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Abstract

In this paper, an assistant tool for the maintenance of rails in a metro context for normal steel wheeled 
trains is proposed. The theory of Dynamic Bayesian Networks offers an interesting frame to solve this 
specific problem. We present a modular modelling of the current rails’ diagnostic process. It simulates 
the rail degradation, the behavior of the various actors involved in the defect detection, but also the 
maintenance action decisions. This model provides indicators, such as the non detection rate or the 
number of false alarms, helpful for the determination of optimal maintenance parameters.

1. Introduction

The infrastructure maintenance is an important field of interest for railway operators. Particularly, the 
rail integrity is a critical subject for train control as well as for maintenance strategies. Over all the 
possible rail flaws, broken rail is obviously the most sensitive point.

Two facts have a strong influence on the availability and safety of the railway system: the occurrence 
of critical defects of infrastructure subsystems and false alarms for instance triggered by monitoring 
devices  designed  for  the  defect  detection.  For  these  two  points,  the  railway  operators  need  a 
degradation model of the rail and, as accurate as possible, an estimated rate of good detection of 
defects by their measuring devices. Then, various maintenance strategies can be simulated and their 
impact on the broken rail monitoring process can be completely estimated.

In this paper, Dynamic Bayesian Networks theory will be introduced for the rail degradation and for 
the broken rail monitoring process model. Section 2 will deal with the practical context of our study 
and some theoretical elements will be very briefly given in section 3. Then, the structure and the 
parameters of our model will be presented in section 4. Finally, it will be validated and its results will 
be discussed in section 5.

2. Context of the study

Implementing a new command-control- system (CBTC like) on some lines of the Paris metro network, 
the RATP Company needs to identify precisely the impact of rail flaws on safety and availability of the 
railway system:  the assessment  of  the current  broken rail  monitoring process regarding the new 
CBTC system has to be made. Depending on the nature of defects, the disturbance will be more or 
less penalizing for the passenger service. A statistical model of the rail defects evolution should help 
the identification of the most critical flaws.

To simplify the analysis, the rail states along the main deterioration process are clustered into four 
classes: OK (the rail has no defect), IC (Internal Crack), SC (Surface Crack) and BR (Broken rail). 
Currently, the diagnosis of rail defects results from the combination of diagnoses from by the four 
actors (detecting devices or specific staff) involved in the broken rail monitoring process: these actors 
are characterized by different inspection periodicities and different detection efficiency according to 
the type of defect and its location in the rail.

• First, a special vehicle equipped with ultrasonic sensors diagnoses the rail on average twice a 
year.  It  can detect  the 4  classes of  defects.  This  diagnosis  is  always  confirmed by in-situ 
complementary  measurements  performed  by  a  specific  team  using  for  instance  portable 
ultrasonic devices [2]. The special vehicle and the specific team are considered as a single 
actor in the Model. 

• Secondly, some walking survey teams are passing along the lines on average one or twice a 
month. They can not detect IC.



• During the passenger service, metro drivers can feel some shocks from the rails, and so, can 
contribute through their reporting to the detection of   some BR. 

• Finally, the track circuit, commonly used for signaling tasks [1], analyses the rail impedance and 
so can detect some BR when no train are present on the area. 

For  our  study,  we dispose of  a  great  amount  of  information,  distributed among databases  (from 
signaling and track departments) and expert advices. But, this information is sometimes uncertain, 
imprecise, or even missing. For all of these reasons, the formalism of the Bayesian network theory 
offers an adequate framework to represent our system and its maintenance.

3. Bayesian Networks

Proposed in the early 80's as probabilistic expert systems, Bayesian Network (BN) is a reasoning 
formalism that is more and more used in data-mining and knowledge modelling [5, 7, 10].

BN formalism jointly uses the graph theory, in order to graphically define dependency relationship 
between variables, and the probability theory to represent how strong is the relationship between 
each variable and its parents in the graph. Figure 1 introduces an example of BN, modelling a simple 
system, characterized by two variables, X and Y. 

Figure 1: A basic BN modelling the dependency between two variables X and Y.

In  this paper,  only discrete variables with  d possible states are considered.  Nodes represent  the 
variables  of  the  system (defined over  all  its  possible  states)  and the  connecting arrows  indicate 
relationships between these variables. Root nodes (nodes having only descendants) are described by 
a Probability Table (PT) composed of the class belonging probabilities P(X) over the d possible values 
of  X.  Children  nodes  (node  having one  parent  at  least)  are  described  by  Conditional  Probability 
Tables (CPT), composed of P(Y|X) over each value of Y knowing the value of X.

