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Abstract In some studies requiring predictive and CPU-time consgmimmerical
models, the sampling design of the model input variablegdhs chosen with cau-
tion. For this purpose, Latin hypercube sampling has a lastgity and has shown its
robustness capabilities. In this paper we propose andsiiscoew algorithm to build
a Latin hypercube sample (LHS) taking into account inedyalnstraints between
the sampled variables. This technique, called constrdiatid hypercube sampling
(cLHS), consists in doing permutations on an initial LHS ¢mbr the desired mono-
tonic constraints. The relevance of this approach is shovareal example concern-
ing the numerical welding simulation, where the inequaliiystraints are caused by
the physical decreasing of some material properties intiomof the temperature.

Keywords Computer experimentLatin hypercube samplingDesign of Experi-
ments- Uncertainty analysisDependence
1 Introduction

With the advent of computing technology and numerical méshinvestigation of
computer code experiments remains an important chall&€ayaplex computer mod-
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els calculate several output values which can depend omea farmber of input pa-
rameters and physical variables. These computer modalsagddo make simulations
as well as predictions, uncertainty and sensitivity aredysr to solve optimization
problems |Fang et al., 2006; Kleijngn, 2D08; De RocquigralleP008).

However, complex computer codes are often too time experisibe directly
used to perform such studies. For uncertainty propagatidnsansitivity analyses,
it has been shown that the sampling design is one of the kagsdSaltelli et gI.,
P000; Fang et al[, 20Dp6). Moreover, to avoid the problem gfehealculation time, it
is often useful to replace the computer code by a mathenhapgaoximation, called
a surrogate model or a metamodel (Simpsonlet al., 2001b; &aadg| 2006; Volkova
et aI.,). The optimal exploration of the variation damaf the input variables
is therefore especially important in order to avoid noreindative simulation points
(Simpson et 41], 2001L&; Bursztyn and SteinpErg, 2P06; leoak,[2008).

Thirty years ago, McKay et al| (19779) have introduced thecepn of Latin hy-
percube sampling (LHS) for numerical experiments. Comgaoesimple random
sampling (SRS) which insured independence between sanypl&sensures the full
coverage of the range of the input variables. More preciddfs allows to accu-
rately reproduce the one-dimensional projections of thpiirsampling design. In
terms of uncertainty and sensitivity analyses, it has beeoretically and experimen-
tally proved that LHS is more precise and robust than simguelom samplin,
fL987;[Oweh[ 1997 Saltelli et p[., 20d0; Helton and Dali)P0OMoreover, in the
last twenty years, several improvements have been proposeder to optimize the
space filling properties of LHS desigris (Rdrk, 1994; Fand]<p@0$).

Our starting point is that the LHS algorithm supposes inddpace between in-
put variables while in some situations, this assumptionredavant. Indeed, depen-
dencies between variables are of statistical or physidalreaand exist in various
forms:

— For the statistical dependence problem, the algorithim ahland Conover (1982)
allows the introduction of rank correlations between Jalga in LHS. For SRS,
the joint normal transform method consists in inducing aelation structure on
the transformed marginal$ (Kurowicka and Cgdke, P006). Stimitations of
these two methods have led to the introduction of otherssieai dependence
modeling (copulae, vines, etc., See Kurowicka and Qopkegp0

— Physical dependencies between variables can arise whetabhleahas a formal
relation in function of other variables. Such input constishave been studied
by [Borgonovp [20d8) which has proposed a novel way to soleestmsitivity
analysis problem in presence of equality constraints.

— Another currently encountered physical dependence, wkithe subject of this
paper, concerns the existence of inequality relations &etvthe variables. It is
the case when one variable is physically constrained to tgeddrespectively
smaller) than another. For example, a geometric parameteiug, height, etc.)
of two physical objects can be subject to a rigorous increpsider if one object
is included inside the other.

