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Dispersion compensation properties of grating-based temporal-correlation

Optical Coherence Tomography systems

L. Froehly *, L. Furfaro, P. Sandoz, P. Jeanningros

Département d’Optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, 25030 Besançon Cedex, France

This article explores specific dispersion compensation properties of an OCT set-up based on temporal cor-relation performed by using a diffraction 

grating. The linear dispersion term introduced by a glass plate with a thickness of up to 9 mm has been experimentally compensated optically through the 

position adjustment of the output imaging lens and for a light bandwidth of 100 nm. The dispersion compensation principle is described theoretically and 

results obtained experimentally are compared successfully with simulated ones. System limitations are discussed, especially regarding compensation of 

second orders of dispersion. Perspectives are given to achieve such a dispersion compensation.

1. Introduction

Optical Coherence Tomography is an ever growing technique

for optical biopsies of tissues [1]. This echographic-like imaging

modality shows an increased resolution with respect to its acoustic

rival. Indeed the 3D resolution can reach the micrometer scale [2].

This resolution is directly related to the spectral bandwidth of the

light source used for illumination. A simple way to increase the ax-

ial resolution is to increase the spectral bandwidth of the light

source using, for example, supercontinuum light sources [3]. In fact

dispersion is an unavoidable counterpart of this spectral broaden-

ing. Dispersion effects, due to material, optical components or sam-

ple under inspection, increase also with the spectral bandwidth. As

a consequence of dispersion the axial resolution is decreased [4,5].

The classical way to compensate for this dispersion is to intro-

duce a compensation cell in the reference arm of the interferome-

ter which primarily compensate the phase difference between

interferometer arms due to differences in construction of the two

arms and/or also due to variability of manufactured optical compo-

nents. Then depending on the medium under inspection there

could be a supplementary cell made of water, glass or different

materials depending on the medium under inspection. This supple-

mentary cell thickness is chosen to be comparable with the mean

depth of the tissue/media under inspection. A couple of prisms

could then be added to compensate more accurately the residual

dispersion which could be a residual dispersion of the system itself

[2]. Of course compensation cells better have to be made of mate-

rials with dispersion properties close to those of the medium under

inspection to compensate high order terms. This is especially true

when speaking about Ultra High Resolution OCT systems [2]. In

this case the effect of high order dispersion terms is increased.

Numerical dispersion compensation could also be realized at

the cost of computation time [6]. Recently in Time Domain OCT

(TDOCT), a delay line based on diffraction grating called RSOD

(for Rapid Scanning Optical Delay line) was shown to be able to

compensate for Group Velocity Dispersion [7–9]. The principle of

this dispersion compensation relies on dispersion properties of dif-

fraction grating already known for pulse compression (this is also

the effect involved in the setup presented here). However TDOCT

is also known to be slower than Fourier Domain OCT (FDOCT) with

a sensitivity at least 20 dB lower [10]. It is also feasible to correct

numerically for dispersion in Fourier space (FDOCT or Swept

Source OCT) by a proper sampling of frequencies at the cost of

computation time and/or more complex system (non linear sweep-

ing of the laser wavelength) [11].

In the frame of this paper, we demonstrate interesting disper-

sion capabilities of an OCT system in which correlation is
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performed by means of a diffraction grating. To our knowledge, the

first interferometric use of a diffraction grating for correlation pur-

pose was reported in the field of spectroscopy [14] while it was ap-

plied to the measurement of phase objects (precursor of OCT)

about one decade ago [15]. The principle as well as an exhaustive

state of the art of grating-based temporal-correlation OCT can be

found in [12,13]. The latter reference is a relevant background to

this paper since it involves a set-up close to the one presented here.

Therefore we briefly remind the principle of grating correlation in

the following. In our configuration we demonstrate both theoreti-

cally and experimentally that the grating properties can be used for

dispersion compensation purpose. We achieve the experimental

compensation of a 9 mm thickness glass plate simply by shifting

the imaging lens of the output detection system. We finally com-

ment on limitations and future developments of this approach.

