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Abstract—We report on recent efforts towards the development boundaryo? = I', U I',,,, the following boundary condi-
of a high order, non-conforming, discontinuous Galerkin me¢hod  tions are imposed: a perfect electric conductor conditian o

for the solution of the system of frequency domain Maxwell's T,.: n x E = 0, and a Silver-Milller (first-order absorbing
equations in heterogeneous propagation media. This methoi$ meo s )
condition) condition onI'y: n X E + n x (n x H) =

an extension of the low order one which was proposed in [1]. . ; . A
n x E"4+n x (nx H™). VectorsE™° and H"° represent

|. INTRODUCTION the components of an incident electromagnetic wave and

In the recent years, there has been an increasing intef@@fotes the unitary outward normal. Eq. (1) can be further
in discontinuous Galerkin (DG) methods for solving the timgewritten under the following form:
domain Maxwell equations [2]- [3] due to their ability to dgs .
deal with unstructured meshes and heterogeneous media. The WGoW + Gz 0, W+Gy0,W+G.0. W =0. 2)
development of DG methods for solving the frequency domairet (2;, denote a discretization of the domdininto a union
Maxwell equations has been less impressive and mostly dasfeconforming tetrahedral elementy, = U K. We look
in the context of the Maxwell eigenvalue problem [4]. Beside KeT,
a hp-adaptive DG method has been proposed in the contést the approximate solutioW, = (Ej,H})" of (2) in
of the low-frequency time-harmonic Maxwell equations [5]Vx X Vi Where the functional space, is defined byV;, =
In this paper, we report on recent efforts towards the devdlU € [L*(Q)]* / VK € T,,, Uk € P,(K)} whereP,(K)
opment of a discontinuous Galerkin method for the solutig#tenotes a space of vectors with polynomial components of
of the system of frequency domain Maxwell’s equations iflegree at mosp over the element. The discontinuous
heterogeneous propagation media. This DGFD (DiscontinGalerkin discretization of system (2) leads to fiff; in
ous Galerkin Frequency Domain) method is formulated di. x Vi such that:
simplicial meshes (triangle in 2D and tetrahedron in 3D). f—
Within each mesh element, the approximation of the elec- / (iwGoWh) Vdu
tromagnetic field relies on an arbitrarily high order nodal n .
polynomial interpolation. Moreover, as a first step towatds _
development of ap-adaptive method, the approximation order + > /K > Go(Wh) | Vv

p is allowed to vary across mesh elements resulting in a non-  K€7» le{e,y,z}
conforming DGFD method. We present preliminary results for 1 b
the simulation of two-dimensional propagation problems. /F §(MF=K —IrkGny)Wn | Vds
Felr'mure (3)
_ II.. DGFD METH-OD _ _ o Z / (G W) {V}ds
We consider solving the non-dimensioned time-harmonic peroJF
Maxwell equations in the first order form: L
+ Sr[W V]ds
iwe,E—curlH =0 , iwu,H+curlE=0, (1) Fgf),/p‘ (SelWal) VI

where E and H are the unknown electric and magnetic 1 e\ —
fields. Parameters, and . are respectively the complex- — — Z /F<§(MF~K —IrkGne)W ) Vs,
Fere

valued relative dielectric permittivity and the relativeagmetic
permeability; we consider here the case of linear isotropid/ € Vj, x Vj,, whereT'?, I'* andI'™ respectively denote
media. Eq. (1) is solved in a bounded dom&in On the the set of interior (triangular) faces, the set of facesIpn



and the set of faces di,,. The unitary normal associated toat the element level based on the triangle area resulting
the oriented facd” is nr and Irx stands for the incidencein a distribution for which the number of elements with
matrix between oriented faces and elements whose entaesar= 1,2, 3,4 is respectively equal to 1495, 2037, 243 and
given by 0 if the faceF' does not belong to elememf, 1 if 183. For each method, the algebraic systems resulting from
F € K and their orientations match, -1 i € K and their the discretization of the time-harmonic Maxwell equations
orientations do not match. We also define respectively thpju is solved using an optimized sparse direct solver. In Tab. Il
and the average of a vectdf of V}, x V}, on a faceF shared we summarize the performances of the methods in terms of
by two elementsk and K: V] =IrxV |k +1pgV ik and accuracy L2 error on theF, cpmponent using the existin_g
vy = % Vi + V\f( . Finally, the matrixSp, which is analytical solution for the conS|dere(_j problem), the CRbkti
and the memory overhead (for storing the L and U factors).

ngngtlca(;lmpos}:tlevri:satl)lf ﬁst?iggn;l:ztiéh;é% Z]rﬁ) dotfhaeﬁrigtr?; QThese results clearly show the benefits resulting from al loca
b definition of the approximation order, especially in ternfs o

M,k 1s a numerical flux which can be either a centered flur)r(1emor requirements and overall computational efficienc
or all the upwind flux (see [1] for more details). y req P Y-

The present work is currently proceeding towards the design
1. NUMERICAL RESULTS of ap-adaptive solution strategy in the context of the proposed
on-conforming DGFDR,,. method, and its extension to the

. , n
Numerical results are presented here for the solution of tag) case
1
. (. .

2D TMz Maxwell equations. We first illustrate the conver-
gence properties of the conforminge( p is the same for
N
Fig. 2. Scattering of a plane wave by a dielectric cylindeanNiniform

all elementsk’ € 7;,) DGFD-P, method by considering the
propagation of a plane wave (F=300 MHz) in vacuum. The

triangular mesh (top) and contour lines Bf for the non-conforming DGFD-
Py, method (bottom).

computational domain is the unit square [0,1]x[0,1] ditizesl
by non-uniform triangular meshes. The numerical convergen
of the method is visualized on Fig. 1 and convergence order
are summarized in Tab. I. One can note that an optima
convergence order is obtained in the case of an upwin
numerical flux function.

TABLE Il
SCATTERING OF A PLANE WAVE BY A DIELECTRIC CYLINDER.
PERFORMANCE FIGURES

——GD-P1|
GD-P2|
GD-P3|

——GD-P4|

i i 3 G 10°) i
; i 3H ——GD-P1|
[ (A GD-P2|
e 1 g GD-P3|
—— GD-P4|

r | Method [ L2erroronE, [ CPU [ RAM (LU) |
Vel et Vi of ot DGFDT; 0.37977 T3sec| 29 MB
Fig. 1. Propagation of a plane wave in vacuum. Numerical emyence of DGFDP, 0.58304 4.1 sec 84 MB
the DGFD®P,, method: central flux (left) and upwind flux (right). DGFD-P3 0.05527 79sec| 180 MB
DGFDP4 0.05522 15.7 sec| 317 MB
TABLE | DGFDP1 2,34 0.05586 3.7 sec 83 MB
PROPAGATION OF A PLANE WAVE IN VACUUM. CONVERGENCE ORDERS OF
THE DGFD-P, METHOD.
_ REFERENCES
[ Numerical flux ] P1 [ Po [ P3 | Py | ] . ] »
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Upwind 19|30/ 39|50 9
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