When building the sampling design, the inequality constsatave to be honored
in order to avoid some physical incoherence in the inputtbatswill be run with the



computer model. A first solution could be to sequentiallyidate the input variables,
allowing to bound one variable by another in order to enfarcaequality constraint.

However, as we will see, this procedure affects the one-d#maal projections of the

sampling design. We need a procedure which separates ot effdependence (the
inequality constraints) from the effects of marginal disitions (i.e. the probability

laws defined for each variable). To attain this objective, pr@pose an algorithm

which builds a LHS satisfying the inequality constraints.

This paper is devoted to the detailed presentation of tlgierahm, called the
constrained LHS (cLHS). In the next section, we introduég &hgorithm by giving
some examples. We compare it with a SRS-based algorithmllastiate the algo-
rithmic performances. In the third section, we explain itaile the cLHS algorithm.
As the inequality constraints can be too stringent to find B$L.we derive a nec-
essary and sufficient condition proving its existence franingtial LHS. Then, our
methodology is applied on a real problem involving weldiimgwdation models. A
conclusion gives finally some prospects to improve the cLig8rahm.

2 The sampling techniques

The goal of the sampling step is to generate a matrix of expaeTisX" = (xg'))izlun’j:l,_p,
wheren is the number of experiments aqdis the number of variables. The most
common sampling method is indisputably the pure Monte C@udo SRS), mainly
because of its simplicity] (Gen}lE, 2403). It consists ofd@mly samplingn indepen-
dent input variables. However, it is known to have poor sgigleeg properties: SRS
leaves large unsampled region and can propose too clostspaim example of a
SRS is presented on Figlﬁ]e 1 (a).

2.1 Latin hypercube sampling

McKay et al. ) suggested an alternative method of getimegX" that they called
Latin hypercube sampling (LHS) which is an extension oftéteal sampling. LHS
ensures that each of the input variables has all proporfiis ange represented. Let
the range of each variablg, j = 1... p, be simultaneously partitioned intcequally
probable intervals. We not€" the n-sample of the variablX;. A LHS of sizen is
obtained from a random selectionro¥alues — one per stratum — for eaXh Thus
we obtainp ntuples that form the columns of then x p matrix of experiments
X" generated by LHS: thi" line of this matrix contains the input variables and
will correspond to thé™" code execution. Once a point is selected in an interval, no
other point could be selected in this interval (see Fi@rb)). Let us remark that
the partition into equally probable intervals allows todakto account non uniform
densities of probability like a normal distribution for emple. Figure |]1 shows 10
samples of two random variables obtained with SRS and LH8msek. We can see
that the result of LHS is more spread out and does not dispiglustering effects
foundin SRS.



., Xp are mutually independent random variables with
, p, respectively, then the

Mathematically, ifXy, ..
invertible continuous distribution functiorfs, j =1,...
LHS i-th sample for thg-th variable can be created as

W=Ft| 1) @)

where they are independent uniform random permutations of the insgge®, ... ., n},
and theEf') are independeri [0, 1] random numbers independent of thie

(a) Simple Random Sampling (b) Latin Hypercube Sampling
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Fig. 1 Examples of two ways to generate a sample of size10 from two variables< = [Xy, Xz] where
X1 has a uniform distributior?/ [0, 1] andX, has a normal distributiont” (0, 1).

2.2 Constrained simple random sampling

To take into account inequality constraints between véegldet us first present the
SRS approach based on sequential simulations, which edcdie constrained Sim-
ple Random Sampling (cSRS). It consists on bounding onahiariby another in
order to enforce the inequality constraintsXif and X, are two variables (with dis-
tribution functionsF; and F, respectively) linked by an inequality constraint, the
procedure is the following:

Algorithm cSRS

Fori=1...n

— Simulate an independent valu%) following F;
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— For an increase constraik{ < Xy, simulate an independent valmg following
F, truncated with the lower boumf);

— For a decrease constraidf > Xy, simulate an independent valu%) following
F, truncated with the upper bourx@;

End of algorithm

Another way to honor the inequality constraint would be tstfsimulatexy then
X{' (conditionally toX3).

