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9. NUMERICAL TECHNIQUES 1
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Abstract—An algebraic multigrid algorithm based on element
agglomeration is proposed for linear systems coming from edge-
element discretizations. The edge prolongation operator satisfies
commutativity and energy-minimization properties. Robustness
is illustrated on 2D numerical examples.

Multigrid methods are beyond the most performing linear
system solvers and these solvers are a key point in finite
element method libraries. Here, we focus on the discretization
on a triangular mesh with the lowest order edge element of

curl δ curl U + γU = f on Ω ⊂ R2, (1)

which gives rise to a linear system Ax = f . As solver
we propose an Algebraic MultiGrid (AMG) algorithm which
keeps a good efficiency with non-smooth functions δ and γ
and with unstructured triangulations. The coarsening process
is based on element agglomeration. A low-energy edge pro-
longator satisfying a commutativity property [1] is obtained
from the solution of local linear systems. Numerical examples
demonstrate the robustness of our method.

I. COMPONENTS OF THE ALGORITHM

A. Levels

Starting from an initial fine grid partitioned into trian-
gles, we build a hierarchy of generalized meshes τh =
(Dh,Ah,Sh). Dh =

{
Dh

i

}
i∈IDh

is a family of open polygons
we call elements. On the finest mesh they are the original trian-
gles. Ah =

{
Ah

i

}
i∈IAh

is a family of open one-dimensional
manifolds we call edges. Sh =

{
Sh

i

}
i∈ISh

is a family of
single points we call vertices. The coarsening procedure which
builds a generalized mesh τH = (DH ,AH ,SH) from a
generalized mesh τh = (Dh,Ah,Sh) must satisfy constraints
defined in [2], [3]. Moreover, any edge in family AH is a
connected path of edges belonging to Ah and has two different
endpoints which are vertices in SH (Fig. 1). From the family

coarse vertices

coarse edges

fine edges

Fig. 1. Example of a coarse mesh τH builds from the finest mesh τh.

of generalized mesh τh = (Dh,Ah,Sh), we define a family
of oriented simple graphs. For each vertex Sh

p of Ah a node
p is created and 2 separate nodes p, q are connected by an
arc each time an edge of Ah has Sh

p and Sh
q as endpoints.

An arc starts from a node p to a node q if p < q. The arc-
node incidence matrices denoted Gh can be viewed as discrete
gradient operators on the meshes.

B. Prolongation operator properties

For each couple of generalized meshes (τh, τH), τH being
obtained from τh by a coarsening procedure, we give us a
nodal prolongator P nod with a prescribed non-zero pattern
and with all row sums equal to 1. We build then an edge
prolongator P edg with a prescribed non-zero pattern and with
low-energy columns (P edg)e, e ∈ IAh . It must also satisfy a
node-edge commutativity property [1]: P edgGH = GhP nod.
The energy function on a mesh τh is defined by

g (xe, e ∈ IAh) =
∑

e∈IAh

‖xe‖2Kh =
∑

e∈IAh

(xe)tKhxe (2)

where Kh is a sparse symmetric definite positive matrix. For
its non-zero pattern we require that Kh

i,i′ = 0 if both edges
Ah

i and Ah
i′ do not belong to the interior of the closure of the

same element. Such a property is satisfied on the finest mesh
by the finite element matrix A.

To define the non-zero pattern of the nodal prolongator
P nod and the edge prolongator P edg we mimic the situation
in geometric multigrid on nested meshes:
• If Sh

p belongs to the interior of the closure of an element
of DH , P nod

p,n = 0 if SH
n does not belong to its boundary.

• If Sh
p is an endpoint of an edge of Ah included in edge

AH
e of AH with endpoints SH

nk
, k = 1, 2; if Sh

p =
SH

nk
, P nod

p,n = 0,∀n 6= nk, else P nod
p,n = 0,∀n 6= n1, n2.

• If edge Ah
i of Ah is included in edge AH

e of AH , P edg
ee′ =

0,∀e′ 6= e (Fig. 2(a)).
• If edge Ah

i of Ah is included in the interior of the closure
of an element of AH , P edg

i,e = 0 if AH
e is not included in

its boundary (Fig. 2(b)).

C. Solution of the constrained minimization problem

An element DH
a of DH being fixed, we denote by{

Ah
i

}
i∈Iint

(resp.
{
Ah

i

}
i∈Ibound

) the family of edges of Ah

included in the interior of its closure DH
a (resp. included in
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Fig. 2. A coarse element DH
a . Coarse edges are in wide lines (m = 3).

Coarse vertices are large bullets. Arrows indicate prolongation.

its boundary), AH
e1
, AH

e2
, . . . , AH

em
the path of the edges of AH

included in its boundary. This path defines on the coarse graph
an elementary cycle of nodes denoted n1, n2, . . . , nm, n1.