The  strength  of  BN  lies  particularly  into  their  efficient  inference  algorithms  [10,  7].  They  allow 
determining  the  probability  distribution  of  one  variable,  knowing  the  states  of  some  eventually 
observed nodes.

Another  advantage  of  BN  is  the  fact  that  the  structure  (graph)  and  the  associated  parameters 
(CPT/PT) can be determined by using data (even in incomplete form), or by using expert opinions, or 
combining  both.  For  instance,  in  [3],  the  author  provides  some  guidelines  for  building  BN  with 
expertise and [6] gives a good introduction about probability elicitation (estimation from expertise).

Finally, BN are a compact representation of the joint probability distribution over all the variables. So, 
BN are also able to sample data according to this distribution, i.e. simulate the system in various 
modes.

An extended version of BN, including temporal information, provides the Dynamic Bayesian Networks 
(DBN). In that case, the probability distributions change over the time in a recurrent way [8, 9]. It is 
therefore possible to calculate the distribution of X at the present time knowing the distribution of X in 
the past time.

4. Modelling the rail diagnosis process: a modular approach

4.1 Modelling the detection systems.

The  two  first  monitoring  systems,  ultrasonic  vehicle  (UST)  and  walking  inspectors  (WT),  work 
identically: their presence on a rail length is time dependant (couple of months for UST and couple of 
weeks for WT). Each system has its own decision frame: {OK, IC, SC, BR} for UST and {OK, SC, BR} 
for WT. According to their own classification result, a maintenance decision is issued or not. 



The following  figure  introduces  the  sub-model  thus  obtained  for  the  ultrasonic  vehicle.  A  similar 
bayesian network was built for walking survey team.

Figure 2: Bayesian Network modelling the diagnosis procedure of the ultrasonic vehicle.

The modelling of  the contribution of  metro  drivers  (Dvr)  to  maintenance decision must  take into 
account a contextual variable. Indeed, trains occupy a given portion of track only during a certain time 
a day (depending on trains’ length, their speed, the headway, etc.) and only if the line is operating. So, 
the driver’s presence node will be conditioned by the state of an operating node, as introduced in 
figure 3.

Figure 3: Bayesian Network modelling the diagnosis procedure of Metro drivers.

Concerning the track circuits (TC), their contribution to maintenance action decision deals with more 
parameters to consider. Indeed, the track circuit accuracy for detection depends on several points. 

At  first,  the  season:  summer  high  temperatures  expand  rail  and,  thus,  sometimes  the  electrical 
conductivity is enough, even if the rail is broken. Moreover, if the TC becomes defective, the signaling 
works similar as in broken rail situation and it delivers false alarms. Finally, as previously explained, if 
a metro train runs on the considered length of rail, the TC is shunted. It will be therefore unable to 
detect broken rails. The shunting duration depends on the length of the train, its speed, and other 
parameters depending on the chosen TC technology. This dependence will induce a link between the 
TC  rail  estimation  and  the  train  presence.  Figure  4  introduces  the  sub-network  modelling  the 
maintenance action decisions triggered by the TC detections. For all these networks, maintenance 
decisions strategies are currently taken according to expert advices about the rates of good detection 
for each detector, each one independently from the others.
 

Figure 4: Bayesian Network modelling the diagnosis procedure of Track circuits.



The modelling of the dynamic evolution (for the rail degradation and the maintenance decisions) is 
presented in the following section.

4.2 Modelling the dynamics.

At a precise time t, the maintenance decision is simply the merging of all the maintenance decisions 
taken by each detector. A hypothesis of the Model is: if a maintenance action is operated at time t, the 
rail is supposed to be reconditioned at time t+1. 

On the contrary, if no maintenance action is provided, the rail will follow a degradation process from 
the OK state to “Broken Rail” state, through the minor faults states “Internal Crack” or “Surface Crack”. 
Figure  5  introduces  the  complete  bayesian network,  joining previously  introduced  diagnosis  sub-
models, rail process degradation and maintenance action policies.

Figure 5: Dynamic bayesian network modelling the rail degradation, its diagnosis and the 
maintenance strategy.

4.3 Parameters estimation.

The BN structure being defined, the final step of such a modelling consists in the estimation of the 
probability tables (conditional or a priori) associated to each node. In our case, these parameters were 
both  estimated  by  database  analysis  and  expert  advices.  In  some  critical  cases  (weak  data  or 
uncertain experts) one approach could enforce the other one.