In FigureDZ, we see the effect of an inequality constrainivieen two variables
in terms of bivariate plots. Of course, the introduction loé truncation during the
simulation creates statistical dependences beti@eand XJ. This correlation de-
pends orf; andF,, and in our example, the correlation coefficigiiX;, X,) is worth
31%. In Figure[lz, the one-dimensional marginal projectiofthe samples are also
shown. For the cSRS, the one-dimensional marginafodoes not correspond &
anymore but to a transformed distributiBfi(which depends of;).
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(a) Simple random sampling (SRS) (b) Constrained simpldaamsampling (cSRS)

Fig. 2 Comparison between Monte Carlo samples of size100 from two variableX = [Xy,X2] where
X1 ~[0,1] andXz ~ % [0,2]. The inequality constraint for cSRSX§ < X».

This problem becomes more dramatic when the input dimereieases and
when several sequential inequality constraints have toalisfied, as for example
if X <Xiyqfori=1,...,p—1andpis large. Figur(—ﬂS (a) shows an example of
cSRS ofp = 10 variables with such increasing constraints. Becaudeese¢quential
algorithm starting aXy, all the curves are concentrated near the upper bound cfirve o
the variables. FigurE 3 (b) clearly reveals that the sargpirthe first variablex; is
adequate with its uniform distribution, and that the sarmplhe following variables
(X2 to Xy0) progressively take place in the upper region of their vamerange.

Remark: To take into account the inequality constraintsirtyithe sampling, we
could use a rejection method instead of the sequential rdethoonsists in simulat-



ing each sample in a classical way, then keeping the samga¢isfying the inequality
constraints, and rejecting it otherwise. This operatioreigeated until n samples are
obtained. However, this method leads also to modificatidrtked one-dimensional
marginals. Moreover, when the number of inequality constsaincreases, the cost
of this method (in terms of simulation number to obtain n geaohples) becomes
intractable.

Xi
00 1.0 20 30 40 50 6.0

12345678 910 12345678 910
i i
@ (b)

Fig. 3 Constrained simple random samples of size 10 from p = 10 variablesX;, i = 1,...,10, with

X < Xy fori=1,...,9. The upper and the lower curves represent the bounds oftfaion ranges for
these 10 variables. (3 ~ %[0+ 52,2+ Z]; (b) X ~ 2 [0,1+ FL].

In summary, in some practical situations, users would liksimulate samples
which follow all one-dimensional marginals and which tak&iaccount some in-
equality constraints. The following section proposes sarchlgorithm.

2.3 Constrained Latin hypercube sampling

In order to follow all one-dimensional marginals, our saimgplprocedure uses LHS.
Our method, first proposed [n PetkIft (007), consists inglpermutations on an
initial LHS to enforce the desired monotonic constrainisibased on the fact that
permuting two values of a variable in a LHS does not break ti8 ktructure of the
sample|(Iman and Conoyer, 1982). An appropriate algorittens the starting LHS
to find the couples of values that violate the monotonic cairst Then the algorithm
finds and executes the combinations of permutations whieé teebe done to satisfy
the inequality constraint betweef and X1 for the n experiments. Details of the
algorithm are given in secticﬂu 3.

Figurel]l shows the work done on a couple of parameters on vamdhcreas-
ing constraint is enforced. In the bivariate plots, we se# the cLHS constraints
(the increasing inequality and the honoring of all one-disienal marginals) tend to




