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Abstract. Bayesian networks (BN) have been used for prediction or
classification tasks in various domains. In the first applications, the BN
structure was causally defined by expert knowledge. Then, algorithms
were proposed in order to learn the BN structure from observational data.
Generally, these algorithms can only find a structure encoding the right
conditional independencies but not all the causal relationships. Some new
domains appear where the model will only be learnt in order to discover
these causal relationships. To this end, we will focus on discovering causal
relations in order to get Causal Bayesian Networks (CBN). To learn such
models, interventional data (i.e. samples conditioned on the particular
values of one or more variables that have been experimentally manip-
ulated) are required. These interventions are usually very expensive to
perform, therefore the choice of variables to experiment on can be vi-
tal when the number of experimentations is restricted. In many cases,
available ontologies provide high level knowledge for the same domain
under study. Consequently, using this semantical knowledge can turn out
of a big utility to improve causal discovery. This article proposes a new
method for learning CBNs from observational data and interventions.
We first extend the greedy approach for perfect observational and ex-
perimental data proposed in [13], by adding a new step based on the
integration of ontological knowledge, which will allow us to choose effi-
ciently the interventions to perform in order to obtain the complete CBN.
Then, we propose an enriched visualization for better understanding of
the causal graphs.

1 Introduction

Over the last few years, the use of ontologies is becoming increasingly widespread
by the computer science community. The main advantage of ontologies is essen-
tially that they try to capture the semantics of domain expertise by deploying
knowledge representation primitives enabling a machine to understand the rela-
tionships between concepts in a domain [3]. A lot of solutions based on ontologies



have been implemented in several real applications in different areas as natural
language translation, medicine, electronic commerce and bioinformatics.

In the other hand, causal discovery remains a challenging and important
task [12]. One of the most common techniques for causal modeling are Causal
Bayesian Networks (CBNs), which are probabilistic graphical models, where
causal relationships are expressed by directed edges [18]. Like classical Bayesian
Networks, CBNs need observational data to learn a partially directed model but
also they require interventional data, i.e. samples conditioned on the particular
values of one or more variables that have been experimentally manipulated, in
order to fully orient the model.

Several researches have proposed algorithms to learn the structure of a CBN
from observational and experimental data.

This paper goes farther by integrating ontological knowledge for more ef-
ficient causal discovery and proposes, henceforth, an enriched visualization of
causal graphs based on semantical knowledge.

Less works has been done on this aspect of combining the power of Bayesian
networks and ontologies. And most of them focus on developing probabilistic
frameworks for combining different ontology mapping methods [16, 22].

The remainder of this paper is organized as follows: Section 2 provides some
notations and basic definitions on Bayesian networks, Causal Bayesian Networks
as well as ontologies. Section 3 describes the new approach for causal discovery
based on ontological knowledge. Finally, section 5 proposes different tools to
obtain an enriched visualization of CBN.

2 Background and notations

This section gives basic definitions on Bayesian networks, causal Bayesian net-
works and ontologies. The following notations and syntactical conventions are
used: Let X = {X1, X2, ..., XN} be a set of variables. By x we denote any in-
stance of X . For any node Xi ∈ X we denote by Pa(Xi) (resp. Ne(Xi)) the
parents (resp. neighbors) of the variable Xi. P(Xi) is used to denote the proba-
bility distribution over all possible values of variable Xi, while P(Xi=xk) is used
to denote the probability that the variable Xi is equal to xk.

2.1 Bayesian networks

A Bayesian Network (BN) [17] consists of a Directed Acyclic Graph (DAG) and
a set of conditional probability tables (CPTs) such that each node in the DAG
corresponds to a variable, and the associated CPT contains the probability of
each state of the variable given every possible combination of its parents states
i.e. P(Xi|Pa(Xi)). Bayesian networks are very suited for probabilistic inference,
since they satisfy an important property known as Markov property, which states
that each node is independent of its non-descendants given its parents and leads
to a direct factorization of the joint distribution into the product of the condi-
tional distribution of each variable Xi given its parents Pa(Xi). Therefore, the



probability distribution relative to X=(X1, X2,..., Xn) can be computed by the
following chain rule:

P (X1, X2, ..., Xn) =
∏

i=1..n

P (xi | Pa(Xi)). (1)

Note that several BNs can model the same probability distribution. Such
networks are called equivalent or Markov equivalent [24].

