Abstract-This paper presents some improved analytical expressions of the magnetic field produced by arc-shaped permanent magnets whose polarization is radial with the amperian current model. First, we show that the radial component of the magnetic field produced by a ring permanent magnet whose polarization is radial can be expressed entirely in terms of elliptic integrals. Such an expression is useful for optimization purposes. We also present a semi-analytical expression of the axial component produced by the same configuration. For this component, we discuss the terms that are difficult to integrate analytically and compare our expression with the one established by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]. In the second part of this paper, we use the amperian current model for calculating the magnetic field produced by a tile permanent magnet radially magnetized. This method was in fact still employed by Furlani for calculating the magnetic field produced by radially polarized cylinders. We show that it is possible to obtain a fully analytical expression of the radial component based on elliptic integrals. In addition, we show that the amperian current model allows us to obtain a fully analytical expression of the azimuthal component. All the expressions determined in this paper are compared with the ones established by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF] or in previous works carried out by the authors.

INTRODUCTION

More and more analytical approaches were proposed by many authors [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]- [START_REF] Furlani | Field analysis and optimization of ndfeb axial field permanent magnet motors[END_REF] for calculating the magnetic field created by arc-shaped permanent magnets whose polarizations can be radial [START_REF] Babic | Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings[END_REF]- [START_REF] Ravaud | Discussion about the analytical calculation of the magnetic field created by permanent magnets[END_REF] or axial [START_REF] Furlani | A three-dimensional field solution for permanent-magnet axial-field motors[END_REF]- [START_REF] Perigo | General expressions for the magnetic flux density produced by axially magnetized toroidal permanent magnets[END_REF]. Strictly speaking, there are mainly four analytical methods that are used for calculating the three magnetic field components produced by tile permanent magnets or ring permanent magnets radially magnetized. These four methods derived directly from the Maxwell's equations and the properties of the magnetic field shape.

Consequently, some authors used the coulombian model or the magnetic potential [START_REF] Babic | Calculation improvement of 3d linear magnetostatic field based on fictitious magnetic surface charge[END_REF]- [START_REF] Ravaud | Analytical expression of the magnetic field created by tile permanent magnets tangentially magnetized and radial currents in massive disks[END_REF] while other authors used the amperian current model and the Biot-Savart Law [START_REF] Azzerboni | Magnetic field evaluation for disk conductors[END_REF]- [START_REF] Babic | New expression for calculating magnetic fields due to current-carrying solid conductors[END_REF] for calculating the magnetic field created by currents or permanent magnets. However, these analytical methods are not suitable for the study of iron-core structures. This is why some alternative methods, either based on series expansions [START_REF] Jian | Analytical calculation of magnetic field distribution in coaxial magnetic gears[END_REF] or finite-element methods [START_REF] Chau | Transient analysis of coaxial magnetic gears using finite element comodeling[END_REF] are used for the design of permanent-magnet topologies [START_REF] Chau | Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles[END_REF].

The coulombian model implies the existence of magnetic charges located on the faces of a magnet and inside it. The amperian current model implies the determination of the vector potential produced by fictitious currents flowing around or inside a magnet. The two approaches are in fact equivalent because the magnetic field produced by a solenoid or an axially magnetized cylindrical magnet has the same shape but generally not the same value. It is well known that magnetic fields produced by permanent magnets are generally higher than the ones produced by currents.

The problem is thus to guess what model is the most appropriate for calculating the three components of the magnetic field produced by permanent magnets. It does not seem to be more difficult to use the amperian current model rather than the coulombian model for calculating the magnetic field created by parallelepiped magnets. Indeed, the coulombian model applied to a parallelepiped magnet whose polarization is directed along the normal direction implies two times the calculation of two surface integrals whereas the amperian current model implies four times the calculation of two surface integrals.

