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Abstract⎯ Model refinements of magnetic circuits are per-
formed via a subdomain finite element method based on a per-
turbation technique. A complete problem is split into subprob-
lems, some of lower dimensions, to allow a progression from 1-D 
to 3-D models. Its solution is then expressed as the sum of the 
subproblem solutions supported by different meshes. The proce-
dure simplifies both meshing and solving processes, and quanti-
fies the gain given by each model refinement on both local fields 
and global quantities. 

I. INTRODUCTION 
The perturbation of finite element (FE) solutions provides 

clear advantages in repetitive analyses and helps improving 
the solution accuracy [1]-[4]. It allows to benefit from previ-
ous computations instead of starting a new complete FE solu-
tion for any variation of geometrical or physical data. It also 
allows different problem-adapted meshes and computational 
efficiency due to the reduced size of each subproblem. 

A subproblem FE method is herein developed for coupling 
solutions of various dimensions, starting from simplified mod-
els, based on ideal flux tubes defining 1-D models, that evolve 
towards 2-D and 3-D accurate models. It is an extension of the 
method proposed in [2]-[4], applied to refinements up to 3-D 
models. From the so calculated field corrections, the associate 
corrections of global quantities inherent to magnetic models, 
i.e. fluxes, magnetomotive forces (MMFs), currents and volt-
ages, are also evaluated. The developments are performed for 
the magnetic vector potential FE magnetostatic and magneto-
dynamic formulations, paying special attention to the proper 
discretization of the constraints involved in each subproblem. 
The method is illustrated and validated on test problems. 

II. COUPLING OF MAGNETIC MODELS  
OF VARIOUS DIMENSIONS 

A. Series of coupled subproblems 
Instead of solving a complete problem, generally with a 3-

D model, it is proposed to split it into a sequence of subprob-
lems, some of lower dimensions, i.e. 1-D and 2-D models. Its 
solution is then to be expressed as the sum of the subproblem 
solutions. 

Each subproblem is defined in its own domain, generally 
distinct from the complete one. At the discrete level, this aims 
to decrease the problem complexity and allow distinct meshes 
with suitable refinements. Each subproblem approximates at 
best its contribution to the complete solution. The domains of 

the subproblems can overlap [2], [3] or not [1], [4]. Herein, 
non-overlapping subdomains are considered. They are sepa-
rated by interfaces 
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Γf,p, through which a sequence of bound-
ary conditions (BCs) or interface conditions (ICs) is to be de-
fined. 

B. Canonical magnetostatic or magnetodynamic  problems 
Each subproblem p is defined in a domain Ωp, with bound-

ary ∂Ωp = Γp = Γh,p ∪ Γb,p. It is governed by magnetostatic or 
magnetodynamic equations with volume and surface sources 
or constraints. Classical volume sources fix remnant induc-
tions in magnetic materials and current densities in stranded 
inductors. Similar volume sources can also express changes of 
permeability and conductivity from one problem to another 
[3]. Also, the usually homogeneous surface sources, i.e. BCs 
or ICs on the traces of the magnetic field hp and flux density 
bp, respectively n × hp|Γf,p

 and of n ⋅ bp|Γf,p
, with n the unit ex-

terior normal, can be extended to non-zero constraints calcu-
lated from previous problems. ICs have the general forms 

 [n × hp]γp
 = jf,p ,  [n ⋅ bp]γp

 = bf,p , (1a-b) 

where the notation [ ⋅ ]γ = ⋅ |γ+ – ⋅ |γ– expresses the discontinuity 
of a quantity through an interface γ (with sides γ+ and γ–) in 
Ωp. The associated surface fields jf,p and bf,p are generally 
zero, defining classical ICs for the physical fields, i.e. the con-
tinuities of the tangential component of hp and of the normal 
component of bp. If nonzero, they define possible surface 
sources that account for particular phenomena occurring in the 
idealized thin region between γ+ and γ–. 

C. Sources at subproblem interfaces 
Portions of a 3-D structure satisfying a translational or rota-

tional symmetry can be first studied via 2-D models. This con-
sists in neglecting some end effects, zeroing either n × hp|Γf,p

 
or n ⋅ bp|Γf,p

. Besides, if the field is chosen to be zero out of 
Ωp, a discontinuity of one of its traces is then voluntarily de-
fined through Γf,p. 

