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BOUNDED SYMBOLS AND REPRODUCING KERNEL THESIS FOR

TRUNCATED TOEPLITZ OPERATORS

ANTON BARANOV, ISABELLE CHALENDAR, EMMANUEL FRICAIN, JAVAD MASHREGHI,

AND DAN TIMOTIN

Abstract. Compressions of Toeplitz operators to coinvariant subspaces of H
2 are called

truncated Toeplitz operators. We study two questions related to these operators. The
first, raised by Sarason, is whether boundedness of the operator implies the existence of a
bounded symbol; the second is the reproducing kernel thesis. We show that in general the
answer to the first question is negative, and we exhibit some classes of spaces for which
the answers to both questions are positive.

1. Introduction

Truncated Toeplitz operators on model spaces have been formally introduced by Sarason

in [16], although special cases have long ago appeared in literature, most notably as model

operators for contractions with defect numbers one and their commutant. They represent

a natural analogue of the classical Toeplitz and Hankel operators on the Hardy space.

This is a new area of study, and it is remarkable that many natural questions remain still

unsolved. As a basic reference for their main properties, [16] is invaluable.

Thus, being given a model space KΘ (see Section 2 for precise definitions) and a function

ϕ ∈ L2, the truncated Toeplitz operator AΘ
ϕ is defined on a dense subspace of KΘ by the

compression to KΘ of multiplication by ϕ. The function ϕ is then called a symbol of the

operator, and it is never uniquely defined.

In particular, if ϕ ∈ L∞, then AΘ
ϕ is bounded. In view of well known facts about classical

Toeplitz and Hankel operators, it is natural to ask whether the converse is true, that is, if

a bounded truncated Toeplitz operator has necessarily a bounded symbol. This question

has already been posed in [16], where it is noticed that it is already nontrivial for rank

one operators. In the present paper we will provide a class of inner functions Θ for which

there exist on KΘ rank one truncated Toeplitz operators without bounded symbols. On
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the other hand, we obtain positive results for some simple model spaces. Therefore the

situation is quite different from the classical Toeplitz and Hankel operators.

The other natural question that we address is the reproducing kernel thesis for truncated

Toeplitz operators. Recall that an operator on a reproducing kernel Hilbert space is said

to satisfy the Reproducing Kernel Thesis (RKT) if its boundedness is determined by its

behaviour on the reproducing kernels. This property has been studied for several classes

of operators: Hankel operators on the Hardy space on the unit disc [4, 10, 18], Toeplitz

operators on the Paley–Wiener space [17], semicommutators of Toeplitz operators [13],

Hankel operators on the Bergman space [2], and Hankel operators on the Hardy space of

the bidisk [9, 14]. It appears thus natural to ask the corresponding question for truncated

Toeplitz operators. We will show that in this case it is more natural to suppose the

boundedness of the operator on the reproducing kernels as well as on a related “dual”

family and discuss its validity for certain model spaces.

The plan of the paper is the following. The next two sections contain preliminary

material concerning model spaces and truncated Toeplitz operators. Section 4 discusses

the main two problems we are concerned with: existence of a bounded symbols and the

reproducing kernel thesis. Some counterexamples are presented in Section 5; in particular,

Sarason’s question on the general existence of bounded symbols is answered in the negative.

Section 6 exhibits some classes of model spaces for which the answers to both questions are

positive. Finally, in Section 7 we present another class of well behaved truncated Toeplitz

operators.

2. Preliminaries

Recall that the Hardy space H2 of the unit disk D = {z ∈ C | |z| < 1} is the Hilbert

space of analytic functions f(z) =
∑

n≥0 anz
n defined in D, such that

∑
n≥0 |an|2 <∞. We

denote also H2
0 = zH2. Alternatively, H2 can be identified with a closed subspace of the

Lebesgue space L2 = L2(T) on the unit circle T, by associating with each analytic function

its radial limit. The algebra of bounded analytic functions on D is denoted by H∞. Any

ϕ ∈ H∞ acts as a multiplication operator on H2, that we will denote by Tϕ.

Evaluations at points λ ∈ D are bounded functionals on H2 and the corresponding repro-

ducing kernel is kλ(z) = 1
1−λ̄z

; thus, f(λ) = 〈f, kλ〉. If ϕ ∈ H∞, then kλ is an eigenvector

for T ∗
ϕ, and T ∗

ϕkλ = ϕ(λ)kλ. By normalizing kλ we obtain hλ = kλ

‖kλ‖
=
√

1 − |λ|2kλ.
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Suppose now Θ is an inner function. We define the corresponding coinvariant subspace

generated by Θ (also called model space) by the formula KΘ = H2 ⊖ΘH2; the orthogonal

projection onto KΘ is denoted by PΘ. It is well known (see [13]) that PΘ = P+ − ΘP+Θ̄,

where P+ is the Riesz projection from L2 onto H2. Since P+ acts boundedly on Lp,

1 < p <∞, this formula shows that PΘ can also be regarded as a bounded operator from

Lp into Kp
Θ = Hp ∩ ΘzHp, 1 < p <∞.

In KΘ the reproducing kernel for a point λ ∈ D is the function

(2.1) kΘ
λ (z) = PΘkλ =

1 − Θ(λ)Θ(z)

1 − λ̄z

and we denote by hΘ
λ the normalized reproducing kernel,

(2.2) hΘ
λ (z) =

√
1 − |λ|2

1 − |Θ(λ)|2k
Θ
λ (z).

Note that, according to (2.1), we have the orthogonal decomposition

(2.3) kλ = kΘ
λ + ΘΘ(λ)kλ.

We will use the antilinear isometry J : L2 → L2, given by J(f)(ζ) = ζ̄ f̄(ζ); it maps H2

into H2
− = L2 ⊖ H2 and conversely. More often will appear another antilinear isometry

(ω = ΘJ), whose main properties are summarized below.

Lemma 2.1. Define, for f ∈ L2, ω(f)(ζ) = ζ̄ f̄(ζ)Θ(ζ). Then:

(i) ω is antilinear, isometric, onto;

(ii) ω2 = Id;

(iii) ωPΘ = PΘω (and therefore KΘ reduces ω), ω(ΘH2) = H2
− and ω(H2

−) = ΘH2;

(iv) for all f, g ∈ L2, 〈ωf, ωg〉 = 〈g, f〉.

We define the difference quotient k̃Θ
λ = ω(kΘ

λ ) and h̃Θ
λ = ω(hΘ

λ ); thus

k̃Θ
λ (z) =

Θ(z) − Θ(λ)

z − λ
, h̃Θ

λ (z) =

√
1 − |λ|2

1 − |Θ(λ)|2
Θ(z) − Θ(λ)

z − λ

In the sequel we will use the following simple lemma.

Lemma 2.2. Suppose Θ1,Θ2 are two inner functions, f1 ∈ KΘ1
, f2 ∈ KΘ2

∩H∞. Then

f1f2, zf1f2 ∈ KΘ1Θ2
.
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Proof. Obviously zf1f2 ∈ H2. On the other side, f1 ∈ KΘ1
implies f1 = Θ1g1, with

g1 ∈ H2
−, and similarly f2 = Θ2g2, g2 ∈ H2

− ∩ L∞. Thus f1f2 ∈ Θ1Θ2z̄H
2
−. Therefore

zf1f2 ∈ H2 ∩ Θ1Θ2H
2
− = KΘ1Θ2

. The claim about f1f2 is an immediate consequence. �

Lemma 2.3. Suppose that θ and Θ are two inner functions such that θ3 divides zΘ. Then

we have the followings:

(a) Kθ2 ⊂ KΘ.