However, the two analytical methods lead to a fully analytical expression of the magnetic field [START_REF] Akoun | 3d analytical calculation of the forces exerted between two cuboidal magnets[END_REF]. This is why this configuration is often used by authors for optimization purposes: it has a very low computational cost [START_REF] Yonnet | Permanent magnet bearings and couplings[END_REF]- [START_REF] Charpentier | Calculation of ironless permanent magnet coupling using semi-numerical magnetic pole theory method[END_REF]. However, as shown in [START_REF] Ravaud | Analytical calculation of the magnetic field created by permanent-magnet rings[END_REF], this method can only be used in the near-field if parallelepiped magnets are used for representing arc-shaped permanent magnets. It is emphasized here that numerous approaches based on series expansions have been proposed [START_REF] Selvaggi | Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders by employing toroidal harmonics[END_REF]- [START_REF] Zhilichev | Calculation of magnetic field of tubular permanent magnet assemblies in cylindrical bipolar coordinates[END_REF] while semi-analytical approaches have led to compute the magnetic field in all points in space [START_REF] Rakotoarison | Using coulombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization[END_REF]. Moreover, other analytical methods allow the determination of the force between coil currents [START_REF] Conway | Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils[END_REF] [START_REF] Kim | Mutual inductance of noncoaxial circular coils with constant current density[END_REF].

For arc-shaped permanent magnets, it seems to be more difficult to guess what model is the most appropriate. For arc-shaped permanent magnets whose polarization is radial, some new analytical expressions are derived from the vector potential, not only for ring but also for tile permanent magnets. These expressions are compared with the ones established by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF], Babic [START_REF] Babic | Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings[END_REF], Rakotoarison [33] and Ravaud [START_REF] Ravaud | Discussion about the analytical calculation of the magnetic field created by permanent magnets[END_REF]. These expressions have been found with the help of Mathematica and Maple. Moreover, we discuss the validity and the computational cost of all these expressions. A Mathematica file is available online for showing the validity of the expressions obtained and the equivalence between the amperian current and couloumbian models [36].

The first part of this paper deals with the calculation of the magnetic field created by ring permanent magnets radially magnetized and the second part of this paper deals with the magnetic field produced by tile permanent magnets radially magnetized. By using the amperian current model, we show how some expressions can be significantly improved and why some expressions cannot still be expressed entirely in terms of special functions.

RING PERMANENT MAGNETS WHOSE POLARIZATION IS RADIAL

Notation and geometry

In this first part, we study the magnetic field produced by ring permanent magnets whose polarization is radial. For this purpose, let us consider the geometry shown in Fig 1 . Figure 1-A represents a ring permanent magnet radially magnetized according to the coulombian model. The ring inner radius is r 1 and its outer one is r 2 . Its height is h = z 2 -z 1 . Its magnetic polarization J is directed towards 0. Some fictitious charge surface densities are located on the inner and outer faces of the ring and a charge volume density appears inside the ring. Consequently, as mentioned in [START_REF] Ravaud | The three exact components of the magnetic field created by a radially magnetized tile permanent magnet[END_REF], up to three integrals must be determined for obtaining an analytical expression of the three magnetic field components created by this ring permanent magnet. The contribution of the charge surface densities can be expressed in terms of elliptic integrals of the first, second and third kind [START_REF] Babic | Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings[END_REF] but the contribution of the charge volume density can be expressed in an analytical part based on elliptic functions and a numerical part [START_REF] Ravaud | The three exact components of the magnetic field created by a radially magnetized tile permanent magnet[END_REF]. Consequently, the coulombian model applied to this configuration does not seem to be the best model for obtaining a fully analytical expression of the magnetic field.

In this paper, we use the amperian current model for calculating the magnetic field produced by a ring permanent magnet radially The magnetic polarization J is transformed into a surface density currents k flowing on the upper and lower faces of the ring. Such a model has been employed for example by Lang [START_REF] Lang | Fast calculation method for the forces and stiffnesses of permanent-magnet bearings[END_REF] in the case of axially magnetized ring permanent magnets.