With such assumptions, two subproblems 1 and 2 with ad-
jacent non-overlapping sudomains Ω1 and Ω2 share a com-
mon interface Γf,1 = Γf,2 through which a field discontinuity 
occurs. A third subproblem, 3-D, serves then to correct the 
field distribution in a certain neighborhood Ω3 on both sides 
of the interface, then denoted Γf,3. This is done via ICs 

 [n×h3]Γf,3
= jf,3 ,  [n ⋅ b3]Γf,3

 = bf,3 . (2a-b) 

with the surface sources 

  jf,3= – (n×h1|Γf,1
– n×h2|Γf,2

) , bf,3= – (n⋅b1|Γf,1
– n⋅b2|Γf,2

) . (3a-b) 



 
 
These sources compensate the traces 1 and 2 to recover the 
continuity of the total solution. Note that Γf,1, Γf,2 and Γf,3 are 
similar and only differ at the discrete level due to their differ-
ent supporting meshes. 

The ICs (2a) and (2b) in a magnetic vector potential (a) FE 
formulation are considered via natural and essential con-
straints respectively [3]. The essential constraint strongly fixes 
the discontinuity of the trace of a through Γf,3 (continuity if 
bf,3 = 0), whereas the natural constraint weakly acts via a sur-
face integral term in the FE formulation. This surface term, 
with (2a) and (3a), involves the traces of previous solutions, 
each one being actually involved in similar surface terms in 
the associated previous FE formulations, thus linked with 
their other volume integrals. At the discrete level, these sur-
face integrals must be substituted with those volume integrals, 
limited to one single layer of FEs touching the interface [1]-
[4]. Because each solution is calculated in a different mesh, 
mesh-to-mesh projections of solutions are necessary. They 
can be profitably limited to the single layers of FEs. This pro-
cedure is of key importance for ensuring consistency between 
all the formulations and their coupling. It will be detailed in 
the extended paper and it will be shown to allow the accurate 
calculation of the global quantities (flux, MMF, current, volt-
age) at each step of the series, in particular the correction due 
to the end effects. 

III. APPLICATION EXAMPLES 
As a primary illustration, two flux tubes are first separately 

considered before being connected in series (Fig. 1). The solu-
tions in each separate tube are simply calculated via 1-D mod-
els. When the tubes are connected, their junction surface acts 
as an interface Γf,3, with continuity of the normal magnetic 
flux density ([n ⋅ b3]Γf,3

 = 0) and discontinuity of the tangential 
magnetic field ([n×h3]Γf,3

 ≠ 0). This gives the requested source 
for a 2-D model, calculating the field correction limited to a 
certain neighborhood Ω3 on both sides of the interface, with a 
locally refined mesh. 
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Fig. 1. Field lines (top) and magnetic flux density (bottom) of the initial prob-
lem with two ideal flux tubes in series (b1 and b2 in both tubes left), its local 
correction at the junction (b3, middle) and the complete solution (b, right). 

A stranded inductor is then studied via the coupling of a 2-
D plane model for its portion with a translational symmetry, a 
2-D axisymmetrical model for its end winding and a 3-D 
model for the 3-D correction on both sides of the interface 
separating the portions (Figs. 2 and 3). Because the correction 
is local to the interface, the associated 3-D mesh only needs to 
be refined in its vicinity. 

Various results and discussions will be given in the ex-
tended paper, in particular regarding the correction of both lo-
cal and global quantities, the way to consider additional re-
gions (e.g. the magnetic or conducting plate below the induc-
tor in Fig. 2; based on [1] and [3] for magnetostatic and mag-
netodynamic models), the way the fields decrease at infinity 

with the different models and the adaptation of the domain of 
each subproblem with its effect on the convergence of the 
complete solution. Parameterized analysis modifying some 
subproblems (e.g. end windings) while keeping the others 
constant will be shown to benefit from the developed method. 
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Fig. 2. Field lines generated by a stranded inductor (half geometry): solution 
of a 2-D plane model in the XY plane (z = 0) (b1, portion on the left) and of a 
2-D axisymmetrical model in the YZ plane (x = 0) (b2, portion on the right); 
the interface between the two portions is shown. 
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Fig. 3. Magnetic flux density along the coil axis in the 3-D system: b1 for the 
2-D plane model (implicitly extended as a constant up to z = 100 mm), b2 for 
the 2-D axisymmetrical model, b3 for the 3-D correction and b for the com-
plete 3-D model. The solution b1+b2+b3 is generally obtained with a higher 
accuracy than b for a lower computational cost thanks to the coupling of 
meshes, some of lower dimensions. 

IV. CONCLUSIONS 
The developed subdomain FE method allows to split mag-

netic models into subproblems of lower complexity with re-
gard to meshing operations and computational aspects. A 
natural progression from simple to more elaborate models, 
from 1-D to 3-D geometries, is thus possible, while quantify-
ing the gain given by each model refinement on both local and 
global quantities. 
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