Let Ah
i of Ah with starting point p and ending point q. Two

different cases have to be considered :
1) If i ∈ Ibound, then Ah

i is included in an edge AH
e of

AH (Fig. 2(a)). The non-zero entries of row i of P edg

are settled by the commutativity property since it writes

P edg
i,e = P ∗i,e with P ∗i,e = P nod

p,n − P nod
q,n (3)

and SH
n the starting endpoint of AH

e .
2) If i ∈ Iint (Fig. 2(b)) the commutativity property writes

εnk
(ek−1)P edg

i,ek−1
+ εnk

(ek)P edg
i,ek

= P nod
p,nk
− P nod

q,nk
, ∀k ∈ J2;mK,

(4)

where εnk
(e) denotes 1 (resp. −1) if nk is the starting

point (resp. ending point) of the arc e.
We deduce that the non-zero entries of row i of P edg

are defined up to a real constant θi as follows :

P edg
i,ek

= εnk
(ek)P ∗i,ek

+ θiεnk
(ek)

with P ∗i,ek
=

[
k∑

l=2

P nod
p,nl
−

k∑
l=2

P nod
q,nl

]
.

(5)

It can be proved that the prolongator with the lowest
energy is obtained with the values θi, i ∈ Iint solution
to a local linear system :

KDH
a θ = KDH

a b,

where KDH
a (resp. KDH

a ) is the matrix obtained from
the matrix Kh by keeping the entries Kh

i,j , i, j ∈ Iint

(resp. Kh
i,j , i ∈ Iint, j ∈ Iint ∪ Ibound). b is given by:

bi = − 1
m

m∑
k=1

εnk
(ek)P ∗i,ek

, i ∈ Iint ∪ Ibound.

II. NUMERICAL RESULTS

The robustness of the method with parameters δ and γ is
illustrated using examples of [4]. The domain is simply a unit
square and Dirichlet boundary conditions are enforced.

In our strategy (Aggl. in the tables), coarse elements are
obtained by double-pairwise agglomeration of elements. The
results obtained by our method are compared with the Reit-
zinger and Schöberl (RS in the tables) strategy [1]. The

comparison is based on the convergence rate σest in energy
norm: σest = (ert

kAerk/ert
0Aer0)1/(2kf ) with erk the error

at the k-th iteration and kf the iteration where the stopping
criterion is reached. The smoother is a symmetric version of
this proposed in [5] in a geometric multigrid context ((pre-,
post-) smoothing steps in the tables).

For the homogeneous case in Table I, the two-grid con-
vergence rate is quasi-independent of the size of the problem
for both methods but the convergence rate of our method is
better than for RS method and should lead to an optimal
multigrid strategy. Moreover, increasing the number of pre-
and post-smoothing steps significantly improves the conver-
gence rate for the agglomeration. This behavior is confirmed
in Table II and Table III for oscillating and discontinuous δ
coefficients and two-grid and multigrid solver respectively. For
this example, f = C(2 + sin(40πx))2(2 + cos(40πy))2 with
C = 10 in ]0, 0.5[×]0, 0.5[, 104 in ]0.5, 1[×]0, 0.5[, 10−1 in
]0, 0.5[×]0.5, 1[ and 102 in ]0.5, 1[×]0.5, 1[.

TABLE I
RESULTS OBTAINED WITH A TWO-GRID SOLVER AND δ = γ = 1.

d.o.f. fine grid 736 3008 12160 48896

Aggl.

d.o.f. coarse grid 232 976 4000 16192
(1, 1), σest 0.22 0.22 0.22 0.22
(2, 2), σest 0.08 0.07 0.07 0.12
(3, 3), σest 0.04 0.04 0.04 0.04

RS d.o.f. coarse grid 184 751 3040 12224
(1, 1), σest 0.62 0.68 0.70 0.71
(3, 3), σest 0.52 0.64 0.69 0.70

TABLE II
RESULTS OBTAINED WITH A TWO-GRID SOLVER AND δ = f(x, y) AND

γ = f(y, x).

d.o.f. fine grid 736 3008 12160 48896

Aggl. d.o.f. coarse grid 232 976 4000 16192
(1, 1), σest 0.39 0.41 0.32 0.21

RS d.o.f. coarse grid 187 788 3087 12404
(1, 1), σest 0.61 0.72 0.87 0.68

TABLE III
RESULTS OBTAINED WITH A W-CYCLE SOLVER AND δ = f(x, y) AND

f(y, x) ON THE GRID WITH 48896 DOFS.

# grids 3 4 5 6 7

Aggl. d.o.f. coarsest grid 4000 976 232 52 10
(1, 1), σest 0.37 0.37 0.37 0.37 0.37

RS d.o.f. coarsest grid 3279 844 216 55 11
(1, 1), σest 0.83 0.89 0.93 0.95 0.97

The method is robust in 2D. The main difficulty for 3D
problems is to find a fast and reliable agglomeration algorithm.
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