Estimation of the degradation modelling parameters:
The determination of these probabilities is the key point of our study. A too slow degradation process 
leads to an unrealistic “static” system. On the contrary, a too fast process is beyond any periodical 
inspections. Some information on the rail degradation can be found in the databases. But, data are 
strongly left and right censured [4]. The defect appearance time that is recorded is the one when 
detection equipment is in-situ position, and actually not when it exactly occurs. So, most of the defect 
appearance times (expected for some broken rails) were left censured.  Moreover, the curative or 
systematic  preventive  maintenance  actions,  planed  by  the  current  maintenance  strategy,  modify 
strongly our opinion on the rail life duration. Indeed, the railway portions renewal policy induces a right 
censure of the mean time before getting a broken rail. To solve this problem, parameters are first 
obtained from the  database.  Then,  these probabilities  are  consolidated by  some expert  advices, 
considering  the  mean  annual  number  of  broken  rails  and  the  mean  time  before  broken  rail 
appearance. 



Estimation of the detection module parameters:
These  probabilities  are  mostly  learnt  according  to  both  the  expert  advices  and  the  diagnosis 
parameters determined by the current experience schedule.
The next section introduces a validation of the global model, introduced in figure 5. Then, results of 
various simulations, based on a predetermined experience schedule, are presented and discussed.

5. VALIDATION

In this section, we will take advantage of the bayesian networks as generative models for the data 
sampling of our maintenance process modelling. This property will provide simulation sets for various 
experimentation parameters, helpful in a maintenance strategy determination.

5.1 The sampling outputs of the model.

Let suppose that, at time t=0, the rail is new and no maintenance decision was planed. Then, we can 
note that the initialing state of nodes “Rail t” and “Maintenance t” is respectively, “OK” and “No”. The 
bayesian network introduced in figure 5 supplies the behavior of the node “Rail t+1” as a function of 
nodes “Rail t” and “Maintenance t” via the elements of the conditional probability table:

   1P Rail t Rail t ,Ma int enance t    (1)

A standard sampling algorithm was used to produce a value of “Rail t+1” in respect of the rule:

      1P Rail t Rail t OK,Ma int enance t No     (2)

Moreover, the node “UST Presence” being deterministic (the ultrasonic auscultation is periodic), if at 
the  current  time an auscultation  is  done  (“UST Presence”=Yes),  we  can  use  a  similar  sampling 
algorithm to describe the behavior of node “UST Rail Estim”.  For example, if the obtained value in 
eq.2 is “Rail t+1”=IC, then, the value of the node “UST Rail Estim” will be given by the conditional 
probability:

     1P UST Rail Estim. Rail t IC,UST Presence Yes  (3)

And  so  on,  all  values  of  our  variables,  descending  of  previously  calculated  nodes,  will  be 
progressively generated. This algorithm will finally provide the state of the variable “Maintenance t+1”: 
Yes or No.

The  following  figure  introduces  various  portions  of  simulations.  The  upper  curve  represents  the 
evolution of the actual rail state. The second one is the maintenance decision (with possible false 
alarms: FA) resulting from the estimated rail state. The three last curves deal with the presence and 
the maintenance decision of the detection equipments (except the drivers).

Figure 6: Simulations of maintenance and detection equipments.

In brief, the initial values of nodes “Rail t” and “Maintenance t” provide the values of nodes “Rail t+1” 
and “Maintenance t+1” through our model of rail defect detection. These final values just have to be 
injected as inputs of the system to generate the next set of values.



5.2 Experimental results.

The data generation provides simulations of the system behavior during a fixed period. The evaluation 
of these results can be done in respect of four criteria:  

• The good maintenance decision rate (were all the detected ruptures and correctly maintained?)
• The decisions rate, based on false alarms (were some maintenance decisions taken as the rail 

was not broken?)
• The mean time between ruptures
• The mean time to repair (or to detect) a broken rail

These indicators are computed for one year simulations and, thus, can possibly be not representative 
of the variability of the system. It  was therefore necessary to average them on a high number of 
realizations. In the following results, the sampling step is fixed to one day and indicators are averaged 
over five realizations of 10000 years sampling. For this study, we considered the following variables:

• Δt: Mean delay between trains (s)
• V: Mean speed of trains (m.s-1)
• L: Mean length of trains (m)
• LTC: Mean length of Track Circuits (m)
• PUST: Ultrasonic vehicle auscultation period (day)
• PWT: Walking team auscultation period (day)

After  modelling  the  diagnostic,  maintenance  and  operation  parameters  (considering  a  reference 
scenario S0) for the currently implemented broken rail monitoring process, a set of fourteen scenarios 
was defined, for various changes of the reference values of the considered variables. In this paper, 
we will introduce results obtained modifying the ultrasonic vehicle auscultation period (PUST) or the 
mean length track circuit (LTC). 