2. System principle

2.1. System description

The experimental set-up used is composed of three main parts

as depicted in Fig. 1. Firstly the sample information is encoded via a

Linnik interferometer. The latter is illuminated with a supercontin-

uum of light issued from a microstructured optical fiber pumped

by a Q-switched Nd-YAG laser. The Supercontinuum has a full

spectral range from 350 nm up to 1700 nm [16]. However in exper-

iments reported here, the effective bandwidth is of 100 nm (Full

Width at Half Maximum) centered around 650 nm. Secondly the

light beams issued from the Linnik interferometer are directed to-

ward a second interferometer. In this Mach-Zehnder-like interfer-

ometer the output beam-splitter is replaced by a transmission

diffraction grating disposed in the perpendicular direction. Because

of the incident angles of the two beams, the transverse direction of

the diffraction grating introduces a time-delay varying linearly be-

tween the recombined beams. The sample depth is thus encoded

across the grating that forms a time correlation axis. The third part

of the set-up is primarily an imaging system that forms the image

of the diffraction grating on a two dimensional CCD image sensor

(8 bits, 1256�1024 pixels, 15 fps). Then the lines of the CCD cam-

era encode the depth of the sample and a A-scan is obtained with-

out scanning along the image lines. The cascade of the two

interferometers should result in autocorrelation. In practise, inter-

fering beams are cross-polarized in both interferometers thanks to

polarization multiplexing (quarter and half waveplates repre-

sented in Fig. 1). Thus we perform intercorrelation instead of

autocorrelation.

Remark 1. We would like to emphasize that the correlation

performed in the frame of this paper results from the interference

of different beams than reported previously [13]. We used to

consider a symmetrical configuration in which both beams issued

from the Mach-Zehnder-like interferometer were diffracted in the

�1 order by the grating before interfering. In the present case, a

single beam considered for interference is diffracted in the �1

order. The other interfering beam is simply transmitted by the

grating (This alternative was found to be more efficient for

dispersion compensation as explained and shown in 2). Therefore

the resulting expression of the output intensity takes a different

form as described below.

2.2. Theoretical background

Basically the system could be viewed as a modified Young slit

experiment (from spectral plane to detector plane D, see Fig. 1)

where the distance between slits is wavelength dependent because

of the grating law. The total recorded signal is then the sum in

intensity of individual fringe patterns formed by each wavelength

of the incident beams. Two temporal signals rðtÞ and sðtÞ with the

same polarization state are incident onto the grating (G) with

opposite angles hi and �hi. rðtÞ and sðtÞ have complex spectrum gi-

ven by R̂ðmÞ and ŜðmÞ respectively where R̂ðmÞ and ŜðmÞ are Fourier

transforms of rðtÞ and sðtÞ. R̂ðmÞ and ŜðmÞ can be expressed with

their complex form R̂ðmÞ ¼ RðmÞej�uRðmÞ and ŜðmÞ ¼ SðmÞej�uSðmÞ. We

consider in the following one diffracted beam (�1 order) the other

one being only transmitted by the diffraction grating (zero order).

The modulus of the spectrum of the diffracted beam is directly

accessible in the spectral plane of the spectrometer which is phys-

ically in the back focal plane of the lens L. The other beam that is

simply transmitted by the grating is focused at a single point in

the same back focal plane. Based on upper considerations a simple

analysis leads to the expression of total intensity CðzÞ in the plane

D (the reader may refer to Ref. [13] since this analysis derives di-

rectly from this paper):

CðzÞ ¼ I0 þ 2Re

Z

m
R̂ðmÞŜðmÞe�j2p z

ccð2sinhiÞð Þmej
2pz
cK dm

� �

ð1Þ

where z is the horizontal coordinate along the CCD camera lines, I0
the background intensity, Re designs the real part. K is the grating

period, c the magnification of the imaging system. (The reference

beam R̂ðmÞ is assumed to be real while ŜðmÞ can be either real or

complex depending on the optical sample properties). Eq. 1 shows

clearly the correlation operation between the temporal fields real-

ized by the system. The temporal variable is spatially displayed

through the variable change.
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Fig. 1. Set-up for optical tomography: M, mirrors; BS, polarizing beam-splitter cube; QW, Quarter wave plate; HW, Half wave plate; L, spherical lens; PL, Pump laser; MF,

Microstructured optical fiber; D, CCD detector; G, transmission diffraction grating 600 g/mm; TB, Transmitted Beam; DB, Diffracted Beam; O, microscope objectives (4�

magnification); S, sample.
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3. Dispersion compensation using grating properties

3.1. Theory

3.1.1. General expression of the problem

Fig. 2 shows the propagation of a plane wave of amplitude a0ðkÞ,

of wavelength k, incident with an angle hi onto a grating (G) with

period K. The plane wave is diffracted and then propagates up to

a plane P parallel to the grating. d is the distance between the grat-

ing and P. Let us now calculate the propagation of this plane wave

from the grating plane to the observation plane P at coordinate z:

aðz; d; hiÞ ¼ a0ðkÞe
�j2p

k
z�sin hde�j2p

k
d�cos hd ð2Þ

with hd given by the grating law:

sin hd � sin hi ¼ �
k

K
ð3Þ

An other plane wave (non represented in Fig. 2) with amplitude

ap0ðkÞ is simultaneously incident with an angle �hi onto the grating.