The ratio between J and k is expressed as follows:

k = J µ 0 (1) 
By using the amperian current model in the case of radially magnetized ring permanent magnets, the expression of the radial component can be improved significantly because it can be expressed only in terms of elliptic integrals and no further numerical integrations are required. Consequently, the time necessary to calculate this component is lower with the amperian current model than the coulombian model. However, the two models are equivalent and give the same results as it is shown in a next section. We present now the new magnetic field expressions determined with the amperian current model. The analytical expression of the radial component can be determined by using either the vector potential or directly the Biot-Savart Law. Indeed, by using the analogy between the coulombian model and the amperian current model, the expression of the radial component can be expressed in terms of elliptic integrals. By denoting r the observation point and r a point located on the charge distribution on the magnet, it is useful to define the reciprocal distance r -r as follows: 1

r -r = 1 r 2 + r2 -2rr cos( θ) + (z -z) 2 (2) 
By using the amperian current model, and as stated in [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF], the potential vector created by a ring permanent magnet whose polarization is radial can be expressed as follows:

A( r) = µ 0 4π   Sup k( r ) r -r d Sup - S down k( r ) r -r d Sdown   (3) 
where S up is the upper surface of the ring (z = z 2 ) and S down is the lower surface of the ring (z = z 1 ). Moreover, it is to be noted that in this analogy, the current volume density k v is 0 because the polarization is supposed to be perfectly radial.

k v = ∇ ∧ J µ 0 = 0 (4) 
Thus, the magnetic field can be obtained by the following expressions:

H( r) = 1 µ 0 ∇ ∧ A( r) ( 5 
)
As there is a symmetry according θ in our configuration, the azimuthal component H θ (r, z) equals zero and the magnetic field depends only on r and z, that is :

H( r) = H(r, z) = H r (r, z) u r + H z (r, z) u z (6)
For the rest of this paper, we use the operator 2 i=1 2 k=1 (-1) i+k [•] for the case of ring permanent magnets whose polarization is radial. However, according to the convention chosen for calculating the three magnetic components, this operator can be replaced by

2 i=1 2 k=1 (-1) i+k+1 [•]
. The modulus of the magnetic field created is always the same but the sign of the magnetic components depend directly on the way we define the axes. Such a way of writting the magnetic field expressions has also been adopted by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF] or Babic [START_REF] Babic | Improvement in the analytical calculation of the magnetic field produced by permanent magnet rings[END_REF]. The only influence of the choice of (-1) i+k [•], (-1) i+k+1 [•] or (-1) i+j+k [•] and (-1) i+j+k+1 [•] is the change in sign of the magnetic field component expressions.

Radial component determined with the amperian current model

The radial component H r (r, z) can be determined by calculating the projection of H( r) along u r :

H r (r, z) = H( r). u r = 1 µ 0 ∇ ∧ A( r) . u r (7)
The interest of using the amperian current model for this configuration lies in the fact that only two integrals must be calculated. Consequently, we obtain an analytical expression of the radial field component based on elliptic integrals. By using Mathematica, the arguments of the elliptic integrals used are defined as follows:

φ +,- 1 = (b + 2e)x bx ± √ 2 xe 2 (x -c) φ 2 = i sinh -1   -1 b + 2e b -2e cos( θ)   φ 3 = b + 2e b -2e (8) 
It is noted that we use mainly the elliptic integrals of the second and third kind for the calculation of the radial component. These special functions have also been used in [5][6]. However, no further numerical integrations are required here. In short, the radial component H r (r, z) can be expressed as follows:

H r (r, z) = J 4πµ 0 2 i=1 2 k=1 (-1) i+k (g(i, k, 2π) -g(i, k, 0)) (9) 
with

g(i, k, θ) = 2(z-z k )f (r 2 +(z-z k ) 2 , r 2 +r 2 i +(z-z k ) 2 , rr i , -r 2 -2(z-z k ) 2 , θ) (10) where f (a, b, e, c, x, θ) = η 2ξ 1 (2ce 2 + ξ 2 ) F * [φ 2 , φ 3 ] +η -e 2 (c -x)(bx √ 2 + 2ξ 1 ) Π * φ + 1 , φ 2 , φ 3 +η e 2 (c -x)(bx √ 2 -2ξ 1 ) Π * φ - 1 , φ 2 , φ 3 -2ηax xe 2 -ce 2 √ 2 + bξ 1 Π * φ + 1 , φ 2 , φ 3 -2ηax -xe 2 + ce 2 √ 2 + bξ 1 Π * φ - 1 , φ 2 , φ 3 (11) 
where F * [x, y] and Π * [x, y, z] are the elliptic integrals of the second and third kind that have been used in previous papers [5][6].