Definition 1. A Complete Partially Directed Acyclic Graph (CPDAG) is
a representation of all equivalent BNs. The CPDAG contains the same skeleton
as the original DAG, but possesses both directed and undirected edges. Every
directed edge Xi → Xj of a CPDAG denotes that all DAGs of this class contain
this edge, while every undirected edge Xi—Xj in this CPDAG-representation
denotes that some DAGs contain the directed edge Xi → Xj, while others contain
the oppositely orientated edge Xi ← Xj.

Under Causal sufficiency assumption (i.e. there are no latent variables that
influence the system under study), many structure learning techniques using
perfect observational data are available and can be used to learn CPDAG and
then choose a possible complete instantiation in the space of equivalent graphs
defined by this CPDAG. These techniques can be classified into two groups,
namely score-based and constraint-based algorithms.

Score-based algorithms [4, 5] attempt to identify the network that maximizes
a scoring function evaluating how well the network fits the data while constraint-
based algorithms [12, 21] look for (in)dependencies in the data and try to model
that information directly into the graphical structure.

2.2 Causal Bayesian Networks

A Causal Bayesian Network (CBN) [18] is a Bayesian network with the added
property that all edges connecting variables represent autonomous causal re-
lations. Given a CBN, we can go further than probabilistic inference to per-
form causal inference. Pearl has introduced the do operator as standard notifi-
cation for external intervention on causal models. In fact, the effect of an action
”do(Xj=xk)” in a causal model corresponds to a minimal perturbation of the
existing system that forces the variable Xj to the value xk. In other terms, causal
inference is the process of calculating the effect of manipulating some set of vari-
ables Xi on the probability distribution of some other set of variables Xj , this
is denoted as P(Xi|do(Xj=xk)).

Several researches in the literature have proposed algorithms to learn CBN’s
structure. We can, in particular, mention Tong and Koller [23] and Cooper and
Yoo [6], which developed a score-based techniques to learn a CBN from a mixture
of experimental and observational data. Eberhardt et al. [9] performed a theo-
retical study on the lower bound of the worst case for the number of experiments
to perform to recover the causal structure.



Recently, Meganck et al. [13] proposed a greedy contraint-based learning
algorithm for CBNs using experiments. The MyCaDo (My Causal DiscOvery)
algorithm, which represents the main application of their approach, is a structure
learning algorithm able to select appropriate interventions or experiments (i.e.
randomly assigning values to a single variable and measuring some other possible
response variables) needed to built a CBN. As input, the MyCaDo algorithm
needs a CPDAG. Meganck et al. proposed to use the PC algorithm proposed by
Spirtes et al. [21] with modified orientation rules to learn the initial CPDAG,
but other structure learning algorithms can be taken into consideration.

When applying PC algorithm, we start with a complete undirected network.
Then, we remove edges when independencies are found; we call such step Skele-
ton discovery. The edge orientation, in such algorithm, is based on v-structure
discovery and edge propagation. Based on the already oriented edges, an inferred
edges step will apply some orientation rules until no more edges can be oriented.

In this step, we need also experimental data to perform interventions on the
system. To learn a CBN from interventional data, three major parts can be
distinguished in the MyCaDo algorithm:

– First of all, it tries to maximize an utility function based on three variables:
gain(exp), cost(exp), cost(meas), respectively, the gained information, the
cost of performing an experiment and the cost of measuring other variables,
to decide which experiment should be performed and hence also which vari-
ables will be measured.
If we denote performing an experiment on Xi by AXi

, and measuring the
neighboring variables by MXi

, then the utility function will be as follows:

U(AXi
) =

αgain(AXi
)

βcost(AXi
) + γcost(MXi

)
(2)

where α, β and γ are measures of importance for every term.

In this formula, gain(AXi
) takes into consideration the number of undirected

neighbors NeU (Xi) (e.g. nodes that are connected to Xi by an undirected
edge) and the amount of possible inferred edges, after performing an exper-
iment on Xi.

Three decision criteria were proposed Maximax, Maximin and Expected Util-
ity depending on the type of situation in which to perform the experiments
it might be advantageous to choose a specific criterion.

– Secondly, the selected experiment will be performed.
– Finally, the results of this experiment, will be analyzed in order to direct a

number of edges in the CPDAG.

Note that the amount of edges of which the direction can be inferred after
performing an experiment is entirely based on the instantiation (i.e. assignation
of a direction) of the undirected edges connected to the one being experimented
on.