The transmitted beam (zero order) is superposed to the previous

diffracted plane wave. This second plane wave after propagation

through the observation plane P expresses as:

apðz;d; hiÞ ¼ ap0ðkÞe
j2p
k
z�sinhie�j2p

k
d�coshi ð4Þ

then the total field in the plane P at a distance d from the grating

plane is:

Eðz;d; hiÞ ¼ aðz; d; hiÞ þ apðz;d; hiÞ ð5Þ

The resulting intensity is:

kEðz; d; hiÞk
2 ¼ I þ 2a0ðkÞ � ap0ðkÞ � cos

2p
k

� zðsin hd þ sin hiÞ

�

þ
2p
k

� ðcos hd � cos hiÞd

�

ð6Þ

expressed now in function of the incidence angle hi, Eq. 6 becomes:

kEðz; d; hiÞk
2 ¼ I þ 2a0ðkÞ � ap0ðkÞ � cos

4p
k

z � sin hi �
2p
K

z

� ��

þ
2p
k

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�
k

K
þ sin hiÞ

2

r

� cos hi

" #

� d

)

ð7Þ

The phase of the fringe pattern results from the sum of two main

terms:

Uðz;dÞ ¼
4p
k

sinhi �
2p
K

� �

zþ
2p
k

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�
k

K
þ sinhiÞ

2

r

� coshi

" #

� d

ð8Þ

The first term, proportional to z : 4p
k
sin hi �

2p
K

� 	

z

 �

, shows the

classical interference pattern. It depends on the angle formed by

the two plane waves and on the wavelength. The additional term

(2p
K
z) is responsible for a fringe frequency shift due to diffraction

by the grating [13]. The second term, proportional to

d :
2p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� � k
K
þ sin hi


 �2
q

� cos hi

� �

� d

� �

, is non linear with light

frequency but linear with d. This term is responsible for group

velocity dispersion as well as higher order dispersion terms. We al-

ready saw in Eq. 8 that this dispersion can be either positive or neg-

ative depending on d.

Remark 2. At this stage we could explain our choice for this

configuration with a single diffracted beam (remark in 2.1): in fact

with the configuration described in [13], the resulting phase term

is not sensitive to the defocusing d. Indeed the dispersion term for

both diffracted arms is the same for equal d. The resulting phase

dispersion terms compensate then. The only way to add a

differential dispersion for this configuration is to induce a differ-

ential d between the two diffracted beams. A tilt of the grating then

breaks the symmetry and a differential d results from this

operation. Unfortunately this configuration needs a strong tilting

of the grating to reach significant dispersion compensation.

We simulated the correction that is performed with a diffrac-

tion grating of 600 grooves/mm enlightened under an incidence

angle of 10� with a distance d = �2.5 mm. Results show that it is

possible to correct the dispersion of a 10 mm glass plate. The

resulting path length difference is less than 3 lm over a full spec-

tral bandwidth of 100 nm (the equivalent coherence length is

about 4lm) to be compared to an initial dispersion larger than

30 lmwithout correction. A more detailed discussion will be given

in without correction. A more detailed discussion will be given in

section 3.3.2.

3.1.2. Generalization of the correlation formula

Based on the previous paragraph analysis and on Eq. 1 we de-

rive a general expression for the correlogram in the observation

plane P at a distance d from the grating:

CðzÞ¼ I0þ2Re

Z

m
RðmÞŜðmÞe�j2p z

ccð2sinhiÞð Þmej
2pz
cK ej

2p
k
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ð�k
K
þsinhiÞ

2
p

�coshiÞddm

� �

ð9Þ

where ŜðmÞ is complex and contains the dispersion properties of the

medium under observation.