gather the sample points along the inequality frontier Kpe= X,. It appears that the
severity of the inequality constraint effects strongly eleg on the one-dimensional
marginal distribution$; andF, of the variables. The limit case is illustrated on Fig-
ure@ (b) whereX; andX; have the same one-dimensional marginal distributians
andF, (then the same upper and lower bounds). In such a case whéthéharea
of the bivariate plot is forbidden all the points are locatedthis frontier line. This
effect results of a too severe constraint and reveals the ofeg constraint intensity
measuremenf. Petdl¢t (2007) has defined this constragmisity measurement as the
ratio between the triangular forbidden ar&)(in the bivariate plot and the rectan-
gular area%g) of the domain defined by the upper and lower bounds of thabbas:
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Fig. 4 Comparisons between constrained Latin hypercube sampkigeon = 100 from two variables
X = [Xq,Xo] with X; ~ %[0, 1] and the inequality constraidy < Xa: (a) X2 ~ %[0,2]; (b) X2 ~ % [0,1.1].

The y measurement can be used if each of the input variable has gspper
and lower bounds, i.e. if the support of their distributiamétion is defined on a
bounded domain. In the general case of an inequality canstratweenX; andX;,
respectively defined ofy;, hj] and[b;, h;], we obtain

(hi —bj)? o
o StO6X) ] 2(hi—bi)(hj—bj) for the constraint X; < Xj ,
y(Xi, X)) = SR, X)) (hj — by)2 . 3)
2(h —by)(h; —by) for the constraint X; > X; .

The intensity constraint measurements for the Figﬂre 4scaigeworthy(Xq, Xo
25% for (a) andy(Xy,Xz) = 45.5% for (b). With some heuristic argumenfs, Pefelet
(007) has found a nearly linear link betwegix;, X;) and the correlation coefficient
p(Xi, X;) for y(Xi,X) € [0,0.3]:

P(Xi, X)) ~ 2.778y(X;, X;) -

—

(4)



As y is positive, the correlation coefficient will be always pgiova. For example,
this relation shows that if the inequality constraint is kemaller than 15%, the
correlation between the variables will be smaller than 40%.

For the same cases than in Fig[jre 3, Fidlire 5 shows the cLIgS-df0 variables
with sequential increasing constraints. At present, thheezicorrectly fill the varia-
tion ranges of all the variables. The constraint intensigasurements for Figuﬂa 5(a)
are worthy(X;, Xi+1) = 18.75% fori = 1,...,9. This value is rather suitable: correla-
tions between variables are smaller than 52% (value oldtahrenks to Eq.|]4)). For
Figure@ (a), the constraint intensity measurements iserfrlamy(X;, Xo) = 33.33%
to y(Xg, X10) = 45.45%.
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Fig. 5 Constrained Latin hypercube samples of size 10 from p = 10 variablesX;, i = 1,...,10, with

X < Xit1fori=1,...,9. The upper and the lower curves represent the bounds ofitfaion range for
these 10 variables. (3 ~ %[0+ 52,2+ Z]; (b) X ~ 2 [0,1+ FL].

When the upper and lower bounds of the variables are sirti@GLHS tends to
give homothetic translated trajectories, as shown by léiEu(b). In the limit case,
if all the X;’s have the same one-dimensional marginal distributidmsn(the same
upper and lower bounds), the obtained curves are paraletegularly spaced be-
tween the lower bound curve and the upper bound curve. Thisd®of the drawback
of our algorithm, caused by the imposed LHS structure. Megedhe feasability of
the cLHS depends on the bound values of the constrainedlesid-or example, for
the constraink < X;, the algorithm does not work i > h; or if b; > b;. From Eq.
(E), this implies that the constraint intensity measuretyé€d, X;) is upper bounded
by 0.5.



3 The constrained Latin hypercube sampling algorithm
3.1 Problem definition

The idea of the cLHS algorithm is based on the fact that pangutwo values of
a columann in a LHS leads to a new LHS. Our goal is to enforce the inequalit
constraint by realizing permutations)éf elements.

In the following, we explain the cLHS algorithm in the caseadtrict increasing
constraint between two variabl¥s andX, (with distribution functiond=; andF; re-
spectively). The developments for the strict decreasimgtraint case are exactly the
same, by inverting the inequalities sense. Moreover, thension of our algorithm to
non strict inequality constraints is straightforward.