This process will be iterated until we obtain the correct structure of the
CBN. Note that we can have a non-complete causal graph (i.e. not all edges are
oriented) as final output of MyCaDo algorithm.

Borchani et al. [2] have also described another approach for learning CBNs
from incomplete observational data and interventions.

Furthermore, other approaches were proposed to learn graphical models that
can handle latent variables. For this kind of hidden variable modeling, Meganck
et al. [14, 15] and Maes et al [11] studied which experiments were needed to learn
CBN with latent variables under the assumption of faithful distribution (i.e. the
observed samples come from a distribution which independence properties are
exactly matched by those present in the causal structure of a CBN). Their solu-
tion offers a new representation based on two paradigms that model the latent
variables implicitely, namely Maximal Ancestral Graphs and Semi-Markovian
Causal Models, in order to perform probabilistic as well as causal inference.

2.3 Ontology

An ontology [10] is defined as a formal explicit specification of a shared con-
ceptualization. In other terms, it is a formal representation of a set of concepts
within a domain and the relations between these concepts. The relations in an
ontology are either taxonomic (e.g. is-a, part-of) or non-taxonomic (i.e. user-
defined). The taxonomic ones are the commonly used relations. In the simple
case, the ontology takes the form of a tree or hierarchy representing concept
taxonomy. Formally:

Definition 2. A Concept Taxonomy H = (C, E, Rt) is a directed acyclic
graph where, C = {c1, c2, ..., cn} is the set of all concepts in the hierarchy, E is
the set of all subsumption links (is-a) and Rt is the unique root of this DAG.
The primary structuring element of concept taxonomy is the subsumption rela-
tionship, which supposed that if the concept ci is a child of concept cj then all
properties of cj are also properties of ci and we say that cj subsumes ci .

Regarding any concept taxonomy hierarchy, we can give the following nota-
tions:

– pths(ci, cj): the set of paths between the concepts ci and cj , where i 6= j,
– lene(e): the length in number of edges of the path e,
– mscs(ci, cj): the most specific common subsumer of ci and cj , where i 6= j.

The major contribution of using concept taxonomies is, essentially, to present
the domain knowledge in a declarative formalism.

For instance, the Gene Ontology (GO) [25] is one of the principal knowledge
resource repository in the bioinformatic field and represents an important tool
for the representation and processing of information about genes and functions.
It provides controlled vocabularies for the designations of cellular components,
molecular functions and biological processes.



Example 1. Figure 1 shows an ontology toy example or more precisely, an is-a
tree, where the leaf nodes (X1, X2...,X5) are genes. Their direct subsumers (F1,
F2, F3) represent the biological functions i.e. every set of genes in a GO share
a very specified function. Also, the biological functions are subsumed by their
biological super-functions (SF1, SF2). Note that we can use the term of general-
ization as shown in figure 1 to refer the subsuming process. For this case of is-a
tree, only one path can be find between two different concepts. To more illustrate
this purpose, let us consider the two concepts X1 and SF2. Here, pths(X1, SF2)
represents the set of the edges X1-F1, F1-SF1, SF1-RT and RT-SF2. Conse-
quently the length in number of edges of the corresponding path will be equal to
four.

Fig. 1. Example of hierarchy representing a taxonomy of concepts.

Recently, several works highlighted the importance of evaluating the strength
of the semantic links inside domain ontologies. We can distinguish three major
classes of semantic measures, namely semantic relatedness, semantic similarity
and semantic distance, evaluating, respectively, the closeness, the resemblance
and the disaffection between two concepts.

The semantic similarity represents a special case of semantic relatedness. For
instance, if we consider the two concepts wind turbine and wind, they would be
more closely related than, for example the pair wind turbine and solar panel.
However the latter concepts are more similar. Therefore, all pairs of concepts
with a high semantic similarity value (i.e. high resemblance) have a high semantic
relatedness value whereas the inverse is not necessarily true. In the other hand,
the semantic distance is an inverse notion to the semantic relatedness.

The major approaches of measuring semantic distance are Rada et al.’s dis-
tance, Sussna’s distance and Jiang and Conrath’s distance. For the semantic
similarity, we find Leacock and Chodorow’s similarity, Wu and Palmer’s similar-
ity and Lin similarity, while for semantic relatedness, the most used one is Hirst
and St Onge’s relatedness. See [1] for a comparative study of these measures.



In what follows, we will focus on semantic distances and in particular on the
classical Rada et al.’s distance [19], which can be replaced by any other semantic
distance.