In addition, the parameters ξ 1 , ξ 2 , η are defined as follows:

ξ 1 = e 2 x(x -c) ξ 2 = x(b 2 -2e 2 ) η = i -e 2 sin( θ) 2 (b-2e) 2 csc( θ) 2 -1 b+2e xξ 1 (2ce 2 + ξ 2 ) (12) 
Therefore, by using the amperian current model applied to a ring permanent magnet radially magnetized, it is possible to obtain a fully analytical expression of the radial field component. This result is of great importance because it can be used for optimizing the radial field in ironless loudspeakers [START_REF] Lemarquand | Ironless loudspeakers[END_REF][38].

Validation of the radial component expression

A comparison has been performed for verifying the accuracy of the radial component expression with the expressions determined in [START_REF] Ravaud | The three exact components of the magnetic field created by a radially magnetized tile permanent magnet[END_REF] and [START_REF] Ravaud | Discussion about the analytical calculation of the magnetic field created by permanent magnets[END_REF]. It is noted that this expression can also be compared to the expression determined by Furlani by using θ s (2) -θ s (1) = 2π and by neglecting the current densities flowing in the axial direction (see [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]). We take the following dimensions: r 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T , z = 0.0035 m. We represent in Fig 2 the radial component H r (r, z = 0.0035 m) versus the axial displacement z. Figure 2 clearly shows that the analytical expression determined in this paper is accurate and can be used instead of the one established in [START_REF] Ravaud | Discussion about the analytical calculation of the magnetic field created by permanent magnets[END_REF] because it has a lower computational cost. In fact, the choice of the model used is very important. Indeed, it is more difficult to obtain a fully analytical expression of the radial component H r (r, z) in the coulombian approach rather than in the amperian approach. On the other hand, this does not imply that the amperian current model is always more appropriate than the coulombian model, as shown in [START_REF] Ravaud | Analytical expression of the magnetic field created by tile permanent magnets tangentially magnetized and radial currents in massive disks[END_REF] in which radial currents in massive disks generate a magnetic field that can be deducted more easily from the coulombian model. In fact, more generally, for cylindrical geometries, the authors feel that the analyze of the geometry studied must receive a peculiar attention according to the choice of the model used.

Axial Component H z (r, z)

The axial component H z (r, z) can be determined by calculating the projection of H( r) along u z :

H z (r, z) = H( r). u z = 1 µ 0 ∇ ∧ A( r) . u z ( 13 
)
This axial component H z (r, z) is thus given by :

H z (r, z) = J 4πµ 0 2 i=1 2 k=1 (-1) i+k (I 1 (r, z) + I 2 (r, z)) (14) 
with

I 1 (r, z) = -4r i (r -r i ) 2 + (z -z k ) 2 K * -4rr i (r -r i ) 2 + (z -z k ) 2 (15) 
where K * [x] is the complete elliptic integral of the first kind [START_REF] Ravaud | Analytical calculation of the magnetic field created by permanent-magnet rings[END_REF].

I 2 (r, z) = 2π 0 ln r i -r cos( θ) + r 2 + r 2 i + (z -z k ) 2 -2rr i cos( θ) d θ (16)
It is emphasized here that this expression is given in a more compact form than the one determined in a previous paper by the authors [START_REF] Ravaud | Discussion about the analytical calculation of the magnetic field created by permanent magnets[END_REF]. Consequently, it seems to be more judicious to use the amperian current model for calculating the axial component of the magnetic field produced by a ring permanent magnet radially magnetized rather than the coulombian model. However, there is still a part of this expression that can be determined by using a numerical integration.