Influence of the ultrasonic auscultation period.
For this simulation, only the ultrasonic auscultation period was changed (initially PUST=T0), with three 
considered options: T0/2, T0/3 and T0/6. The other parameters were fixed to the reference values.
Figure 7 introduces the influence of  PUST on the annual number of broken rails and the number of 
preventive actions, triggered by an ultrasonic auscultation.
We can note that, as expected, the more frequently ultrasonic equipment sound the infrastructure, the 
more preventive actions will be planed. Early defects are therefore more easily diagnosed, and then, 
corrected before they turn to the critical state of broken rail. 
Moreover,  the gain in terms of broken rails is especially significant for the two first simulations (T0/2 
and T0/3) and, beyond, seems to decrease. 
Nevertheless, these results eminently depend on the considered rail degradation process modelling. It 
could be interesting to complete and refine the current model to determine more precisely which value 
of PUST is optimum in terms of annual broken rails.

Figure 7: Influence of PUST on the annual broken rails and preventive maintenance actions.



Influence of the mean track circuits length.
For these tests, two parameters were changed: 

• The mean track circuit length LTC could take value in the set {L0x2, L0x3, L0x4}, where L0 is the 
reference value of LTC. 

• The mean speed of train could be doubled, for each value of LTC.

The  first  significant  fact  is  that  all  indicators  (number  of  broken  rails,  preventive  maintenance 
actions…) are quite not sensitive to the length of track circuits. Nevertheless, it appears that, if the 
number of false alarms due to drivers keep constant (for a given speed), the number of false alarms 
due  to  track  circuits  decreases  significantly  with  higher  LTC values.  Such  a  result  is  perfectly 
comprehensible. Indeed, the higher LTC is, the less numerous track circuits are and then, the less they 
failed (triggering false alarms). The following picture introduces this fact.
 

Figure 8: Influence of LTC on false alarms.

If the decreasing of the number of false alarms is a significant benefit in terms of availability of the 
infrastructure and of maintenance costs, the outstanding of this improvement is that, as illustrated by 
figure 9, track circuits become less relevant in terms of broken rails detection. This fact is enforced 
with higher train speed. So, if an enlargement of track circuit offers a better availability of the system 
and a better reliability of our diagnosis process, it also decreases the influence of track circuit in terms 
of broken rails detection. It means that another diagnosis system shall be able to take decision in 
place of track circuits to ensure a good detection rate of critical events such as broken rails.

Figure 9: Proportions of broken rails detected by each detection system in respect of LTC: 
(a) Reference value V=V0, (b) V=V0 x 2

6. Conclusion

In this paper, we introduce a maintenance strategy model for the prevention of broken rails. This 
modelling is based on the dynamic bayesian network theory, with a modular approach. Thus, our 
model  can be divided in sub networks,  eventually  interconnected,  describing the rail  degradation 
process,  the  different  inspection  equipments  and  finally,  the  maintenance  actions  decision.  The 



originality of this work is that the considered approach is generic and can easily be extended to all 
kind of  maintenance  processes  modelling  for  determining  Maintenance  and/or  Diagnosis  optimal 
parameters.

Due  to  specificities  of  our  database  (incompleteness,  left  and  right  censures),  the  learning  of 
probability tables needed to be consolidated by expert opinions. Then, our model has been validated 
by various simulations, implying modifications of some parameters of our system. 

In this paper, we only introduce some of the obtained results to illustrate the ability of the approach to 
simulate all kinds of scenarios, modifying maintenance decisions, diagnosis parameters or running 
variables. One advantage of the introduced method leads in the fact that all new information (from 
database or expert advice) or modification of the diagnosis process can easily be taken into account 
to amend the Model. 

Further studies might improve the modelling of the rail degradation process. Finally, the integration of 
optimization algorithms will furnish useful tool to determine, in respect of some predetermined criteria, 
the optimal diagnosis and/ or maintenance parameters.
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