This distance is based on the shortest path between the nodes corresponding
to the items being compared such that the shorter the path from one node to
another, the more similar they are. Thus, given multiple paths between two
concepts, we should take the length of the shortest one. Formally, given two
concepts ci and cj the Rada et al.’s distance is defined by:

distrmbb(ci, cj) = min
p∈pths(ci,cj)

lene(p) (3)

Consequently, we will compute a distance matrix, giving us all distances
between all pairs of concepts.

Table 1. Rada et al.’s distance matrix between the nodes given in Fig.1

Rt SF1 SF2 F1 F2 F3 X1 X2 X3 X4 X5

Rt 0 1 1 2 2 2 3 3 3 3 3

SF1 1 0 2 1 1 3 2 2 2 4 2

SF2 1 2 0 3 3 1 4 4 4 2 4

F1 2 1 3 0 2 4 1 1 3 5 3

F2 2 1 3 2 0 4 3 3 1 5 1

F3 2 3 1 4 4 0 5 5 5 1 5

X1 3 2 4 1 3 5 0 2 4 6 4

X2 3 2 4 1 3 5 2 0 4 6 4

X3 3 2 4 3 1 5 4 4 0 6 2

X4 3 4 2 5 5 1 6 6 6 0 6

X5 3 2 4 3 1 5 4 4 2 6 0

Example 2. In figure 1, every term has at least one generalization’s path back
to the top node. The full Rada et al.’s distance matrix concerning the concept
taxonomy is presented in Table 1. For instance, distrmbb(SF1, X2) = 2 since
the shortest path between the two concepts SF1 and X2 is composed of the two
edges SF1-F1 and F1-X2.

3 Our approach for causal discovery and visualization

based on ontological knowledge

Causal Bayesian networks are used to model domains under uncertainty [17]. In
many cases, available ontologies provide consensual representation of the same
domain and a full description of the knowledge model. Basically, ontologies at-
tempt to find the complete set of concepts covering any domain as well as the
relationships between them. Such domain knowledge can be efficiently used to



enrich the learning process of Causal Bayesian networks and optimize the causal
discovery.

In order, to illustrate this idea we propose to extend the MyCaDo (My Causal
DiscOvery) algorithm [13] used to learn causal structures with experiments by
integrating the ontological knowledge, extracted using Rada et al. semantic dis-
tance calculation, for causal discovery and visualization.

We make the assumption that we consider a concept taxonomy hierarchy,
in which the leaves are also the nodes of the Bayesian network. However, the
causal relations we want to discover and model with our CBN did not exist in
the corresponding ontology, therefore, each model representation complete the
other.

3.1 Integrating ontological knowledge for causal discovery

In what follows let us assume that after performing an experiment on a variable
Xi, we can measure all neighboring variables NeU (Xi).
Our utility function U(.) is an extension of the one proposed in [13] (see sub-
section 2.2) by generalizing the first term NeU (Xi) and replacing it by the
semantical inertia, denoted by SemIn(NeU(Xi)).

This notion will enable us to integrate our ontological knowledge extracted
by calculating semantic distances from ontologies and guide the choice of the
best experiment. In many situations, we can have a node Xi with a high number
of neighbors but all those neighbors are very close semantically. This implies
that we will have, exactly, two alternatives (i.e. Xi is the direct cause of all his
neighbors or the inverse).

For instance, in bio-informatics, biologists would discover more causal rela-
tions between biological functions. Considering a neighborhood which is very
close semantically will reduce the number of functions under study and con-
sequently the informative contribution of the experiment would be very low.
However, in the case of distant neighbors, there will be more cause-to-effect
relations between biological functions to find. Such causal discoveries have an
important scientific contribution in the bio-informatic field.

The semantical inertia will be as follows:

SemIn(M) =

∑

Xi∈M

min
p∈pths(Xi, mscs(M))

(lene(p))

card(M)
(4)

Let us consider the CPDAG in figure 2 in order to illustrate our approach
and compare it to the original MyCaDo. We will also use the concept taxonomy
hierarchy presented in figure 1. Suppose that we will perform an action on X2.
Figure 3 summarizes all possible instantiations of the edges Xi-Ne(Xi).