Validation of the expression of the axial component H z (r, z)

A comparison has been performed for verifying the accuracy of the axial component expression with the expressions determined in [START_REF] Ravaud | The three exact components of the magnetic field created by a radially magnetized tile permanent magnet[END_REF] and [START_REF] Ravaud | Discussion about the analytical calculation of the magnetic field created by permanent magnets[END_REF]. It is noted that this expression can also be compared to the expression determined by Furlani by using θ s (2) -θ s (1) = 2π. We take the following dimensions: r 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T , r = 0.024 m. We represent in Fig 3 the axial component H z (r = 0.024, z) versus the axial displacement z. Figure 3 clearly shows that the analytical expression determined in this paper is accurate and can be used instead of the one established in [START_REF] Ravaud | Discussion about the analytical calculation of the magnetic field created by permanent magnets[END_REF] because it has a lower computational cost and it is given in a more compact form.

TILE PERMANENT MAGNETS WHOSE POLARIZATION IS RADIAL

Notation and geometry

In this second part, we study the magnetic field produced by tile permanent magnets whose polarization is radial. For this purpose, let us consider the geometry shown in Fig 4 . Figure 4-A represents a tile permanent magnet radially magnetized according to the coulombian model. The ring inner radius is r 1 and its outer one is r 2 . Its height is h = z 2 -z 1 . Its magnetic polarization J is directed towards 0. Its angular width is θ 2 -θ 1 . Some fictitious charge surface densities are located on the inner and outer faces of the ring and a charge volume density appears inside the ring. As stated in the first section of this paper, we consider the current surface densities flowing around the tile permanent magnet.

In addition, we define the following operator for the rest of this paper:

℘ i,j,k [•] = J 4πµ 0 2 i=1 2 j=1 2 k=1 (-1) i+j+k [•] (17) 3.2. Radial Component H r (r, θ, z)
We use the same equation as Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF] for calculating the radial component of the magnetic field produced by a tile permanent magnet whose polarization is radial.

H r (r, θ, z) = J 4πµ 0 z 2 z 1 r 2 r 1 r sin(θ -θ 1 ) r -r (θ 1 , z) 3 drdz - J 4πµ 0 z 2 z 1 r 2 r 1 r sin(θ -θ 2 ) r -r (θ 2 , z) 3 drdz + J 4πµ 0 r 2 r 1 θ 2 θ 1 (z -z 2 ) cos(θ -θ) r -r ( θ, z 2 ) 3 rd θdr - J 4πµ 0 r 2 r 1 θ 2 θ 1 (z -z 1 ) cos(θ -θ) r -r ( θ, z 1 )
3 rd θdr [START_REF] Babic | New expressions for calculating the magnetic field created by radial current in massive disks[END_REF] where 1 r -r (α, β)

= 1 r 2 + r2 -2rr cos(θ -α) + (z -β) 2 (19) 
It is noted that Eq (18) can be decomposed in two parts. The contribution of the charges located on the curved planes (inner and outer faces of the ring) can be expressed in terms of elliptic integrals by using (9) in which

2 i=1 2 k=1 (-1) i+k (g(i, k, 2π) -g(i, k, 0)) is transformed into 2 i=1 2 k=1 (-1) i+k (g(i, k, θ -θ 2 ) -g(i, k, θ -θ 1 )
). Thus, the radial field component H r (r, θ, z) can be decomposed as follows:

H r (r, θ, z) = J 4πµ 0 2 i=1 2 k=1 (-1) i+k (g(i, k, θ -θ 2 ) -g(i, k, θ -θ 1 )) + J 4πµ 0 z 2 z 1 r 2 r 1 r sin(θ -θ 1 ) r -r 3 drdz - J 4πµ 0 z 2 z 1 r 2 r 1 r sin(θ -θ 2 ) r -r 3 drdz (20) 
The last r and z integrations can be performed analytically and we obtain the following expression for the radial field component:

H r (r, θ, z) = ℘ i,j,k [g(i, k, θ -θ j ) + k i,j,k + l i,j,k ] (21) 
k i,j,k = sin(θ -θ j ) ln [Y i,j,k ] (22) 
l i,j,k = -cos(θ -θ j ) arctan [X i,j,k ] (23) 
Y i,j,k = (z -z k ) + r 2 + r 2 i + (z -z k ) 2 -2rr i cos(θ -θ j ) X i,j,k = (z -z k )(r i -r cos(θ -θ j )) r sin(θ -θ j ) r 2 + r 2 i + (z -z k ) 2 -2rr i cos(θ -θ j ) (24) 
As a conclusion, it is possible to obtain an analytical expression of the radial field component produced by a tile permanent magnet radially magnetized. This result is interesting for the optimization of radial fields in electrical machines.

Validation of the expression of the radial field component

The expression of the radial field component produced by a tile permanent magnet radially magnetized is compared with the expression obtained by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]. We take the following dimensions: r 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T , r = 0.02 m. We represent in Fig. 5 H r (r = 0.024, z) versus the angular displacement θ. Let us now consider the azimuthal component H θ (r, θ, z) of the magnetic field produced by a tile permanent magnet radially magnetized. We use the same equation as Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF] for calculating this component. Therefore, by using the amperian current model, the azimuthal component is expressed as follows :

H θ (r, θ, z) = J 4πµ 0 2 j=1 (-1) j    r 2 r 1 θ 2 θ 1 (z -z) sin(θ -θ) r -r j (r, θ) 3    rdrd θ + J 4πµ 0 2 j=1 (-1) j    r 2 r 1 z 2 z 1 r -r cos(θ -θ j ) r -r (r, z) 3    drdz (25) where 1 r -r j (α, β) = 1 r 2 + α 2 -2rα cos(θ -β) + (z -z j ) 2 1 r -r (α, β) = 1 r 2 + α 2 -2rα cos(θ -θ j ) + (z -β) 2 (26) 
We find:

H θ (r, θ, z) = ℘ i,j,k [-cos(θ -θ j ) ln [Y i,j,k ] -sin(θ -θ j ) arctan [X i,j,k ]] +℘ i,j,k (z -z k ) r (r i -r cos(θ -θ j ) + ξ i,j,k ) (27) 
where

ξ i,j,k = r 2 + r 2 i + (z -z k ) 2 -2rr i cos(θ -θ j ) (28) 
Therefore, it is possible to obtain a fully analytical expression of the azimuthal field component by using the amperian current model.

Validation of the expression of the azimuthal field component

The expression of the azimuthal field component produced by a tile permanent magnet radially magnetized is compared with the expression obtained by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]. We take the following dimensions:

r 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T , r = 0.024 m, θ 2 -θ 1 = π 4 .
We represent in Fig. 7 the axial component H z (r = 0.024, θ, z = 0.002 m) versus the angular displacement θ.

Figure 6 shows that the fully analytical expression obtained in this work for azimuthal component gives the same azimuthal field as the one established by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]. However, the expression we give in this paper does not use any special functions or numerical integrals. Consequently, such an expression has a lower computational cost and is useful for optimization purposes.

Axial Component H z (r, θ, z)

The axial component H z (r, θ, z) is also determined with the same integral formulation of Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]. 

H z (r, θ, z) = J 4πµ 0 2 j=1 (-1) j r 2 r 1 θ 2 θ 1 rr cos(θ -θ) r -r (α, γ) 3 drd θ - J 4πµ 0 2 j=1 (-1) j r 2 r 1 θ 2 θ 1 r2 r -r (α, γ)
r 2 + γ 2 -2rγ cos(θ -α) + (z -z j ) 2 (30) 
After the two integrations, we obtain a compact form of the axial component:

H z (r, θ, z) = ℘ i,j,k -2r i (r -r i ) 2 + (z -z k ) 2 F * θ -θ j 2 , - 4rr i (r -r i ) 2 + (z -z k ) 2 + J 4πµ 0 θ 2 θ 1 ln r i -r cos(θ -θ) + ξ θ d θ (31) 
with

ξ θ = r 2 + r 2 i + (z -z k ) 2 -2rr i cos(θ -θ) (32) 
where F * [φ, m] gives the elliptic integral of the first kind [START_REF] Ravaud | Analytical calculation of the magnetic field created by permanent-magnet rings[END_REF]. This expression has also been improved compared to the one determined in [START_REF] Ravaud | The three exact components of the magnetic field created by a radially magnetized tile permanent magnet[END_REF] because it is presented in a more compact form.

Validation of the expression of the axial field component

The expression of the axial field component produced by a tile permanent magnet radially magnetized is compared with the R. Ravaud (thick line = this work ), ( Points = Furlani's work [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]) expression obtained by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF]. We take the following dimensions: r 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T , r = 0.015 m, θ 2 -θ 1 = π 4 . We represent in Fig. 7 the axial component H z (r = 0.015 m, z = 0.002 m) versus the angular displacement θ.

Figure 7 shows that the reduced expression obtained in this work for the axial component gives the same axial field as the one established by Furlani [START_REF] Furlani | A three-dimensonal field solution for radially polarized cylinders[END_REF].

CONCLUSION

This paper has presented some improved analytical expressions of the magnetic field produced by ring and tile permanent magnets radially magnetized. The radial field is given in terms of elliptic integrals and no further numerical integrations are required. Consequently, the time necessary for calculating this radial field is very low and allows us to carry out easily parametric studies. In the case of tile permanent magnets radially magnetized, the amperian current model leads to a fully analytical expression of the azimuthal component, as in the case of the coulombian model. However, only two integrals must be determined with the amperian current model and we think that this model is more appropriate than the coulombian model for the study of this azimuthal field. The axial field produced by a tile permanent magnet or a ring permanent magnet can be expressed is in an analytical part based on elliptic integrals and a numerical part. This expression has been improved compared to the one established by Furlani but we have not succeeded in integrating analytically the last term. Nevertheless, we have presented the expression of the axial field in a compact form and this expression seems to be easier to use than the one determined by the authors in a previous paper with the coulombian model [START_REF] Ravaud | Discussion about the analytical calculation of the magnetic field created by permanent magnets[END_REF]. In short, the amperian current model seems to be more appropriate than the coulombian model for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets.
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 1 Figure 1. Representation of a ring permanent magnet radially magnetized : A: coulombian model, B: amperian current model
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 2 Figure 2. Representation of the radial component H r (r, z = 0.0035 m) versus the radial displacement r with the following values: r 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T ; (thick line = amperian current model), (points = coulombian model)
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 434 Figure 3. Representation of the axial component H z (r = 0.0249, z) versus the axial displacement z with the following values: r 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T ; (thick line = amperian current model), (points = coulombian model)
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 5 Figure 5. Representation of the radial component H r (r = 0.02, θ, z = 0.0035 m)) versus the angular displacement θ with the following dimensions: 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T , r = 0.02 m; (thick line = this work ), ( Points = Furlani's work[1])
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 61 Figure 6. Representation of the azimuthal component H θ (r = 0.024, θ, z = 0.002 m)) versus the angular displacement θ with the following dimensions: r 1 = 0.025 m, r 2 = 0.028 m, h = z -z 1 = 0.003 m, J = 1T , r = 0.024 m, θ 2 -θ 1 = π 4 rad; (thick line = this work ), ( Points = Furlani's work[1])
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 7 Figure 7. Representation of the axial component H z (r = 0.015, θ, z = 0.002 m)) versus the angular displacement θ with the following dimensions: r 1 = 0.025 m, r 2 = 0.028 m, h = z 2 -z 1 = 0.003 m, J = 1T , r = 0.015 m, θ 2 -θ 1 = π 4 ; (thick line = this work ), ( Points = Furlani's work [1])