(b) θKθ ⊂ KΘ.

(c) If f ∈ H∞ ∩ θKθ and ϕ ∈ Kθ +Kθ, then the functions ϕf and ϕ̄f belong to KΘ.

Proof. Since θ3 divides zΘ, there exists an inner function θ1 such that zΘ = θ3θ1. In

particular it follows from this factorization that θ(0)θ1(0) = 0, which implies that θθ1H
2 ⊂

zH2.

(a): We have

Kθ2 = H2 ∩ θ2 zH2 = H2 ∩ ΘzΘθ2H2 = H2 ∩ Θ θθ1H2 ⊂ H2 ∩ Θ zH2 = KΘ,

because θθ1H
2 ⊂ zH2.

(b): using Kθ = H2 ∩ θ zH2, we have

θKθ = θH2 ∩ θ2 zH2 ⊂ H2 ∩ θ2 zH2 = Kθ2 ,

and it remains to apply (a).

(c): let f = θf1 and ϕ = ϕ1 + ϕ2, with f1 ∈ H∞ ∩Kθ and ϕ1, ϕ2 ∈ Kθ. Since ϕ2 ∈ Kθ,

we have ϕ2 = θz̄ϕ̃2, with ϕ̃2 ∈ Kθ, which implies that

ϕf = θf1(ϕ1 + ϕ2) = θf1ϕ1 + zf1ϕ̃2.

But it follows from Lemma 2.2 that zf1ϕ̃2 ∈ Kθ2 and by (a), we get that zf1ϕ̃2 ∈ KΘ. So

it remains to prove that θf1ϕ1 ∈ KΘ. First we have obviously θf1ϕ1 ∈ H2. Moreover for

every function h ∈ H2, we have

〈θf1ϕ1,Θh〉 = 〈zθf1ϕ1, zΘh〉 = 〈zθf1ϕ1, θ
3θ1h〉 = 〈zf1ϕ1, θ

2θ1h〉 = 0,

because using once more Lemma 2.2, we have zf1ϕ1 ∈ Kθ2. That proves that θf1ϕ1 ∈ KΘ.

�

Finally, it is useful to remember the connection with the “continuous” case. If u(w) =
w−i
w+i

, then u is a conformal homeomorphism of the Riemann sphere. It maps −i to ∞, ∞
to 1, R onto T and C+ to D (here C+ = {z ∈ C : Im z > 0}).
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The operator

(Uf)(t) =
1√

π(t+ i)
f(u(t))

maps L2(T) unitarily onto L2(R) and H2 unitarily onto H2(C+), the Hardy space of the

upper half-plane. The corresponding transformation for functions in L∞ is

(2.4) Ũ(ϕ) = ϕ ◦ u;

it maps L∞(T) isometrically onto L∞(R), H∞ isometrically onto H∞(C+) and inner func-

tions in D into inner functions in C+. Now if Θ is an inner function in D, we have

UKΘ = KΘ, where KΘ = H2(C+) ⊖ ΘH2(C+) and Θ = Θ ◦ u. Moreover

(2.5) UhΘ
λ = cµh

Θ

µ and U h̃Θ
λ = cµh̃

Θ

µ ,

where µ = u−1(λ), cµ = µ̄−i
|µ+i|

is a constant of modulus one and

hΘ

µ (ω) =
i√
π

√
Imµ

1 − |Θ(µ)|2
1 − Θ(µ)Θ(ω)

ω − µ̄
, ω ∈ C+,

is the normalized reproducing kernel for KΘ and

h̃Θ

µ (ω) =
1

i
√
π

√
Imµ

1 − |Θ(µ)|2
Θ(ω) −Θ(µ)

ω − µ
, ω ∈ C+,

is the normalized difference quotient in KΘ.

3. Truncated Toeplitz operators

In [16], D. Sarason studied the class of truncated Toeplitz operators which are defined as

the compression of Toeplitz operators to coinvariant subspaces of H2.

Let us begin with a few words about usual multiplication operators and their cognates,

when the symbol is in L2. If ϕ ∈ L2, then the formula Mϕf = ϕf , f ∈ L∞, gives a

densely defined operator. It is bounded if and only if ϕ is essentially bounded, and then

‖Mϕ‖ = ‖ϕ‖∞.

Toeplitz and Hankel operators with symbol ϕ are defined by the formulas Tϕf = P+ϕf

and Hϕf = P−ϕf , where we suppose that f ∈ H∞ and ϕ ∈ L2 and P− = I − P+ is the

orthogonal projection onto H2
−. The operators Tϕ and Hϕ are therefore defined on a dense

domain in H2; they take values in H2 and H2
− respectively. It is well-known that Tϕ is



6 A. BARANOV, I. CHALENDAR, E. FRICAIN, J. MASHREGHI, AND D. TIMOTIN

bounded if and only if ϕ ∈ L∞ (and ‖ϕ‖∞ = ‖Tϕ‖), while Hϕ is bounded if and only if

P−ϕ ∈ BMO (and ‖ϕ‖BMO is equivalent to ‖Hϕ‖). Also, we have

(3.1) T ∗
ϕ = Tϕ̄, H∗

ϕ = P+Mϕ̄P−.

In [16], D. Sarason defines an analogous operator on KΘ. Suppose ϕ ∈ L2; the truncated

Toeplitz operator AΘ
ϕ will in general be a densely defined, possibly unbounded, operator on

KΘ. Its domain is KΘ ∩H∞, on which it acts by the formula

AΘ
ϕ (f) = PΘϕf.

In particular, KΘ ∩H∞ contains all reproducing kernels kΘ
λ and their linear combinations,

and is therefore dense in KΘ.

A useful formula is

(3.2) ωAΘ
ϕω = AΘ

ϕ̄ = (AΘ
ϕ )∗.

We call ϕ a symbol of the operator AΘ
ϕ . It is not unique; in [16], it is shown that AΘ

ϕ = 0

if and only if ϕ ∈ ΘH2 + ΘH2. Let us denote SΘ = L2 ⊖ (ΘH2 + ΘH2). Two spaces that

contain SΘ up to a subspace of dimension at most 1 admit a direct description. First,

since

L2 = ΘH2 ⊕ ΘH2
0 ⊕KΘ ⊕ z̄KΘ,

it follows that SΘ ⊂ KΘ ⊕ z̄KΘ; more precisely, if QΘ is the orthogonal projection onto

KΘ ⊕ z̄KΘ then

(3.3) KΘ ⊕ z̄KΘ = SΘ + CQΘ(Θ̄).

Secondly (see [16, Section 3]), SΘ ⊂ KΘ + KΘ. Each truncated Toeplitz operator has

a symbol ϕ of the form ϕ = ϕ+ + ϕ− with ϕ± ∈ KΘ; any other such decomposition

corresponds to ϕ+ + ckΘ
0 , ϕ− − c̄kΘ

0 for some c ∈ C. In particular, ϕ± are uniquely

determined if we fix (arbitrarily) the value of one of them in a point of D.