In practice, the distance d is chosen through the adjustment of

the output imaging system of the setup. Basically, the lens L of

Fig. 1 is supposed to form the image of the grating on the CCD cam-

era. By shifting slightly the lens position, the object plane associ-

ated to the CCD camera can be moved aside from the grating as

depicted in Fig. 3. The relationship between the distance d and

the lens shift d
0
is given by:

d ¼
�d

0
ðd

0
� F 0D� FGÞ

�d
0
þ F 0D

ð10Þ

In our case d
0
is very small (few millimeters) compared to imaging

distances involved in Eq. 10 so that the relation becomes essentially

linear:

d ¼
�d

0
ðF 0D� FGÞ

F 0D
ð11Þ

In the next paragraph the simulation to be compared to experimen-

tal results is calculated using Eq. 11 together with a modified ver-

sion of Eq. 8 (see section 3.2.1).

d

i

d
θ

z

θ

(P)

(G)

Fig. 2. Parameters for dispersion calculation.
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3.2. Dispersion compensation measurements

3.2.1. Principle of measurements

On Fig. 4 is depicted the experimental setup for realizing disper-

sion compensation. Only principles rays of beams are represented

for a sake of clarity. We should first notice that the diffraction grat-

ing is now represented rotated (as compared to Fig. 1) from an an-

gle / with respect to angle hi previously defined. Our choice for the

discussion, in the first part, was to keep the grating symmetrical

with respect to incidence angles to have a configuration more close

to the one of [13] for a clarity reason. In practice, for current mea-

surements the grating is in fact parallel to the detection plane. This

will change slightly the phase expression given in Eq. 8. The new

expression becomes:

Uðz; dÞ ¼
4p
k

sin hi � cos/�
2p
K

� �

z

þ
2p
k

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
k

K
þ sinðhi � /Þ

� �2
s

� cosðhi þ /Þ

2

4

3

5 � d

ð12Þ

This expression is now the basis for the following experiment: Glass

plates (GP) are inserted in one arm of the interferometer (the Mach-

Zehnder-like one) and the lens L is shifted from a distance d
0
so that

the dispersion induced by glass plates is balanced. We then calcu-

late the theoretical compensation using Eq. 11 together with Eq.

12 for comparison with experimental results.

3.2.2. Results

Glass plates of thickness 1 mm are successively inserted (up to

9 plates) and for each plate inserted the position of the lens which

G

L

D

O
F'F

d

d'

Fig. 3. Parameters for determining d from the lens position d
0
.
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d
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Φ

θi

Fig. 4. Experimental setup for dispersion compensation: M, mirrors; BS, polarizing beam-splitter cube; QW, Quarter wave plate; HW, Half wave plate; L, spherical lens; PL,

Pump laser; MF, Microstructured optical fiber; D, CCD detector; G, transmission diffraction grating; O, microscope objectives; GP, glass plates.
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allows dispersion correction is recorded. Fig. 5 gives the correspon-

dence between the distances d
0
and d as resulting from Eq. 11 as

well as the set of lens positions permitting dispersion compensa-

tion after the insertion of 1 through 9 glass plates.

Fig. 6 is the output signal of the OCT system as recorded without

any glass plate inserted; this is then the autocorrelation of the light

source which will be the reference signal for dispersion compensa-

tion comparison. It appears on this figure that there are quite a few

side lobs surrounding the central peak. This is essentially due to a

band pass filter composed of a low pass filter together with a high

pass filter (edge pass filters: Thorlabs-FKLP01-FKSP01) that we

introduced in the set-up to extract a chosen bandwidth from the

supercontinuum spectrum. This produces side lobes in the tempo-

ral space as a result of strong edges in the spectral plane (almost

sinc function shape). The Figure gives a direct comparison between

the autocorrelation measured and the autocorrelation obtained by

Fourier transforming the measured power spectral density. The

curve similarity observed validates the dispersion balancing of

the system and that this recorded PSF constitutes an excellent ref-

erence for evaluating further dispersion compensation.
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Fig. 6. Autocorrelation recorded without glass plate inserted. A comparison is given between the autocorrelation obtained experimentally (A) and the autocorrelation

obtained by performing the Fourier transform of the measured power spectral density (B).
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are correlations obtained for the same glass thicknesses but with a dispersion correction due to an image plane shift (d) of respectively �0.29, �1, �2.25 mm. In each case the
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Fig. 7 shows the recorded PSF with and without defocusing

while different glass thicknesses are inserted in one arm of the

interferometer. The excellent dispersion compensation is clearly

seen and avoid any loss in both the signal magnitude or the effec-

tive coherence length (and therefore on the axial resolution). There

is no visible sensitivity lost due to the defocusing since it remains

pretty small. A sensitivity (and resolution also) lost would appear

for higher optical frequencies since the defocusing would have to

be increased too for compensating the same glass thicknesses. This

effect is predicted by Eq. 12 through the non-linear dependency of

dispersion with wavelength.