For the increasing constraint case, we assume the follompgtheses:

— X = (Xg,X2) is defined on a bounded domai#i € R?. The support ofj for
j={1.2}is[bj,hj];
— The bounds are subject to the following inequalities:

b1 <by, andh; <h,. (5)

These inequalities seem natural: if we impose some inegrgasinstraint between
X1 andX;, we hope that the same increasing constraints exist for mhi@imal
and maximal bounds.

Let us define the matri€" = C(X[', X7) of sizen x n:

1o w1y m

X2 >X1 X2 >X1
n . . .
C"=(Cij)i_pnje1n= : - : , (6)
1X<2n) >Xg_1) o 1X<2n) >Xg_n)

where .y = 1 if x> yand lk.y = 0 otherwiseC" is called the compatibility matrix
betweenX]' andXJ. This matrix allows to identify which combinations of elente
of X' andXJ are incompatible, i.e. those whith a decreasing relatibverdfore, the
inequality constraint between the two samples is honordtitliagonal oC" is full
of 1.

For our cLHS algorithm, if we choose to lea§ unchanged and give the pos-
sibility to permute some elements ¥f', we define our final objective as getting a

sampleX,” such that
n
i;qi =n, (7)

with C' = (c-’ the compatibility matrix betweeX andX".

1j ) i=1.n,j=1.n

At present, it would be convenient to know if this objectivande achieved for
a specific samplX". In the next section, we define a criterion allowing to knot if
exists a combination of permutations which is able to erddhe constraint.
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3.2 Existence criterion

Let us define the sample vector

S"=(S)iz1n= (i Cij) - (8)
i=1.n

=1

S gives the number of elements ¥f' which satisfy the constraint With(zi). We
also define(S)i:l_n the ordered sample ¢f)i—1. n. To insure that we can obtain a
sampl@(é“ (by permutations of th¥J elements) satisfying the increasing constraint,
the following assertions have to be true:

— The smallest element o} have one or more than one smaller elementx{in
which is equivalent to say that m(iX}') > min(X{'), then to say tha$, > 1;

— TheitM-smallest element oK3 havei or more than smaller elements X[,
which is equivalent to say th& > i;

— ThentN-smallest element oKy haven or more tham smaller elements iiX{,
which is equivalent to say th&, > n;

From these assertions, we obtain the following result:
Proposition: If (X[',X7) is a LHS, the inequality
minf(& -+ &) = (1 )] =0 ©

is a necessary and sufficient condition to guarantee thaends of a sample}(

such that X', X,") satisfies the increasing constraint X Xp, where %" is obtained
from permutations of the elements df. X

Therefore, the first step of our methodology will be to tegt triterion. If equa-
tion (@) is not verified for a choseX" = (XI',XJ), a new sample foXJ (keeping
the LHS property forX") is created and the scan starts again. Our hypotheses on
the bounds ofX; and X, (Eq. ﬁS)) guarantee that a LHS satisfying the increasing
constraint exists.

3.3 The permutation algorithm

We start from an initial LHX" = (X', XJ"), with a compatibility matrixC, satisfy-
ing the existence criterior[l(9). We want to obtain the LKMS = (X{‘,Xé") (with a
compatibility matrixC’) satisfying the increasing constraint betwegrandXj. Our
objective is therefore to obtain the result of equat@;n (7).

Let us noteX] the reverse ordered sample ¥§. This vectorX{ contains the

elementS((l"l) > )?(12> > > i(ln). We put in the sample vectdf' a sequence of index:
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the indices inX[! of the X[ elements. Mathematically, it follows that

A =g (10)

Our permutation algorithm is based on the treatment ofXfieslements in a
sequential manner (because the constraint is more difficblé satisfied by the first
values ofX['). We describe the algorithm with the following four steps.