Hankel operators have a unique symbol in H2
−, and this can be recaptured simply from

the operator: it is the image of the constant function 1. It is interesting to obtain a similar

direct formula for the symbol of a truncated Toeplitz operator. As noted above, this is

unique if we assume, for instance that ϕ = ϕ+ + ϕ−, with ϕ± ∈ KΘ and ϕ−(0) = 0. We
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can then recapture ϕ from its action on kΘ
λ and k̃Θ

λ . Indeed, one can check that

AΘ
ϕk

Θ
0 = ϕ+ − Θ(0)ϕ−,

AΘ
ϕ k̃

Θ
0 = ω

(
ϕ− + ϕ+(0) − Θ(0)ϕ+

)
.

(3.4)

From the first equation we obtain ϕ+(0) = 〈AΘ
ϕk

Θ
0 , k

Θ
0 〉. Then (3.4) imply, for any λ ∈ D,

ϕ+(λ) − Θ(0)Θ(λ)ϕ−(λ) = 〈AΘ
ϕk

Θ
0 , k

Θ
λ 〉,

ϕ−(λ) − Θ(0)Θ(λ)ϕ+(λ) = 〈k̃Θ
λ , A

Θ
ϕ k̃

Θ
0 〉 − 〈AΘ

ϕk
Θ
0 , k

Θ
0 〉.

This is a linear system in ϕ+(λ) and ϕ−(λ), whose determinant is 1 − |Θ(0)Θ(λ)|2 > 0;

therefore, ϕ± can be made explicit in terms of the products in the right hand side.

Note, however, that AΘ
ϕ is completely determined by its action on reproducing kernels,

so one should be able to recapture the values of the symbol only from AΘ
ϕk

Θ
λ . The precise

formulas are more complicated, but we will have the occasion to use them below, and so

we include the relevant computations.

Fix a point µ ∈ D where Θ(µ) 6= 0. Choose the unique decomposition ϕ = ϕ+ +ϕ− with

ϕ−(µ) = 0, and denote ψ+ = ω(ϕ+).

A careful repeated application of the formula PΘ = P+ − ΘP+Θ̄ yields

ω(AΘ
ϕ (kΘ

λ )) = (I − λS∗)−1ψ+ + ϕ−(λ)(I − λS∗)−1S∗Θ − Θ(λ)(I − λS∗)−1S∗ϕ−,

or

(3.5) (I − λS∗)ω(AΘ
ϕ (kΘ

λ )) = ψ+ + ϕ−(λ)S∗Θ − Θ(λ)S∗ϕ−.

If we take λ = µ, we obtain (remembering that ϕ−(µ) = 0)

(3.6) ψ+ = (I − µS∗)ω(AΘ
ϕ (kΘ

µ )) + Θ(µ)S∗ϕ−.

Denote, for simplicity,

Fλ,µ = (I − λS∗)ω(AΘ
ϕ (kΘ

λ )) − (I − µS∗)ω(AΘ
ϕ (kΘ

µ ));

then plugging (3.6) into (3.5) yields

ϕ−(λ)S∗Θ + (Θ(µ) − Θ(λ))S∗ϕ− = Fλ,µ.

It can easily be checked that (S − µ)(I − µS∗)−1S∗f = f − f(µ) for all f ∈ H2; therefore,

applying (S − µ)(I − µS∗)−1 and remembering that ϕ−(µ) = 0, we obtain

(3.7) ϕ−(λ)(Θ − Θ(µ)) + (Θ(µ) − Θ(λ))ϕ− = (S − µ)(I − µS∗)−1Fλ,µ.
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Finally, we take the scalar product of both sides with kΘ
µ and use Θ ⊥ KΘ, PΘ1 = 1−Θ(0)Θ,

and again ϕ−(µ) = 0. Therefore

−ϕ−(λ)Θ(µ)(1 − Θ(0)Θ(µ)) = 〈(S − µ)(I − µS∗)−1Fλ,µ, k
Θ
µ 〉,

or

(3.8) ϕ−(λ) =
〈(S − µ)(I − µS∗)−1Fλ,µ, k

Θ
µ 〉

Θ(µ)(Θ(0)Θ(µ) − 1)
.

This formula gives the value of ϕ−(λ) for all λ ∈ D. We have thus proved the following

result.

Proposition 3.1. Suppose ϕ = ϕ+ + ϕ− with ϕ± ∈ KΘ and ϕ−(0) = 0. Then ϕ−(λ) is

determined by (3.8), while ϕ+ = ω(ψ+), where ψ+ is given by (3.6).

We will denote by T (KΘ) the Banach space of all bounded truncated Toeplitz operators

on KΘ.

The following proposition yields a relation between truncated operators and usual Hankel

operators.

Proposition 3.2. With respect to the decompositionsH2
− = Θ̄KΘ⊕Θ̄H2

−, H2 = KΘ⊕ΘH2,

the operator H∗
Θ̄
HΘ̄ϕH

∗
Θ̄

: H2
− → H2 has the matrix

(3.9)

(
AΘ
ϕMΘ 0

0 0

)

Proof. If f ∈ Θ̄H2
−, then H∗

Θ̄
f = 0. If f ∈ Θ̄KΘ, then, according to (3.1), H∗

Θ̄
f = Θf ∈ KΘ.

Since PΘ = P+MΘP−MΘ̄, it follows that, for f ∈ KΘ,

AΘ
ϕf = PΘMϕf = P+MΘP−MΘ̄Mϕf = H∗

Θ̄H
∗
Θ̄f,

and therefore, if f ∈ Θ̄KΘ, then AΘ
ϕΘf = H∗

Θ̄
HΘ̄ϕH

∗
Θ̄
f as required. �

The non-zero entry in (3.9) consists in the isometry MΘ : Θ̄KΘ → KΘ, followed by

AΘ
ϕ acting on KΘ. There is therefore a close connection between properties of AΘ

ϕ and

properties of the corresponding product of three Hankel operators.

Remark 3.3. Truncated Toeplitz operators can be defined also on model spaces included

in H2(C+), that is, KΘ = H2(C+) ⊖ ΘH2(C+) for Θ an inner function on C+. We

start then with a symbol ϕ ∈ (t + i)L2(R) (which contains L∞(R)) and define (for f
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in KΘ ∩ (z + i)−1H∞(C+), a dense subspace of KΘ) the truncated Toeplitz operator

AΘ

ϕf = PKΘ
ϕf . Let A be a linear operator on KΘ. Then A is a truncated Toeplitz

operator on KΘ if and only if A = U∗AU is a truncated Toeplitz operator on KΘ, and

ϕ is a symbol for A if and only if ψ := ϕ ◦ u−1 is a symbol for A. It follows that A

is bounded (or has a bounded symbol) if and only if A is bounded (respectively, has a

bounded symbol). Moreover we easily deduce from (2.5) that

‖AΘ

ϕhΘ

µ‖2 = ‖AΘ
ψh

Θ
λ ‖2 and ‖AΘ

ϕ h̃Θ

µ‖2 = ‖AΘ
ψ h̃

Θ
λ ‖2,

for every µ ∈ C+ and λ = u(µ). Finally, AΘ

ϕ = 0 if and only if ϕ ∈ (t+i)
(
ΘH2(C+) ⊕ΘH2(C+)

)

(note that the sum is in this case orthogonal, since H2(C+) ⊥ H2(C+)).

