François Musy 
  
Artem Napov 
  
Yvan Notay 
  
Ronan Perrussel 
email: ronan.perrussel@ec-lyon.fr
  
Riccardo Scorretti 
  
Franc ¸ois Musy 
  
Krylov-based algebraic multigrid for edge elements

come    

I. INTRODUCTION

In finite element method libraries, the linear system solvers play a key role in terms of performances in the computing time and in the memory consumption. Multigrid methods are among the most efficient iterative linear system solvers for elliptic problems [START_REF] Hackbusch | Multi-Grid Methods and Applications[END_REF]. In this work, we focus on the discretization with the lowest order edge element of a curl-curl equation [START_REF] Hackbusch | Multi-Grid Methods and Applications[END_REF] which gives rise to a linear system Ax = f . Several Algebraic MultiGrid (AMG) algorithms have been proposed for "efficiently" solving this system [START_REF] Beck | Algebraic multigrid by components splitting for edge elements on simplicial triangulations[END_REF]- [START_REF] Musy | Compatible coarse nodal and edge elements through energy functionals[END_REF]. We use the main ideas of the algorithm proposed by Reitzinger and Schöberl (RS), who were the first to propose an edge prolongation matrix satisfying a commutativity property [START_REF] Reitzinger | An algebraic multigrid method for finite element discretizations with edge elements[END_REF]. Our motivation comes from the fact that this algorithm has the fastest setup time and gives the sparsest prolongation and coarse grid matrices among the available methods. However, it also gives the poorest rate of convergence, leading, in the literature, to a non-optimal multigrid solver. We combine the RS algorithm ideas with a Krylov-based multigrid cycle in order to recover classical multigrid performance. Numerical experiments are performed on 2D problems.

curl δ curl U + γU = f on Ω ⊂ R d (d = 2 or 3),

II. COMPONENTS OF THE ALGORITHM

A. Recursive Krylov-based multigrid cycle

The multigrid preconditioning algorithm on grid k (denoted by MGp) is given by Algorithm 1 where matrix A k represents the discrete problem on grid k (grid 0 is the coarsest) and P k is the prolongation matrix from grid k -1 to grid k.

Algorithm 1: INPUT r k , OUTPUT z k = MGp(r k ) 1) Relax using smoother M k : z k ← M -1 k r k . 2) Restrict residual: r k-1 ← P T k (r k -A k z k ).
3) Compute an approximate solution θk-1 to:

A k-1 θ k-1 = r k-1 .
(2) 4) Prolongate coarse-grid correction:

z k ← z k + P k θk-1 . 5) Relax using smoother M k : z k ← z k +M -1 k (r k -A k z k ).
If k-1 is zero, the solution of ( 2) is exact. If not, a common strategy is to perform once MGp(r k-1 ) (V-cycle) or twice (Wcycle) to approximately solve [START_REF] Beck | Algebraic multigrid by components splitting for edge elements on simplicial triangulations[END_REF]. Following [START_REF] Notay | Recursive krylov-based multigrid cycles[END_REF], we propose to consider a K 2 -cycle which is a W-cycle completed by the two first iterations of a flexible Krylov subspace method. An example with the flexible conjugate gradient is given by Algorithm 2.

Algorithm 2:

INPUT r k-1 , OUTPUT θk-1 = CS(r k-1 ) 1) First iteration: d k-1 ← MGp(r k-1 ); α k-1 ← r T k-1 d k-1 d T k-1 A k-1 d k-1 ; θk-1 ← α k-1 d k-1 ; r k-1 ← r k-1 -α k-1 A k-1 d k-1 .
2) Second iteration:

c k-1 ← MGp(r k-1 ); d k-1 ← d k-1 - c T k-1 A k-1 d k-1 d T k-1 A k-1 d k-1 c k-1 ; θk-1 ← θk-1 + r T k-1 d k-1 d T k-1 A k-1 d k-1 d k-1 .
The iteration cost in time and memory of both K 2 -and W-cycle is roughly equivalent. Moreover, their convergence rate are theoretically similar [START_REF] Notay | Recursive krylov-based multigrid cycles[END_REF]. Nevertheless, in practice the K 2 -cycle has a better convergence rate than the W-cycle [START_REF] Notay | Recursive krylov-based multigrid cycles[END_REF].