Algorithm cLHS:
1. Initialisation:C" =CMandB’ = (1 --- n).
2. Fori=1...n:
— We put in the vectoB the indices inXj of the elements compatible WiﬂéA”:

k=1
Forj=1...n
if ¢jp, = 1 thenBy =kandk=k+1

— We randomly choose an elementBrand put it inB.
— The indexB; corresponds to the one that will be permutedih We turn to

zero the lineB] in the compatibility matrixC™" (in order to block up the index
B)):

Forj=1...n: c’B,J.:O
I

3. The vectoB’ contains the indices that will be used to make the permurstio
X3. We obtain the new sample of the varialie

(Xé)i:l..n = (XZ)i:B’l..Bﬁ : (11)
4. Finally, the permutation matri€ " is calculated withx[' andXé” by equation[(6)
in order to test the equality of equati(ﬂ'n (7).
End of algorithm

The extension of the CLHS algorithm to the multivariate case (Xg,...,Xp)
with Xj; < Xj41 for j =1,...,p—1 is straightforward and is done in a sequential
maneer. We first simulate a LHS" = (X{,...,X). LeavingX{' unchanged, we se-
quentially build with the cLHS algorithm}“ from XJ-’El andXj'for j=2,...,p. At
each stepg, before applying the algorithm, the critericﬂ\ (9) Is testiédhis criterion
is not verified, a new LHS fo)(j“ is created, and so on until the criterion is verified.

3.4 Example

We propose a simple example with a sample of size6 and two variableX; and
X2 subject to a decreasing constraiit> X,. Points are uniformly sampled on the
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domain2” = [20,30] x [16,26] of (X1,X,). We simulate an initial LHS (Figulg 6 (a))
and obtain the following design matrices:

2398 2218 11101

26.91 20.45 111111

| 2652 .| 2377 . |111010
XT=12109|" %2=|1831|> MenC =(777111
2923 16.45 111111

2110 2549 011010

As the diagonal of this matrix has a null term, the equat@n’s('not fulfilled. Then,
the cLHS algorithm has to be applied in order to obtain a LH®&fyéng the con-
straint.

First, we test the existence criterion. We obt&h= (464663 andS" =
(34466 6. The existence criterion (E]](9)) is then fulfilled.

Second, we apply the algorithm and obtain the following tesu

2045
25.49

n | 2218
X' = 11831
2377

16.45

(12)

XP' has not been modified while elementsXf have been permuted to obtaig",
which is a sample satisfying the decreasing constrainteIO(gF samples could be
found, the choice made during the cLHS algorithm being ramd%jgureﬂs (b) shows
our final sampling result.

H N &
| 24 o) 24 e
N N
) )
22 N\ 22 <
1 £
® ®
20 20
@ O]
T s @ Twed W
. ) (6)
T T T T T T T T
22 24 26 28 2 24 26 28
X1 X1
(a) Initial LHS (b) Final LHS

Fig. 6 lllustration of the cLHS algorithmn(= 6) with a decreasing constraint between two uniformly-
distributed random variable$; and X, (y(X1,X2) = 18%). The red line corresponds to the frontier line
X1 = Xa.



13

4 An application case: welding thermomechanical models

The robust increase in computer power has tremendouslyilcoted to a growing
fad for welding simulation. The industrial requirements arore and more numer-
ous: supports to develop new processes, control of medilam@ding effects (in
particular, residual stresses and distortions), argumenhuclear safety analysis re-
ports, etc. Thus, through the use of high-performance ceenpand advanced mod-
els, numerical simulation is expected to become an impbttah for innovation in
welding engineering.

However, running a welding simulation model requires adargmber of inputs
- about 500 - including for example meshing inputs, bounday initial conditions
as well as material properties and process parameters garealages several outputs,
including spatial distributions of displacements anddeal stresses in the weldment.
In particular, among inputs, the determination of mateuiaperties is one of the key
problems of welding simulation. The features of materialgarties are that they are
dependent on temperature and that their full charactéizat very expensive, often
difficult or even sometimes impossible. In this context,dhabal sensitivity analyses
of the numerical welding simulation model allows to deterenivhich material prop-
erties are the most sensitive in a numerical welding sirarnand in which range of
temperaturg (Petelgt, 20d7; Petelet ¢tlal., PD06; Asseilj, 200D).