4. Existence of bounded symbols and the reproducing kernel thesis

A truncated Toeplitz operator is bounded if it has a symbol in L∞. In [16], Sarason

asked whether the converse is true.

Question 1. Does every bounded truncated Toeplitz operator on KΘ possess an L∞ symbol?

One should expect the answer to depend on the function Θ, and indeed we show below

that it is the case. Note also that from the open mapping theorem it follows that, if, for a

certain inner function Θ any operator in T (KΘ) has a bounded symbol, then there exists

a constant C such that for any A ∈ T (KΘ) one can find ϕ ∈ L∞ with ‖ϕ‖∞ ≤ C‖A‖, such

that A = AΘ
ϕ .

A second natural question that may be asked about truncated Toeplitz operators is the

reproducing kernel thesis (RKT). The functions hΘ
λ are in L∞ for all λ ∈ D, so we apply

them AΘ
ϕ for any λ ∈ D; if AΘ

ϕ is bounded then obviously ‖AΘ
ϕh

Θ
λ ‖ ≤ ‖AΘ

ϕ‖. Define then

for T ∈ L(KΘ)

(4.1) ρ(T ) := sup
λ∈D

‖ThΘ
λ ‖.

The following question is then natural:

Question 2. (Reproducing kernel thesis for truncated Toeplitz operators): let Θ be an

inner function and ϕ ∈ L2. Assume that ρ(AΘ
ϕ ) < +∞. Is Aϕ bounded on KΘ?

We will see in Section 5 that the answer to this question is in general negative. As we

will see below, it is more natural to restate the RKT by including in the hypothesis also
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the functions h̃Θ
λ . Define for T ∈ L(KΘ)

ρ′(T ) = max{sup
λ∈D

‖ThΘ
λ ‖, sup

λ∈D

‖T h̃Θ
λ ‖}.

Question 3. Let Θ be an inner function and ϕ ∈ L2. Assume that ρ′(AΘ
ϕ ) < ∞. Is Aϕ

bounded on KΘ?

Now we will see that it is easy to deal with analytic or antianalytic symbols. The next

proposition is a straightforward consequence of Bonsall’s theorem [4] and the commutant

lifting theorem. A part of this proposition (more precisely the equivalence between (i) and

(ii)) has already been noticed in [16].

Proposition 4.1. Let ϕ ∈ H2 and let AΘ
ϕ be a truncated Toeplitz operator. Then the

following assertions are equivalent:

(i) AΘ
ϕ has a bounded symbol.

(ii) AΘ
ϕ is bounded.

(iii) ρ(AΘ
ϕ ) < +∞.

More precisely there exists a constant C > 0 such that any truncated Toeplitz operator AΘ
ϕ

has a bounded symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρ(AΘ
ϕ ).

Proof. It is immediate that (i) =⇒ (ii) =⇒ (iii). The implication (ii) =⇒ (i) has already

noted in [16]; indeed if ϕ ∈ H2 and AΘ
ϕ is bounded, then AΘ

ϕ commutes with SΘ := AΘ
z and

then, by a corollary of the commutant lifting theorem, AΘ
ϕ has an H∞ symbol with norm

equal to the norm of AΘ
ϕ .

So it remains to prove that there exists a constant C > 0 such that ‖AΘ
ϕ‖ ≤ Cρ(AΘ

ϕ ). If

f ∈ KΘ ∩H∞, then ϕf ∈ H2. Therefore PΘ(ϕf) = ΘP−(Θ̄ϕf), or, in other words,

AΘ
ϕ (f) = ΘHΘ̄ϕf.

On the other hand, H2 ⊖ KΘ ⊂ kerHΘ̄ϕ. Therefore, with respect to the decompositions

H2 = KΘ ⊕ ΘH2, H2
− = Θ̄KΘ ⊕ Θ̄H2

−, one can write

(4.2) HΘ̄ϕ =

(
Θ̄AΘ

ϕ 0

0 0

)
.

It follows that AΘ
ϕ is bounded if and only if HΘ̄ϕ is. By Bonsall’s Theorem ([4]), there exists

a universal constant C (independent of ϕ) such that the boundedness of HΘ̄ϕ is equivalent
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to supλ∈D
‖HΘ̄ϕhλ‖ <∞, and

‖HΘ̄ϕ‖ ≤ C sup
λ∈D

‖HΘ̄ϕhλ‖.

But, again by (4.2),

HΘ̄ϕhλ = Θ̄AΘ
ϕPΘhλ = Θ̄(1 − |Θ(λ)|2)1/2AΘ

ϕh
Θ
λ ,

and thus supλ∈D
‖HΘ̄ϕhλ‖ ≤ supλ∈D

‖AΘ
ϕh

Θ
λ ‖. The proposition is proved. �

A similar result is valid for antianalytic symbols.

Proposition 4.2. Let ϕ ∈ H2 and let AΘ
ϕ be a truncated Toeplitz operator. Then the

following assertions are equivalent:

(i) AΘ
ϕ has a bounded symbol.

(ii) AΘ
ϕ is bounded.

(iii) supλ∈D
‖AΘ

ϕ h̃
Θ
λ ‖ < +∞.

More precisely there exists a constant C > 0 such that any truncated Toeplitz operator AΘ
ϕ

has a bounded symbol ϕ0 with ‖ϕ0‖∞ ≤ C supλ∈D
‖AΘ

ϕ h̃
Θ
λ ‖.

Proof. Suppose ϕ ∈ H2. Since ‖AΘ
ϕ‖ = ‖(AΘ

ϕ )∗‖ = ‖AΘ
ϕ̄‖, and ϕ̄ ∈ H2, we may apply

Proposition 4.1 to AΘ
ϕ̄ because by (3.2), we have

sup
λ∈D

‖AΘ
ϕ̄h

Θ
λ ‖ = sup

λ∈D

‖AΘ
ϕωh

Θ
λ ‖ = sup

λ∈D

‖AΘ
ϕ h̃

Θ
λ ‖.

�

As we have seen, if ϕ is bounded, then obviously the truncated Toeplitz operator AΘ
ϕ is

bounded. We will see now that one can get a slightly more general result. It involves the

so-called Carleson curves associated with an inner function. Recall that if Θ is an inner

function and α ∈ (0, 1), then the system of Carleson curves Γα associated to Θ and α is

the countable union of closed simple and rectifiable curves in clos D such that

(1) the interior of curves in Γα are pairwise disjoints.

(2) there is a constant η(α) > 0 such that for every z ∈ Γα ∩ D, we have

η(α) ≤ |Θ(z)| ≤ α.(4.3)

(3) arclength |dz| on Γα is a Carleson measure.
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(4) for every function ϕ ∈ H1, we have
∫

T

ϕ(z)

Θ(z)
dz =

∫

Γα

ϕ(z)

Θ(z)
dz(4.4)

We will use this construction of curves to give a sufficient condition on the symbol ϕ ∈ L2

which gives a bounded truncated Toeplitz operator (with a bounded symbol).