B. Prolongation matrix and smoother

Reitzinger and Schöberl proposed to construct an edge prolongation matrix P edg satisfying a commutativity property:

P edg G H = G h P nod . (3) 
In this equality, P nod is a nodal prolongation matrix obtained from a nodal auxiliary matrix and G h and G H are respectively fine and coarse edge-node incidence matrix. At the finest level, G h is given by the relation between vertices and edges on the finite element mesh. At the same level, the nodal auxiliary matrix B, following the proposition in [START_REF] Kaltenbacher | Algebraic multigrid methods for nodal and edge based discretizations of maxwell's equations[END_REF], contains information about the edge-node incidence, the lengths of the edges and coefficient δ from (1). The construction of P nod is then performed by the double pairwiseaggregation algorithm proposed in [START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF]. Once P nod is known, the definition of the coarse edge incidence matrix G H and the edge prolongator P edg are straightforward. To apply the construction recursively, coarse grid matrices are obtained by Galerkin product:

A H = (P edg ) T AP edg , B H = (P nod ) T BP nod . (4)
The smoother is a symmetric version of the smoother proposed in [START_REF] Hiptmair | Multigrid method for Maxwell's equations[END_REF] in a geometric multigrid context. It uses on each grid the corresponding edge-node incidence matrix.

III. NUMERICAL RESULTS

The behavior of the method with an increasing size of the problem and several kinds of parameters δ and γ is studied.

A. Structured mesh

The examples are taken from [START_REF] Jones | A multigrid method for variable coefficient maxwell's equations[END_REF]. The domain is a unit square and Dirichlet boundary conditions are enforced. The mesh with triangles is structured but this fact is not used by the solver. For the parameters, three situations are considered:

1) Homogeneous parameters: δ = γ = 1.

2) Oscillating with discontinuities for δ = f (x, y) and γ = 1. Function f have the following definition:

f = C(2 + sin(40πx)) 2 (2 + cos(40πy)) 2 with C =          10 in ]0, 0.5[×]0, 0.5[, 10 4 in ]0.5, 1[×]0, 0.5[, 10 -1 in ]0, 0.5[×]0.5, 1[, 10 2 in ]0.5, 1[×]0.5, 1[.
3) Oscillating with discontinuities for δ = f (x, y) and for γ = f (y, x).

The behavior of the iterative method is evaluated by computing the average convergence rate σ est in energy norm:

σ est = er t k Aer k er t 0 Aer 0 1/(2k f )
with er k the error at the k-th iteration and k f the iteration where the stopping criterion is reached.

An examination of the convergence rate of the two-grid algorithm provides information to predict the behavior of the multigrid cycle. In Table I, the two-grid convergence rate is quasi-independent of the size of the problem and is bounded away from 1. Case 3 is the worst situation probably because the aggregation does not take into account variation of γ; it may explain the bad convergence rate for one particular mesh in this case (in bold). The number of unknowns is divided roughly by 4 between fine and coarse grids which is the best trade-off between coarsening and the overall arithmetic complexity.

With such convergence rates for the two-grid solver, it is illustrated in Table II that the convergence rates of the W-cycle (and of course of the V-cycle) deteriorates as the number of grids increases. On the contrary, the convergence rate of the K 2 -cycle has a remarkable stability. The change of cycling proposed for the RS algorithm seems to make this algorithm robust and optimal in 2D. The proposed algorithm can be straightforwardly extended to 3D problems but our actual Matlab implementation does not enable us to propose results on challenging problems and also to discuss computational time and memory requirements. We are working on an implementation in Fortran90 in order to propose valuable comparisons on realistic problems.

TABLE II COMPARISON

 II BETWEEN A W-CYCLE AND A K 2 -CYCLE SOLVER. CASE 3 ON THE MESH WITH 48896 D.O.F.. Coefficients δ and γ are those defined in Case 3. The domain is still a unit square but an unstructured mesh, refined at the center of the square, is considered. Table III confirms the results obtained for the structured meshes.

	# grids	3	4	5	6	7
	d.o.f. coarsest grid 3279	844	216	55	11
	K 2 -cycle, σest	0.68	0.68	0.68	0.68	0.68
	W-cycle, σest	0.83	0.89	0.93	0.95	0.97
	B. Unstructured mesh