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Abstract—We report on recent efforts towards the development
of a high order, non-conforming, discontinuous Galerkin method
for the solution of the system of frequency domain Maxwell’s
equations in heterogeneous propagation media. This methodis
an extension of the low order one which was proposed in [1].

I. I NTRODUCTION

In the recent years, there has been an increasing interest
in discontinuous Galerkin (DG) methods for solving the time-
domain Maxwell equations [2]- [3] due to their ability to easily
deal with unstructured meshes and heterogeneous media. The
development of DG methods for solving the frequency domain
Maxwell equations has been less impressive and mostly done
in the context of the Maxwell eigenvalue problem [4]. Besides,
a hp-adaptive DG method has been proposed in the context
of the low-frequency time-harmonic Maxwell equations [5].
In this paper, we report on recent efforts towards the devel-
opment of a discontinuous Galerkin method for the solution
of the system of frequency domain Maxwell’s equations in
heterogeneous propagation media. This DGFD (Discontinu-
ous Galerkin Frequency Domain) method is formulated on
simplicial meshes (triangle in 2D and tetrahedron in 3D).
Within each mesh element, the approximation of the elec-
tromagnetic field relies on an arbitrarily high order nodal
polynomial interpolation. Moreover, as a first step towardsthe
development of ahp-adaptive method, the approximation order
p is allowed to vary across mesh elements resulting in a non-
conforming DGFD method. We present preliminary results for
the simulation of two-dimensional propagation problems.

II. DGFD METHOD

We consider solving the non-dimensioned time-harmonic
Maxwell equations in the first order form:

iωεrE − curl H = 0 , iωµrH + curlE = 0, (1)

where E and H are the unknown electric and magnetic
fields. Parametersεr and µr are respectively the complex-
valued relative dielectric permittivity and the relative magnetic
permeability; we consider here the case of linear isotropic
media. Eq. (1) is solved in a bounded domainΩ. On the

boundary∂Ω = Γa ∪ Γm, the following boundary condi-
tions are imposed: a perfect electric conductor condition on
Γm: n × E = 0, and a Silver-Müller (first-order absorbing
condition) condition onΓa: n × E + n × (n × H) =
n×E

inc +n× (n×H
inc). VectorsEinc andH

inc represent
the components of an incident electromagnetic wave andn

denotes the unitary outward normal. Eq. (1) can be further
rewritten under the following form:

iωG0W + Gx∂xW +Gy∂yW +Gz∂zW = 0. (2)

Let Ωh denote a discretization of the domainΩ into a union
of conforming tetrahedral elementsΩh =

⋃

K∈Th

K. We look

for the approximate solutionW h = (Eh, Hh)t of (2) in
Vh × Vh where the functional spaceVh is defined byVh =
{

U ∈ [L2(Ω)]3 / ∀K ∈ Th, U |K ∈ Pp(K)
}

where Pp(K)
denotes a space of vectors with polynomial components of
degree at mostp over the elementK. The discontinuous
Galerkin discretization of system (2) leads to findW h in
Vh × Vh such that:

∫

Ωh

(iωG0W h)
t
V dv

+
∑

K∈Th

∫

K





∑

l∈{x,y,z}

Gl∂l(W h)





t

V dv

+
∑

F∈Γm∪Γa

∫

F

(

1

2
(MF,K − IFKGnF

)W h

)t

V ds

−
∑

F∈Γ0

∫

F

(GnF
JW hK)

t
{V }ds

+
∑

F∈Γ0

∫

F

(SF JW hK)t JV Kds

=
∑

F∈Γa

∫

F

(

1

2
(MF,K − IFKGnF

)W inc

)t

V ds,

(3)

∀V ∈ Vh × Vh, whereΓ0, Γa and Γm respectively denote
the set of interior (triangular) faces, the set of faces onΓa



and the set of faces onΓm. The unitary normal associated to
the oriented faceF is nF and IFK stands for the incidence
matrix between oriented faces and elements whose entries are
given by 0 if the faceF does not belong to elementK, 1 if
F ∈ K and their orientations match, -1 ifF ∈ K and their
orientations do not match. We also define respectively the jump
and the average of a vectorV of Vh ×Vh on a faceF shared
by two elementsK andK̃: JV K = IFKV |K + IFK̃V |K̃ and

{V } = 1

2

(

V |K + V |K̃

)

. Finally, the matrixSF , which is
hermitian positive, allows to penalize the jump of a field or of
some components of this field on the faceF and the matrix
MF,K is a numerical flux which can be either a centered flux
or all the upwind flux (see [1] for more details).

III. N UMERICAL RESULTS

Numerical results are presented here for the solution of the
2D TMz Maxwell equations. We first illustrate the conver-
gence properties of the conforming (i.e. p is the same for
all elementsK ∈ Th) DGFD-Pp method by considering the
propagation of a plane wave (F=300 MHz) in vacuum. The
computational domain is the unit square [0,1]x[0,1] discretized
by non-uniform triangular meshes. The numerical convergence
of the method is visualized on Fig. 1 and convergence orders
are summarized in Tab. I. One can note that an optimal
convergence order is obtained in the case of an upwind
numerical flux function.
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Fig. 1. Propagation of a plane wave in vacuum. Numerical convergence of
the DGFD-Pp method: central flux (left) and upwind flux (right).

TABLE I
PROPAGATION OF A PLANE WAVE IN VACUUM. CONVERGENCE ORDERS OF

THE DGFD-Pp METHOD.

Numerical flux P1 P2 P3 P4

Centered 1.1 2.1 2.9 4.0
Upwind 1.9 3.0 3.9 5.0

The second test problem that we consider is the scattering
of a plane wave (F=300 MHz) by a dielectric cylinder. For
that purpose, we make use of a highly non-uniform triangular
mesh which consists of 2078 vertices and 3958 triangles.
The relative permittivity of the inner cylinder is set to 2.25
while the vacuum is assumed for the rest of the domain. We
compare the solutions obtained using a conforming DGFD-Pp

method forp = 1, 2, 3, 4 and a non-conforming DGFD-PpK

method and adopting a centered numerical flux function. In
the latter case, the approximation order is defined empirically

at the element level based on the triangle area resulting
in a distribution for which the number of elements with
p = 1, 2, 3, 4 is respectively equal to 1495, 2037, 243 and
183. For each method, the algebraic systems resulting from
the discretization of the time-harmonic Maxwell equations
is solved using an optimized sparse direct solver. In Tab. II
we summarize the performances of the methods in terms of
accuracy (L2 error on theEz component using the existing
analytical solution for the considered problem), the CPU time
and the memory overhead (for storing the L and U factors).
These results clearly show the benefits resulting from a local
definition of the approximation order, especially in terms of
memory requirements and overall computational efficiency.
The present work is currently proceeding towards the design
of a p-adaptive solution strategy in the context of the proposed
non-conforming DGFD-PpK

method, and its extension to the
3D case.

Fig. 2. Scattering of a plane wave by a dielectric cylinder. Non-uniform
triangular mesh (top) and contour lines ofEz for the non-conforming DGFD-
PpK

method (bottom).

TABLE II
SCATTERING OF A PLANE WAVE BY A DIELECTRIC CYLINDER.

PERFORMANCE FIGURES.

Method L2 error onEz CPU RAM (LU)

DGFD-P1 0.37977 1.3 sec 29 MB
DGFD-P2 0.58304 4.1 sec 84 MB
DGFD-P3 0.05527 7.9 sec 180 MB
DGFD-P4 0.05522 15.7 sec 317 MB

DGFD-P1,2,3,4 0.05586 3.7 sec 83 MB
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