Proposition 4.3. Let ϕ ∈ H2 and assume that |ϕ||dz| is a Carleson measure on Γα. Then

AΘ
ϕ is a bounded on KΘ and it has a bounded symbol.

Proof. Let f, g ∈ KΘ and assume further that f ∈ H∞. Then we have

〈AΘ
ϕf, g〉 = 〈ϕf, g〉 =

∫

T

ϕ(z)f(z)g(z)dz.

Since g ∈ KΘ, we can write (on T ), g(z) = z̄h(z)Θ(z), with h ∈ KΘ. Therefore

〈AΘ
ϕf, g〉 =

∫

T

zϕ(z)f(z)h(z)

Θ(z)
dz.

But zf(z)ϕ(z)h(z) ∈ H1 and using (4.4), we can write

〈AΘ
ϕf, g〉 =

∫

Γα

zϕ(z)f(z)h(z)

Θ(z)
dz.

Therefore, according to (4.3), we have

|〈AΘ
ϕf, g〉| ≤

∫

Γα

|zϕ(z)f(z)h(z)|
|Θ(z)| |dz| ≤ 1

η(α)

∫

Γα

|f(z)||h(z)||ϕ||dz|.

Hence by Cauchy-Schwarz’s inequality and using the fact that |ϕ||dz| is a Carleson measure

on Γα, we have

|〈AΘ
ϕf, g〉| ≤ C

1

η(α)
‖f‖2‖g‖2.

Finally, we get that AΘ
ϕ is bounded. Since ϕ is analytic it follows from Proposition 4.1 that

AΘ
ϕ has a bounded symbol. �

Corollary 4.4. Let ϕ = ϕ1+ϕ2, with ϕi ∈ H2, i = 1, 2. Assume that |ϕi||dz| are Carleson

measures on Γα for i = 1, 2. Then AΘ
ϕ is bounded and has a bounded symbol.

Proof. Using Proposition 4.3, we get immediately that AΘ
ϕi

is bounded and has a bounded

symbol ϕ̃i, for i = 1, 2. Therefore, AΘ
ϕ2

= (AΘ
ϕ2

)∗ is also bounded and has a bounded

symbol ϕ̃2. Hence we get that AΘ
ϕ = AΘ

ϕ1
+ AΘ

ϕ2
is bounded and it has a bounded symbol,

say ϕ̃1 + ϕ̃2. �
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Remark 4.5. According to (3), we know that |dz| is a Carleson measure on Γα. Therefore,

Proposition 4.3 can be applied if ϕ is bounded on Γα and Corollary 4.4 can be applied if

ϕ1, ϕ2 are bounded on Γα.

In Section 5, we will show that the answer to Question 1 and 2 may be negative. Question

3 remains in general open. In Section 6, we will give some examples of spaces KΘ on which

the answers to Questions 1 and 3 are positive.

5. Counterexamples

It is known [1] that, if Θ has an angular derivative in the sense of Caratheodory at

ζ ∈ T, then evaluation in ζ is continuous on KΘ, and the corresponding reproducing kernel

is kΘ
ζ ∈ KΘ. In [16, Section 5] it is shown that in this case the selfadjoint operator kΘ

ζ ⊗kΘ
ζ

is a truncated Toeplitz operator.

Lemma 5.1. If Θ has an angular derivative in the sense of Caratheodory at ζ ∈ T, then

ϕζ = Θz̄kΘ2

ζ ∈ KΘ ⊕ z̄KΘ is a symbol for kΘ
ζ ⊗ kΘ

ζ .

Proof. Note first that if Θ has an angular derivative in the sense of Caratheodory at ζ ,

then the same is true about Θ2. Then kΘ2

ζ ∈ KΘ2, whence it follows easily that Θz̄kΘ2

ζ ∈
KΘ ⊕ z̄KΘ.

Take g, h ∈ KΘ, and, moreover, g ∈ L∞. Then

〈AΘ
ϕζ
g, h〉 = 〈ϕζg, h〉 =

∫
Θz̄kΘ2

ζ gh̄.

But Θz̄h̄ = ω(h) ∈ KΘ, g ∈ KΘ ∩ L∞, and so gΘz̄h̄ ∈ KΘ2 . Therefore
∫

Θz̄kΘ2

ζ gh̄ = 〈gΘz̄h̄, kΘ2

ζ 〉 = g(ζ)Θ(ζ)ζh(ζ) = 〈g, kΘ
ζ 〉〈ω(h), kΘ

ζ 〉

= 〈g, kΘ
ζ 〉〈h, ω(kΘ

ζ )〉 = 〈g, kΘ
ζ 〉〈h, kΘ

ζ 〉 = 〈(kΘ
ζ ⊗ kΘ

ζ )g, h〉,

where we have used the fact that ω(kΘ
ζ ) = kΘ

ζ . �

The construction of bounded truncated Toeplitz operators that have no bounded symbol

is based on the next lemma.

Lemma 5.2. Suppose ϕ ∈ KΘ ⊕ z̄KΘ and AΘ
ϕ is bounded. If, for some p > 2, ϕ 6∈ Lp,

then AΘ
ϕ has no symbol in Lp. In particular, AΘ

ϕ has no symbol in L∞.
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Proof. Remember that QΘ is the orthogonal projection from L2 to KΘ ⊕ z̄KΘ. Since the

Riesz projection is bounded on Lp for p > 1, the same is true about QΘ.

Suppose AΘ
ϕ = AΘ

ψ with ψ ∈ Lp. According to (3.3), QΘ(ϕ− ψ) = aQΘ(Θ̄). Thus

ϕ = QΘϕ = QΘψ + aQΘ(Θ̄) ∈ Lp,

which contradicts the hypothesis. �

Lemmas 5.1 and 5.2 imply then a sufficient condition for the existence of the desired

counterexamples.

Theorem 5.3. Suppose that Θ is an inner function which has an angular derivative in

ζ ∈ T, but such that kΘ
ζ 6∈ Lp for some p > 2. Then kΘ

ζ ⊗kΘ
ζ is a bounded Toeplitz operator

with no bounded symbol.

Proof. Apply Lemmas 5.1 and 5.2 to ϕ = ϕζ = Θz̄kΘ2

ζ (note that kΘ2

ζ ∈ Lp if and only if

kΘ
ζ ∈ Lp). �

It remains to give concrete examples for the condition in the statement of the theorem.

In [1] and [7] precise conditions are given for the inclusion of kΘ
ζ into Lp (for p > 1); namely,

if (ak) are the zeros of Θ in D and σ is the singular measure on T corresponding to the

singular part of Θ, then kΘ
ζ ∈ Lp if and only if

(5.1)
∑

k

1 − |ak|
|ζ − ak|p

+

∫

T

dσ(z)

|ζ − z|p <∞.

Thus the condition in the statement of the theorem is satisfied for a point ζ ∈ T such

that (5.1) is true for p = 2 but not for some strictly larger value of p. It is now easy to

give concrete examples, as, for instance:

(1) a Blaschke product with zeros ak accumulating to the point 1, and such that

∑

k

1 − |ak|
|1 − ak|2

<∞,
∑

k

1 − |ak|
|1 − ak|p

= ∞ for some p > 2;

(2) a singular function σ =
∑

k ckδζk with
∑

k ck <∞, ζk → 1, and
∑

k

ck
|1 − ζk|2

<∞,
∑

k

ck
|1 − ζk|p

= ∞ for some p > 2.

