Conclusion

The problem of induction machine control in presence of
magnetic circuit saturation was considered in this paper. A new
speed-flux controller described by (37) and based on the model
(1)-(6) is designed using the backstepping technique. The
proposed controller involves a state-dependent flux reference



generator. The flux state dependence is resorted to optimize the
absorbed stator current. It is formally shown (Theorem 1) that the
proposed controller guarantees the global convergence of the
speed and flux errors e; =Q, — Q and z; = &7, — &} to zero
(with @f = ¢fa+¢f/;). That is, the tracking objective is perfectly
achieved both for the machine speed and rotor flux. Furthermore,
it is shown by simulation that, in all operation conditions, the
absorbed stator current is actually smaller with the proposed
NLM-OF controller, compared to more standard LM-CF, NLM-CF or
LM-OF controllers. Such a supremacy of the NLM-OF controller is
preserved in presence of small resistance uncertainties. An
adaptive version of the proposed NLM-OF control strategy has
yet to be designed to face large resistance uncertainties.
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