3.3. Discussion

3.3.1. Comparison between theory and experiments

Fig. 8 shows a comparison between experimental data and sim-

ulations based on Eq. 8. On this figure the defocusing d necessary to

obtain dispersion compensation is plotted versus the inserted glass

thickness. It has to be noticed that theoretical values of d have been

calculated so that the residual dispersion (essentially a quadratic

term) is lowered to its minimal value. There is a range of d around

this value where the PSF is almost unchanged as the residual dis-

persion remains narrower than the theoretical PSF (this range is

represented through error bars). This explains the slight experi-

mental deviations we notice in Fig. 8. In agreement with Fig. 7,

we observe in Fig. 8 that all experimental values enter within the

allowed d range that ensures a perfect PSF correction.

3.3.2. Limitations and ways to pass them

As already discussed in the section 3.3.2 the compensation ob-

tained with the grating is excellent. Even with 9 mm of glass the

resulting dispersion remains lower than 3 lm over a 100 nm band-

width. This is of the order of half the coherence length so that there

is no PSF broadening as can be checked on Fig. 7. A closer look to

the remaining dispersion term shows essentially a second order

term (proportional to m2). Fig. 9 shows the residual dispersion cal-

R
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Fig. 8. Comparison between experimental results of dispersion compensation and simulations. The linear interpolation is realized on experimental data. R is the correlation
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culated for glass thicknesses up to 32 mm. The dotted line is the

coherence length for a light source with a 100 nm bandwidth cen-

tered at 650 nm. We can see than a PSF broadening appears only

for glass thicknesses larger than 13 mm. For thicker cases there is

a coherence length lost due to second, third or higher orders of dis-

persion which are not compensated by defocusing. A simple solu-

tion to compensate thicker medium (as for example the eye) is to

add a thick glass plate in the reference arm so that the differential

thickness remains lower than 13 mm. The residual dispersion

could then be compensated finely by tuning the lens position.

Another issue which is out of the scope of this article would be

based on non-constant period gratings to compensate for second

order terms of the material dispersion. These gratings could indeed

be designed to compensate exactly the dispersion of the system,

including also the global dispersion of the observed medium. The

fine tuning (for example due to the difference between eyes of sev-

eral people) could then be realized by adjusting the lens as previ-

ously demonstrated. Fig. 10 shows a simulation (based on Eq. 12)

of the dispersion compensation capability (a 30 mm glass thick-

ness to compensate) when the first and second order of dispersion

are now compensated (The grating period law needed to achieve

such a compensation is out of the frame of this article). From this

graph it appears clearly that the correction by a standard grating

is easier in the red part or infra-red part of the spectrum. We see

also that for ultra high resolution OCT it is necessary to compen-

sate coarsely the dispersion of the system and the dispersion of

the medium (if it is too thick) before using this kind of compensa-

tion for fine adjustment.

4. Conclusion

Dispersion properties of a grating-based OCT system have

been presented and we have shown the possibility to compen-

sate thick glass plates (as thick as 9 mm) with a simple and eas-

ily tunable system. A slight axial displacement of the imaging

lens acts as classical dispersion correction system composed of

prism pairs. The perfect agreement between experimental and

theoretical results has been demonstrated. The model developed

and presented in this article allows the accurate prediction of the

dispersion order correction efficiency for a specific diffraction

grating, given light source parameters and setup geometry.

Thanks to this model some future prospectives are proposed, as

the possibility to perform non linear dispersion corrections by

using chirped gratings. The chirp law could be computed know-

ing the dispersion law needed. A future work will be to design

such chirp gratings to check how far we succeed in high order

dispersion term correction. This is of special interest for Ultra

High Resolution OCT. This article was also written to set the ba-

sic theory of dispersion compensation by grating-based correla-

tion OCT systems. The scope of a forthcoming paper will be to

show the capacity of this system to compensate for the ‘depth

dependant dispersion’ of samples by simple optical means. Per-

formances and limitations of such a system have to be demon-

strated and analysed in comparison to other modalities cited

previously [8,11].
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