As discussed above, the question of the existence of bounded symbols for bounded trun-

cated Toeplitz operators has been asked in [16], in general as well as specifically for rank

one operators of type kζ ⊗ kζ. Thus the counterexamples above answer also that question.
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A related question raised in [16] remains open. Let µ be a positive measure on the closed

unit disk clos D such that the support of the singular part of µ is contained in T \ σ(Θ),

where σ(Θ) is the spectrum of the inner function Θ. Then we say that µ is a Carleson

measure for K2
Θ if there is a constant c > 0 such that

(5.2)

∫

T

|f |2 dµ ≤ c‖f‖2
2, f ∈ K2

Θ.

It is easy to see (and had already been noticed in [6]) that (5.2) is equivalent to the

boundedness of the operator AΘ
µ defined by the formula

〈AΘ
µ f, g〉 =

∫

T

f ḡ dµ,

and it is shown in [16] that AΘ
µ is a truncated Toeplitz operator. The natural question

whether every operator in T (KΘ) is of this form is not answered by our counterexample,

since (as already noticed in [16]) if Θ has an angular derivative in the sense of Caratheodory

at ζ ∈ T, then δζ is a Carleson measure for KΘ and kΘ
ζ ⊗ kΘ

ζ = Aδzeta.

We pass now to the reproducing kernel thesis and give the negative answer to Question

2. The next example shows why in general it is necessary to consider ρ′ rather than ρ.

Example 5.4. Suppose Θ is a singular inner function and s ∈ [0, 1). Then

AΘ
Θ̄sk

Θ
λ = PΘ

(
Θ̄s − Θ(λ)Θ1−s

1 − λ̄z

)

= PΘ

(
Θ̄s − Θ(λ)

s
+ Θ(λ)

s(
1 − Θ(λ)

1−s
Θ1−s

)

1 − λ̄z

)

= PΘ

(
z̄
Θ̄s − Θs(λ)

z̄ − λ̄

)
+ Θ(λ)

s
PΘ

(
1 − Θ(λ)

1−s
Θ1−s

1 − λ̄z

)
.

The first term is in z̄H2, which is orthogonal to KΘ, while the second is contained in

KΘ1−s ⊂ KΘ. Therefore we have

AΘ
Θ̄sk

Θ
λ = Θ(λ)

s1 − Θ(λ)
1−s

Θ1−s

1 − λ̄z

and

‖AΘ
Θ̄sk

Θ
λ ‖2 = |Θ(λ)|2s1 − |Θ(λ)|2−2s

1 − |λ|2 , ‖AΘ
Θ̄sh

Θ
λ ‖2 =

|Θ(λ)|2s(1 − |Θ(λ)|2−2s)

1 − |Θ(λ)|2 .
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It is easy to see that supx∈[0,1)
ys−y
1−y

≤ 1 − s→ 0 when s→ 1, and therefore

sup
λ∈D

‖AΘ
Θ̄sh

Θ
λ ‖2 → 0 for s→ 1.

On the other hand, ΘsKΘ1−s ⊂ KΘ and Θ̄s(ΘsKΘ1−s) = KΘ1−s ⊂ KΘ; therefore AΘ
Θ̄s acts

isometrically on ΘsKΘ1−s , so it has norm 1. Thus there is no constant M such that

‖AΘ
ϕ‖ ≤M sup

λ∈D

ρ(AΘ
ϕ )

for all ϕ.

It seems natural to deduce that in the previous example we may actually have a truncated

Toeplitz operator which is uniformly bounded on reproducing kernels but not bounded.

This is indeed true, by an abstract argument based on Proposition 3.1. For an inner

function Θ and any (not necessarily bounded) linear operator T on KΘ whose domain

contains all reproducing kernels, define

ρ(T ) := sup
λ∈D

‖ThΘ
λ ‖.

Obviously ρ is a norm, and ρ(T ) ≤ ‖T‖.

Proposition 5.5. Suppose that for any (not necessarily bounded) truncated Toeplitz oper-

ator A on KΘ the inequality ρ(A) <∞ implies A bounded. Then T (KΘ) is complete with

respect to ρ, and ρ is equivalent to the operator norm on T (KΘ).

Proof. Fix µ ∈ D such that Θ(µ) 6= 0. If a sequence AΘ
ϕn

is ρ-Cauchy, then it is in particular

convergent on reproducing kernels. Suppose all ϕn are written as ϕn = ϕn,+ + ϕn,−, with

ϕn,+, ϕn,− ∈ KΘ, and ϕn,−(µ) = 0. It follows from Proposition 3.1 that ϕn(λ) is convergent

for any λ ∈ D to a value that we will denote ϕ(λ); by Fatou’s lemma, ϕ ∈ L2. If we

consider the truncated Toeplitz operator AΘ
ϕ , then AΘ

ϕn
kΘ
λ → AΘ

ϕk
Θ
λ for all λ ∈ D, whence

ρ(AΘ
ϕ ) <∞. It is easy to see then that AΘ

ϕn
→ AΘ

ϕ in the ρ-norm.

Thus T (KΘ) is indeed complete with respect to the ρ-norm. The equivalence of the

norms is then a consequence of the open mapping theorem. �

Proposition 5.5 implies that, if Θ is a singular inner function, then there exist truncated

Toeplitz operators with ρ(T ) finite, but T unbounded.
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6. Positive results

There are essentially two cases in which one can give positive answers to Questions 1

and 3. There are similarities between them: in both one obtains a convenient decomposition

of the symbol in three parts: one analytic, one coanalytic, and one that is neither analytic

nor coanalytic, but very well controlled.

6.1. A general result. As we have seen in Proposition 4.1 and 4.2, the answers to Ques-

tions 1 and 3. are positive for classes of truncated Toeplitz operators corresponding to

analytic and co-analytic symbols. We complete these propositions with a different bound-

edness result, which covers certain cases when the symbol is neither analytic nor coanalytic.

The proof is based on an idea of [8].

Theorem 6.1. Suppose θ is an inner function such that θ3 divides zΘ and Θ divides θ4.

If ϕ ∈ Kθ +Kθ then ‖ϕ‖∞ ≤ 2ρ(AΘ
ϕ ).

Proof. Using Lemma 2.3, if f ∈ L∞ ∩ θKθ, then f ∈ KΘ and ϕ̄f ∈ KΘ; thus AΘ
ϕ̄f = ϕ̄f .

If we write f = θf1, ϕ1 = θϕ̄, then ϕ1 ∈ H2, f1 ∈ Kθ, and ϕ1f1 = ϕ̄f = AΘ
ϕ̄f ∈ KΘ.

Therefore

|ϕ1(λ)f1(λ)| = |〈ϕ1f1, k
Θ
λ 〉| = |〈θf1, ϕk

Θ
λ 〉| = |〈θf1, A

Θ
ϕk

Θ
λ 〉|

≤ ‖f1‖‖AΘ
ϕk

Θ
λ ‖ ≤ ‖f1‖‖kΘ

λ ‖ρ(AΘ
ϕ ),

where we used the fact that θf1 ∈ KΘ.

