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BOUNDED SYMBOLS AND REPRODUCING KERNEL THESIS FOR

TRUNCATED TOEPLITZ OPERATORS

ANTON BARANOV, ISABELLE CHALENDAR, EMMANUEL FRICAIN, JAVAD MASHREGHI,

AND DAN TIMOTIN

Abstract. Compressions of Toeplitz operators to coinvariant subspaces of H
2 are called

truncated Toeplitz operators. We study two questions related to these operators. The
first, raised by Sarason, is whether boundedness of the operator implies the existence of a
bounded symbol; the second is the Reproducing Kernel Thesis. We show that in general
the answer to the first question is negative, and we exhibit some classes of spaces for which
the answers to both questions are positive.

1. Introduction

Truncated Toeplitz operators on model spaces have been formally introduced by Sarason

in [29], although special cases have long ago appeared in literature, most notably as model

operators for contractions with defect numbers one and for their commutant. They are

naturally related to the classical Toeplitz and Hankel operators on the Hardy space. This is

a new area of study, and it is remarkable that many simple questions remain still unsolved.

As a basic reference for their main properties, [29] is invaluable; further study can be found

in [9, 10, 18] and in [30, Section 7].

The truncated Toeplitz operators live on the model spaces KΘ. These are subspaces of

H2 (see Section 2 for precise definitions) that have attracted attention in the last decades;

they are relevant in various subjects such as for instance spectral theory for general linear

operators [26], control theory [25], and Nevanlinna domains connected to rational approx-

imation [16]. Given a model space KΘ and a function ϕ ∈ L2, the truncated Toeplitz

operator AΘ
ϕ is defined on a dense subspace of KΘ as the compression to KΘ of multiplica-

tion by ϕ. The function ϕ is then called a symbol of the operator, and it is never uniquely

defined.
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In the particular case where ϕ ∈ L∞ the operator AΘ
ϕ is bounded. In view of well-

known facts about classical Toeplitz and Hankel operators, it is natural to ask whether the

converse is true, that is, if a bounded truncated Toeplitz operator has necessarily a bounded

symbol. This question has been posed in [29], where it is noticed that it is nontrivial even

for rank one operators. In the present paper we will provide a class of inner functions Θ for

which there exist rank one truncated Toeplitz operators on KΘ without bounded symbols.

On the other hand, we obtain positive results for some basic examples of model spaces.

Therefore the situation is quite different from the classical Toeplitz and Hankel operators.

The other natural question that we address is the Reproducing Kernel Thesis for trun-

cated Toeplitz operators. Recall that an operator on a reproducing kernel Hilbert space is

said to satisfy the Reproducing Kernel Thesis (RKT) if its boundedness is determined by

its behaviour on the reproducing kernels. This property has been studied for several classes

of operators: Hankel and Toeplitz operators on the Hardy space of the unit disc [7, 21, 32],

Toeplitz operators on the Paley–Wiener space [31], semicommutators of Toeplitz opera-

tors [26], Hankel operators on the Bergman space [5, 20], and Hankel operators on the

Hardy space of the bidisk [17, 27]. It appears thus natural to ask the corresponding ques-

tion for truncated Toeplitz operators. We will show that in this case it is more appropriate

to assume the boundedness of the operator on the reproducing kernels as well as on a

related “dual” family, and will discuss further its validity for certain model spaces.

The paper is organized as follows. The next two sections contain preliminary material

concerning model spaces and truncated Toeplitz operators. Section 4 introduces the main

two problems we are concerned with: existence of bounded symbols and the Reproducing

Kernel Thesis. The counterexamples are presented in Section 5; in particular, Sarason’s

question on the general existence of bounded symbols is answered in the negative. Section 6

exhibits some classes of model spaces for which the answers to both questions are positive.

Finally, in Section 7 we present another class of well behaved truncated Toeplitz operators,

namely operators with positive symbols.

2. Preliminaries on model spaces

Basic references for the content of this section are [15, 19] for general facts about Hardy

spaces and [26] for model spaces and operators.
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2.1. Hardy spaces. The Hardy space Hp of the unit disk D = {z ∈ C : |z| < 1} is the

space of analytic functions f on D satisfying ‖f‖p < +∞, where

‖f‖p = sup
0≤r<1

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

, 1 ≤ p < +∞.

The algebra of bounded analytic functions on D is denoted by H∞. We denote also

Hp
0 = zHp. Alternatively, Hp can be identified (via radial limits) with the subspace of

functions f ∈ Lp = Lp(T) for which f̂(n) = 0 for all n < 0. Here T denotes the unit circle

with normalized Lebesgue measure m.