Let us show the application of our methodology on the rangsted| material.
Five input variables are the mechanical properties usetidyniodel: Young’s mod-
ulus, thermal computation coefficient, Poisson’s ratie]d/istrength and hardening
modulus. Because of their dependence on temperature, lid@asrequired to sam-
ple each material property at a discrete set of temperatiiesels are chosen from
20°C to 1100C. We obtain 35= 5 x 7 input variables, each following an uniform
distribution defined by its minimal and maximal bounds (tak®m the literature).
Moreover, some material properties used in this model aneotomically decreas-
ing as function of temperature. Therefore, the constrairath hypercube sampling
strategy, described in this paper, can be used to genesatieptht design. This strat-
egy allows our sampled variables to honor their uniform réfien defined by their
minimal and maximal bounds, that is to say sampling in thespda} bounds.

To illustrate this application, we present the samplingh&f Young's modulus.
Figure[J shows the result on this 7-dimensional variablectvfiollows a decreas-
ing constraint. These curves present three randomly selenaterials among the
800 created and the bounds of the domain. For the sensitiméyysis process, the
Young's modulus is represented by only 7 parameters (Assesil,. | 2009). However,
one should keep in mind that for the mechanical computatfencurve represents
truly the considered dependence of this modulus becausdgbathm uses interme-
diate values according to a piecewise linear interpolation

In conclusion, the cLHS algorithm has been succesfullyiadpb the welding
simulation and it has proven its efficiency to sample a nuiltiensional variable
taking under consideration its physical nature.
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Fig. 7 Example ofn = 3 samples of the Young’s modulus obtained by cLHS (red cirvyé®e upper and
the lower curves (in black) represent the bounds of the dofieaithesep = 7 variables.

5 Conclusion

In this paper, we have proposed a new algorithm (called cL&iBjving to obtain
samples of several variables constrained by some ineguelétions. This situation
can frequently arise in application cases while very fewksdnave been devoted
to this issue. We have shown the interest of this algorithrarinapplication case
involving welding simulation model.

The cLHS algorithm allows to satisfy the inequality consttavhile leaving un-
changed the one-dimensional marginals that we have deforeghth variable. In
order to honor these one-dimensional marginals, the LHs&déechnique has been
preferred. To our knowledge, this inequality constraimtigem has not been studied
for the LHS building issue.

The current cLHS algorithm has one main drawback. When timgnmail (respec-
tively maximal) bounds of the two constrained variables encioser, the space filling
properties of the sample points deteriorate: the samplepare gathered along the
inequality frontier line. The cLHS is therefore efficienttife bounds between the
variables are sufficiently distant. A constraint intensitgasurement, noticgd has
been defined in order to quantify this effect. Moreover, @dinrelation has been
proposed betweepand the correlation coefficient of the constrained varigbldis
allows to a priori know (from the variable bound values), #ffects of the inequality
constraint in terms of correlation of the simulated sample.

In a future work, it will be interesting to quantify this pr@menon by linking
a space filling measure (as the discrepancy) with the boulugésaMore generally,
if we want to suppress this undesired effect, the LHS franmkvaas to be left out.
A first idea would be to work with entropy-based designs byrojzing the entropy
on one-dimensional marginals. Developing design optitidraalgorithms under in-
equality constraints would be an interesting research way.

If more than two variables are under study, the cLHS algorith limited to in-
equality constraints defined in a sequential order. A complequality constraint
could involve more than two variables (eX4. < Xy + X3) or could be non sequential
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(e.0. X1 < X2 and X < Xg). If such situations are identified in specific application
cases, there is no doubt that some extensions of the cLH8thlpare possible.
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