For a fixed λ ∈ D,

sup
f1∈Kθ∩L∞

‖f1‖≤1

|f1(λ)| = sup
f1∈Kθ∩L∞

‖f1‖≤1

|〈f1, k
θ
λ〉| = ‖kθλ‖,

and thus

|ϕ1(λ)| ≤ ρ(AΘ
ϕ )

‖kΘ
λ ‖

‖kθλ‖
= ρ(AΘ

ϕ )
(1 − |Θ(λ)|2)1/2

(1 − |θ(λ)|2)1/2
.

If Θ divides θ4, then |Θ(λ)| ≥ |θ(λ)|4, and therefore

1 − |Θ(λ)|2 ≤ 1 − |θ(λ)|8 ≤ 4(1 − |θ(λ)|2).

It follows that |ϕ1(λ)| ≤ 2ρ(AΘ
ϕ ) for all λ ∈ D, and thus ‖ϕ1‖∞ ≤ 2ρ(AΘ

ϕ ). The proof is

finished by noting that ‖ϕ‖∞ = ‖ϕ1‖∞. �

As a consequence, we obtain a general result for the existence of bounded symbols and

reproducing kernels thesis.
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Corollary 6.2. Let Θ be an inner function, and θ another inner function with θ3|zΘ and

Θ|θ4. Suppose there are constants Ci > 0, i = 1, 2, 3 such that any ϕ ∈ L2 can be written

as ϕ = ϕ1 + ϕ2 + ϕ3, with:

(a) ϕ1 ∈ Kθ +Kθ, ϕ2 ∈ H2, and ϕ3 ∈ H2;

(b) ρ′(AΘ
ϕi

) ≤ Ciρ
′(AΘ

ϕ ) for i = 1, 2, 3.

Then the following are equivalent:

(i) AΘ
ϕ has a bounded symbol.

(ii) AΘ
ϕ is bounded.

(iii) ρ′(AΘ
ϕ ) < +∞.

More precisely, there exists a constant C > 0 such that any truncated Toeplitz operator AΘ
ϕ

has a symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρ′(AΘ
ϕ ).

There are of course many decompositions of ϕ as in (a); the difficulty consists in finding

one that satisfies (b).

Proof. It is immediate that (i) =⇒ (ii) =⇒ (iii), so it remains to prove (iii) =⇒ (i). Since

ρ′(AΘ
ϕi

) < +∞, i = 2, 3, Proposition 4.1 and 4.2 imply that AΘ
ϕi

have bounded symbols ϕ̃i

with ‖ϕ̃i‖ ≤ C̃ρ′(AΘ
ϕi

) ≤ C̃Ciρ
′(AΘ

ϕ ). As for ϕ, we can apply Theorem 6.1 which gives that

ϕ is bounded with ‖ϕ1‖∞ ≤ 2ρ(AΘ
ϕ1

) ≤ 2C1ρ
′(AΘ

ϕ ). Finally AΘ
ϕ has the bounded symbol

ϕ0 = ϕ1 + ϕ̃2 + ϕ̃3 whose norm is at most (2C1 + C̃(C2 + C3))ρ
′(AΘ

ϕ ).

�

6.2. Classical Toeplitz matrices. Suppose Θ(z) = zN ; the space KΘ is then an N -

dimensional space with orthonormal basis formed by monomials, and truncated Toeplitz

operators have a (usual) Toeplitz matrix with respect of this basis. Of course every trun-

cated Toeplitz operator has a bounded symbol; it is however interesting that there exists a

universal estimate of this bound. The question had been raised in [16, Section 7]; the posi-

tive answer had actually been already independently obtained in [3] and [12]. The following

result is stronger, giving a universal estimate in terms of the action on the reproducing

kernels.

Theorem 6.3. Suppose Θ(z) = zN . There exists a constant C > 0 such that any truncated

Toeplitz operator AΘ
ϕ has a symbol ϕ0 ∈ L∞ such that ‖ϕ0‖∞ ≤ Cρ′(AΘ

ϕ ).
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Proof. Consider a smooth function ηk on T, and the convolution (on T) ϕk = ηk ∗ ϕ, that

is

ϕk(e
is) =

1

2π

∫ π

−π

ηk(e
it)ϕ(ei(s−t)) dt.

We have then ϕ̂k(n) = η̂k(n)ϕ̂(n), n ∈ Z.

The map τt defined by τt : f(z) 7→ f(eitz) is a unitary on KΘ and straightforward

computations show that

(6.1) τth
Θ
λ = hΘ

e−itλ and τth̃
Θ
λ = ei(N−1)th̃Θ

e−itλ,

for every λ ∈ D. By Fubini’s Theorem and a change of variables we have

〈AΘ
ϕk
f, g〉 =

1

2π

∫ π

−π

ηk(e
it)〈AΘ

ϕ τt(f), τt(g)〉 dt,

for every f, g ∈ KΘ. That implies that

‖AΘ
ϕk
hΘ
λ ‖ = sup

g∈KΘ

‖g‖2≤1

∣∣〈AΘ
ϕk
hΘ
λ , g〉

∣∣ ≤ sup
g∈KΘ

‖g‖2≤1

1

2π

∫ π

−π

|ηk(eit)||〈AΘ
ϕτt(h

Θ
λ ), τt(g)〉| dt,

and using (6.1), we obtain

‖AΘ
ϕk
hΘ
λ ‖ ≤ ‖ηk‖1ρ(A

Θ
ϕ ) ≤ ‖ηk‖1ρ

′(AΘ
ϕ ).

A similar argument shows also that

‖AΘ
ϕk
h̃Θ
λ ‖ ≤ ‖ηk‖1ρ

′(AΘ
ϕ )

and we obtain that

(6.2) ρ′(Aθϕk
) ≤ ‖ηk‖1ρ

′(AΘ
ϕ ).

Now consider the Fejer kernel Fm, defined by the formula F̂m(n) = 1 − |n|
m

for |n| ≤ m

and F̂m(n) = 0 otherwise. It is well known that ‖Fm‖1 = 1 for all m ∈ N. If we take

M =
[
N+1

3

]
and define ηi (i = 1, 2, 3) by

η1 = FM , η2 = 2ei2MtF2M − ei2MtFM , η3 = η̄2,

then η̂2(n) = 0 for n < 0, η̂3(n) = 0 for n > 0, η̂1(n) + η̂2(n) + η̂3(n) = 1 for |n| ≤ N ,

and ‖η1‖1 = 1, ‖ηi‖1 ≤ 3 for i = 2, 3. If we denote ϕi = ηi ∗ ϕ, then ϕ = ϕ1 + ϕ2 + ϕ3,

ϕ1 ∈ KzM +KzM , ϕ2 is analytic and ϕ3 is coanalytic. Moreover z3M divides zN+1 and zN

divides z4M . According to (6.2), we can apply Corollary 6.2 to obtain that there exists a

universal constant C > 0 such that AΘ
ϕ has a bounded symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρ′(AΘ

ϕ ).
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�

In particular, it follows from Theorem 6.3 that any (classical) Toeplitz matrix Az
N

ϕ has

a symbol ϕ0 such that ‖ϕ0‖∞ ≤ (6C + 2)‖AzN

ϕ ‖. The similar statement is proved with the

better estimates ‖ϕ0‖∞ ≤ 4‖AzN

ϕ ‖ in [3] and ‖ϕ0‖∞ ≤ 3‖AzN

ϕ ‖ in [12].

