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9. NUMERICAL TECHNIQUES 1
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Abstract—In this paper, we study the behavior of the steady- whereo, o, ando, are given positive constants
state voltage potentials in a material composed by an inteor Let v® andu® be defined by:
medium surrounded by a rough thin layer and embedded in

an ambient bounded medium. The roughness of the layer is {V. (oVu) =0, in €, {V. (6Vu®) =0,in Q, )

supposed to be—periodic, € being the small thickness of the layer. uflog =g u0|asz =g
We present and validate numerically the rigorous approximae ’ ’
transmissions proved by Ciupercaet al. in [1]. This paper extends where g is a sufficiently smooth boundary data. We present

previous works in which the layer had a constant thickness. how to define the potential' such thatu® is approached by
uf = u® + eu' + o(3/?) for ¢ tending to zeré
I. INTRODUCTION

In the domains with a rough thin layer, numerical difficudtie Suoposel is a smooth closed curve ak? of lenath
appear due to the complex geometry of the rough layer Whfnanzloparameterize it by the curvilinear coordin:Iteg:
computing the steady-state potentials. We present here h{%’(@) 6c[0,1]}. Let n be the (outward) normal t60
these difficulties may be avoided by replacing this rouglﬂzllayF i <7jescrib’ed b 1
by appropriate transmission conditions. Particularly,skew ~* y
that considering only the mean effect of the roughness is not L. ={Y(0)+ef(8/e)n(6), 6 € [0,1]},
sufficient to obtain the potential with a good accuracy.

Il. HEURISTICS OF THE DERIVATION OF THE CONDITIONS

where f is a smooth 1—periodic and positive function, which

describes the roughness of the layer.
A. Statement of the problem

A. Boundary layer corrector in the infinite strip
The key-point of the derivation of the equivalent transmis-
sion conditions consists in taking advantage of the pecitydi
Om of the roughness. This is performed by unfolding and upscal-
o ing the rough thin layer into the infinite strif x [0, 1].
Define the closed curved andCy, which are trigonomet-
rically oriented by

e Co=1{0} x[0,1], C1={(f(y),y), Yy € [0,1]}.
The outward normals t6, andC; equal

2 () - (rw) @
n, = ) n = .
©TN) T IR W) \ W)
Fig. 1. Geometry of the problem. According to [1] there exists a unique coupl’, a°) where
AY is a continuous vector field and is constant such that

Let © be a smooth bounded domain &f with connected A" is 1-periodic iny, AA® = 0,inRx [0,1], (3a)

boundaryof2. Fore > 0, we splitQ2 into three subdomains:

0!, 0™ and0?. O is a smooth domain strictly embedded i~ 909, A°|¢+ — 0O Ao = (om — o0)nc,., (3b)
Q (seg Fig. _1). We_denotg b‘ly its connected boqndary. The OmOn Aot — 010, A% = — (0 — T0)ncCy (3c)
domain O is a thin oscillating layer surroundin@;. We 0 ° o o

denote byl'. the oscillating boundary ad™: T'. = 0O0™\T. A" 50000, A7 — 07 —5t00 0, (3d)

The domain®? is defined by:0? = Q\ (O' UO). We also where the convergences at infinity are exponential. We empha
denote by0? = O\ O. Two piecewise-constant conductivitiessize thata® is not imposed but is a floating potential.

on the domaim have to be defined: ] ) ]
1The same following results hold ifg, o1, and o,, are given complex

o1, if z € (91, . 1 numbers with imaginary parts (and respectively real pavit) the same sign.
o(2) = o, if z€ O™ 5(2) = o, if z€ 07, 2The notationo(e3/2) means thaf|u® — (u® + eu')|| goes to zero faster
m €’ 0o, if z€Q\ oL, than e3/2 ase goes to zero. We refer to Theorem 1.1 of [1] for a precise

oo, iIf z € (92. description of the involved norms and the accuracy of theveaence.
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B. Approximate transmission conditions z 0z

2
Our transmission conditions are then obtained with the helg.
of the constant vectorf.)l and D, defined by:

2
0.05 1.8
18
16
1.6f 16 ]
0 1.4 14 14 0
Dy = (09 - Um) f )dyne, + A ,y) dy ’ -0.05 T
1.2 12 i
! -01
+(om — 01)/ A%(0,y) dy — aga®, 1 1 -0
0.8} 0.8 015 08 -0z
D2 = (om -0 [ 40050
-0.2 03
0.4f 04 0.4
/ f dy ( )] 0.2 0.z 0.25 0.z
04
L 0 0
The potentiak! is then defined by % 05 0 _
(a) One period. (b) Error order 0. (c) Error order 1.

Aul = 0, in o'u Ol, u1|39 =0,
Fig. 2. Representation of one period of the domain and theesponding

0 0
[&8 ul} = —kD1 - Onu’r+ + D0 Onu”r+ errors with approximate solutions® and u® + eu!. ¢ = 27/30. Do not
n r 1 atuo|1“+ 2°¢ (a)tuO|F+ ’ consider the error in the rough layer because a proper reootisn of the
0 solution in it is not currently implemented.
O T
[ul} L= a0 [ Ir+

3tu0|p+
The numerical convergence rates for the-norm in O!

whered; andd,, denote the tangential and the normal derivasf the three following errorsic — u°, u® — u® — eu' and
tives alongl” and~ is the curvature of". _ ~ uf—u’—cu' ase goes to zero are given Figure 2. As predicted

We emphasize that our conditions are different than if wey the theory, the rates are closeltdor the order0 and for
would only consider the mean effect of the roughness. In thise order 1 with the mean effect, whereas it is close for
case, denoting by the mean off, the conditions would be the “real” order1 equal tou® — u° — u'.
(see [1], [3], [4]):

~ ~ — = on — Ory —

[Ua”ul}r‘ = (UO - Um)fatzu0|Fv [ul}l“ - OU mfanU0|F+- 10°T
m
1. NUMERICAL SIMULATIONS

In order to verify the convergence rate stated in Section I, _
we consider a problem where the geometry and the boundar ;31071 1
conditions arez—periodic. The computational domain is =
delimited by the circles of radius 2 and of radiug centered s
in 0, while ©! is the intersection of) with the concentric 3 :g;(tji:a?ed exponent: 0.83
disk of radius 1. The rough layer is then describedfly) = — Order 1 o
1+ 1/2sin(y). One period of the domain is shown Fig 2(a). 102} + -+ Estimated exponent: 1.8 ||
The Dirichlet boundary data is identically 1 on the outecleir ~ Order 1, mean effect
and 0 on the inner circle. + =+ Estimated exponent: 1.19

The mesh generat@msh[2] and the finite element library 10

Getfem++[5] enables us to compute the four potentiafs
w?, uw! andu?.

The rough thin layer is supposed slighty insulating. Thigg. 3. H!-Error in the cytoplasm vs for three approximate solutions.
conductivitiesog, o1 and o, respectively equal to 3, 1 and
0.1. The computed coefficierftsssued from Problem (3) are
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4The convergences at the infinity in Problem (3) are expoakhtince we
just have to compute problem (3) fox| < M, with M large enough to
obtaina® with a good accuracy.