It is clear that the following edges X2 − X3 and X2 − X5 have the same
direction because the two neighbors X3 and X5 share the same function in the
corresponding ontology. In this case, we will have three instantiations whereas,
by applying MyCaDo we will find exactly six. Consequently, we reduced consid-
erably the set of possible instantiations in the particular PDAG (i.e. CPDAG



Fig. 2. An example of CPDAG

Fig. 3. All possible instantiations for X2 − NeU (X2)

with some oriented edges).

Here the most specific commun subsumer of NeU (X2) ={X1, X3, X5} is the
concept SF1. According to the ontology in figure 1 and table 1, the semantical
inertia of the nodes X1, X3 and X5 is as follows:

SemIn(X1, X3, X5) =

∑

Xj∈NeU (X2)

min
p∈pths(Xj , mscs(NeU (X2))

(lene(p))

#NeU

=
2 + 2 + 2

3
= 2

The semantical inertia presents three major characteristics. At the first glance,
where all undirected neighboring nodes belong to the same biological function,
the semantical inertia of the neighborhood will be equal to one. Secondly, the
semantical inertia depends on the number of undirected neighbors. For exam-
ple, if we eliminate X1 from the neighborhood of X2, SemIn will automatically
decrease.

SemIn(X3, X5) =
1 + 1

2
= 1

And, finally, the more the neighboring variables are distant according to the
ontology, the more the semantical inertia will be important and the utility max-
imized. Here, if we replace the node X3 by X4, which is more distant from the
rest of neighbors of X2, SemIn will increase considerably.

SemIn(X1, X4, X5) =
3 + 3 + 3

3
= 3



It is clear now that the semantical inertia represent a generalization of #NeU (Xi)
and introducing it in the utility function will allow a better choice of experiments,
based on ontological knowledge. With such method, we can focus the causal dis-
covery on relations between distant concepts.

3.2 Integrating ontological knowledge for causal graph visualization

Visualizing large networks of hundreds or thousands nodes is a real challenging
task. It is essentially due to the limitation of the screen, the huge number of
nodes and edges and the limitations of human visual abilities. In this context,
our approach can turn out of big utility to improve actual visual tools. The main
purpose was to propose an enriched visualization of causal models by integrat-
ing the power of semantical knowledge. The Rada et al.’s distance matrix can
implement different graph drawing algorithms among which MultiDimentional
Scalling (MDS) and Force Directed Placement [7, 8]. More precisely, we will ad-
just the node’s position in the screen, referring to the matrix distance calculated
above. Similarly, in [20], Ranwez et al. used the ontological distance measures to
propose an alternative information visualization on conceptual maps.

Fig. 4. Enriched visualization corresponding to the CPDAG in Figure 2.

In figure 4, we show an enriched visualization of the CPDAG used in the
previous subsection. The biological functions are more distinguished and the
causal relations between those functions are, visually, more revealed.

In the other hand, we propose to adapt the size of the nodes to the utility
function. This method allows to biologists to determine the ideal node to make
interventions.

While judicious use of semantical distances and node’s size can help consider-
ably the understanding of the causal bayesian network, we can go farther in the
visualization by adding a zoom-in/zoom-out function that allows one to visualize
either the global structure of the graph or just, smaller components reduced to
more general concepts in the ontology. For example, we can pass from visualizing



the genes, in our example, to an abstraction reduced to only biological functions
or even to the biological super-functions.

All those visualization attributes can lead to different valuable informations
about the causal bayesian network. Moreover, we will be able to investigate fur-
ther into the adapted structure of the network. Since the enriched visualization
can offer assistance to the domain experts, we can change the MyCaDo algo-
rithm into semi-automatic method, combining the use of optimal solution of
utility and visualization of causal graph. Consequently, we can ease considerably
the depiction of causality.

4 Conclusion

In this article, we discussed how ontological knowledge can be useful for iterative
causal discovery. More precisely, we extend the MyCaDo algorithm via introduc-
ing the notion of the semantical inertia. By supporting the assignment of costs
to experiments and measurements, our approach permit us to guide the choice
of the best experiment in order to obtain the complete causal bayesian network.
We then proposed an enriched visualization of causal models, using the power
of semantical knowledge extracted from ontologies.

To this end, we considered a toy example ontology as a starting point to de-
velop our approach but this choice does not exclude the application of our works
to more realistic ontology’s domains. We emphasize that the work described
here represents a major step in a longer-term project focusing on the knowledge
integration for causal bayesian networks learning.

Directions for future work include studying how ontological knowledge can
be integrated to learn causal graphical models with latent variables, or other
links between causal bayesian network learning and ontologies construction.
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