We can obtain a slightly more general result (in the choice of the function Θ).

Corollary 6.4. Suppose Θ = bNα , with bα(z) = α−z
1−ᾱz

a Blaschke factor. There exists a

constant C > 0 such that any truncated Toeplitz operator AΘ
ϕ has a symbol ϕ0 ∈ L∞ such

that ‖ϕ0‖∞ ≤ Cρ′(AΘ
ϕ ).

Proof. The mapping U defined by

(U(f))(z) :=
(1 − |α|2)1/2

1 − ᾱz
f(bα(z)), z ∈ D, f ∈ H2,

is unitary on H2 and one easily check that UPzN = PΘU . In particular, it implies that

U(KzN ) = KΘ and straightforward computations show that

(6.3) Uhz
N

λ = cλh
Θ
bα(λ) and Uh̃z

N

λ = −c̄λh̃Θ
bα(λ),

for every λ ∈ D, where cλ := |1−λ̄α|

1−λ̄α
is a constant of modulus one.

Suppose AΘ
ϕ is a bounded truncated Toeplitz operator; if Φ = ϕ ◦ bα, then the relation

UPzN = PΘU yields Az
N

Φ = U∗AΘ
ϕU . Thus, using (6.3), we obtain

‖AzN

Φ hz
N

λ ‖ = ‖U∗AΘ
ϕUh

zN

λ ‖ = ‖AΘ
ϕh

Θ
bα(λ)‖

and

‖AzN

Φ h̃z
N

λ ‖ = ‖U∗AΘ
ϕUh̃

zN

λ ‖ = ‖AΘ
ϕ h̃

Θ
bα(λ)‖,

which implies that

(6.4) ρ′(Az
N

Φ ) = ρ′(AΘ
ϕ ) .

Now it remains to apply Theorem 6.3 to complete the proof.

�
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6.3. Elementary singular inner functions. Let us now take Θ(z) = exp( z+1
z−1

). A

positive answer to Questions 1 and 3 is a consequence of results obtained by Rochberg [15]

and Smith [17] on the Paley–Wiener space. We sketch the proof for completeness, without

entering into details.

Theorem 6.5. If Θ(z) = exp( z+1
z−1

) and AΘ
ϕ is a truncated Toeplitz operator, then the

following are equivalent:

(i) AΘ
ϕ has a bounded symbol.

(ii) AΘ
ϕ is bounded.

(iii) ρ′(AΘ
ϕ ) <∞.

More precisely, there exists a constant C > 0 such that any truncated Toeplitz operator

AΘ
ϕ has a symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρ′(AΘ

ϕ ).

Proof. By Remark 3.3 it is enough to prove the corresponding result for the space KΘ,

where Θ(w) = eiw, and ρ′ is the analogue of ρ′ for operators on KΘ. If F denotes the

Fourier transform on R, then KΘ = F−1(L2([0, 1])), and we may suppose that the symbol

ϕ ∈ (t+ i)F−1(L2([−1, 1])).

For a rapidly decreasing function η on R, define

(6.5) Ψ(s) =

∫

R

η(t)ϕ(s− t) dt.

We have then Ψ̂ = η̂ϕ̂ and ρ′(AΘ

ψ ) ≤ ‖η‖1 · ρ′(AΘ

ϕ ).

Take now ψi, i = 1, 2, 3, such that supp ψ̂1 ⊂ [−1/3, 1/3], supp ψ̂2 ⊂ [0, 2], supp ψ̂3 ⊂
[−2, 0], and ψ̂1 + ψ̂2 + ψ̂3 = 1 on [−1, 1]. If we define ϕi by replacing η with ψi in (6.5),

then there is a constant C1 > 0 such that ρ′(AΘ

ϕi
) ≤ C1ρ

′(AΘ

ϕ) for i = 1, 2, 3.

On the other hand, ϕ = ϕ1 + ϕ2 + ϕ3, ϕ1 ∈ KΘ1/3 + KΘ1/3 , ϕ2 is analytic, ϕ3 is

antianalytic. We may then apply the analogue of Corollary 6.2 for the upper half-plane

which completes the proof.

�

One can see easily that a similar result is valid for any elementary singular function

Θ(z) = exp
(
z+ζ
z−ζ

)
, for ζ ∈ T.

7. Truncated Toeplitz operators with positive symbols

As noted at the end of Section 5, if ϕ ∈ L2 is a positive function, then AΘ
ϕ is bounded

if and only if ϕdm is a Carleson measure for KΘ. As a consequence mainly of results of
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Cohn [5, 6], one can say more for positive symbols ϕ for a special class of model spaces.

Recall that Θ is said to satisfy the connected level set condition (and we write Θ ∈ (CLS))

if there is ε ∈ (0, 1) such that the level set

Ω(Θ, ε) := {z ∈ D : |Θ(z)| < ε}

is connected.

Theorem 7.1. Let Θ be an inner function such that Θ ∈ (CLS). If ϕ is a positive function

in L2, then the following conditions are equivalent:

(1) AΘ
ϕ is a bounded operator on K2

Θ.

(2) supλ∈D
‖AΘ

ϕh
Θ
λ ‖ < +∞.

(3) supλ∈D
|〈AΘ

ϕh
Θ
λ , h

Θ
λ 〉2| < +∞.

(4) AΘ
ϕ has a bounded symbol.

Proof. The implications (4) =⇒ (1) =⇒ (2) =⇒ (3) are obvious.

We have

(7.1)

∫

T

ϕ|hΘ
λ |2 dm = 〈ϕhΘ

λ , h
Θ
λ 〉2 = 〈PΘϕh

Θ
λ , h

Θ
λ 〉2 = 〈AΘ

ϕh
Θ
λ , h

Θ
λ 〉2.

It is shown in [5] that for Θ ∈ (CLS) a positive µ satisfies supλ∈D
‖hΘ

λ ‖L2(µ) < ∞ if and

only if it is a Carleson measure for KΘ. Thus (3) implies that ϕdm is a Carleson measure

for KΘ, which has been noted above to be equivalent to AΘ
ϕ bounded; so (1) ⇐⇒ (3).

On the other hand, it is proved in [6] that if AΘ
ϕ is bounded, then there are functions

v ∈ L∞(T) and h ∈ H2 such that ϕ = Re(v + Θh). Write then

ϕ = Re v +
1

2
(Θh+ Θ̄h̄),

which implies that ϕ − Re v ∈ ΘH2 + ΘH2. Therefore AΘ
u = AΘ

Re v and Re v ∈ L∞(T).

Thus the last remaining implication (1) =⇒ (4) is proved. �

Remark 7.2. In [11] Nazarov and Volberg construct a counterexample concerning Car-

leson measures for KΘ, which in our context can be reformulated as providing an inner Θ

and a positive function ϕ ∈ L2 such that

sup
λ∈D

|〈AΘ
ϕh

Θ
λ , h

Θ
λ 〉| <∞,

but AΘ
ϕ is not bounded. This condition is obviously weaker than (2) in the statement of

Theorem 7.1.
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