For any ϕ ∈ L∞, we denote by Mϕf = ϕf the multiplication operator on L2; we have

‖Mϕ‖ = ‖ϕ‖∞. The Toeplitz and Hankel operators on H2 are given by the formulas

Tϕ = P+Mϕ, Tϕ : H2 → H2;

Hϕ = P−Mϕ, Hϕ : H2 → H2
−,

where P+ is the Riesz projection from L2 onto H2 and P− = I − P+ is the orthogonal

projection from L2 onto H2
− = L2 ⊖ H2. In case where ϕ is analytic, Tϕ is just the

restriction of Mϕ to H2. We have T ∗
ϕ = Tϕ̄ and H∗

ϕ = P+Mϕ̄P−; we also denote S = Tz the

usual shift operator on H2.

Evaluations at points λ ∈ D are bounded functionals on H2 and the corresponding

reproducing kernel is kλ(z) = (1 − λ̄z)−1; thus, f(λ) = 〈f, kλ〉, for every function f in H2.

If ϕ ∈ H∞, then kλ is an eigenvector for T ∗
ϕ, and T ∗

ϕkλ = ϕ(λ)kλ. By normalizing kλ we

obtain hλ = kλ

‖kλ‖2
=
√

1 − |λ|2kλ.

2.2. Model spaces. Suppose now Θ is an inner function, that is, a function in H∞ whose

radial limits are of modulus one almost everywhere on T. In what follows we consider

only nonconstant inner functions. We define the corresponding shift-coinvariant subspace

generated by Θ (also called model space) by the formula Kp
Θ = Hp ∩ ΘHp

0 , 1 ≤ p < +∞.

We will be especially interested in the Hilbert case, that is, when p = 2. In this case we

write KΘ = K2
Θ; it is easy to see that KΘ is also given by

KΘ = H2 ⊖ ΘH2 =
{
f ∈ H2 : 〈f,Θg〉 = 0, ∀g ∈ H2

}
.

The orthogonal projection of L2 onto KΘ is denoted by PΘ; we have PΘ = P+ − ΘP+Θ̄.

Since the Riesz projection P+ acts boundedly on Lp, 1 < p < ∞, this formula shows that

PΘ can also be regarded as a bounded operator from Lp onto Kp
Θ, 1 < p <∞.
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The reproducing kernel in KΘ for a point λ ∈ D is the function

(2.1) kΘ
λ (z) = (PΘkλ)(z) =

1 − Θ(λ)Θ(z)

1 − λ̄z
;

we denote by hΘ
λ the normalized reproducing kernel,

(2.2) hΘ
λ (z) =

√
1 − |λ|2

1 − |Θ(λ)|2 k
Θ
λ (z).

Note that, according to (2.1), we have the orthogonal decomposition

(2.3) kλ = kΘ
λ + ΘΘ(λ)kλ.

We will use the antilinear isometry J : L2 → L2, given by J(f)(ζ) = ζf(ζ); it maps H2

into H2
0 = L2 ⊖H2 = H2

− and conversely. More often another antilinear isometry ω = ΘJ

will appear, whose main properties are summarized below.

Lemma 2.1. Define, for f ∈ L2, ω(f)(ζ) = ζf(ζ)Θ(ζ). Then:

(i) ω is antilinear, isometric, onto;

(ii) ω2 = Id;

(iii) ωPΘ = PΘω (and therefore KΘ reduces ω), ω(ΘH2) = H2
− and ω(H2

−) = ΘH2.

We define the difference quotient k̃Θ
λ = ω(kΘ

λ ) and h̃Θ
λ = ω(hΘ

λ ); thus

(2.4) k̃Θ
λ (z) =

Θ(z) − Θ(λ)

z − λ
, h̃Θ

λ (z) =

√
1 − |λ|2

1 − |Θ(λ)|2
Θ(z) − Θ(λ)

z − λ
.

In the sequel we will use the following simple lemmas.

Lemma 2.2. Suppose Θ1,Θ2 are two inner functions, f1 ∈ KΘ1
, f2 ∈ KΘ2

∩H∞. Then

f1f2, zf1f2 ∈ KΘ1Θ2
.

Proof. Obviously zf1f2 ∈ H2. On the other side, f1 ∈ KΘ1
implies f1 = Θ1zg1, with

g1 ∈ H2, and similarly f2 = Θ2zg2, g2 ∈ H∞. Thus zf1f2 ∈ Θ1Θ2zH2. Therefore

zf1f2 ∈ H2 ∩Θ1Θ2H2
0 = KΘ1Θ2

. The claim about f1f2 is an immediate consequence, since

the model spaces are invariant under the backward shift operator S∗. �

Recall that, given two inner functions θ1, θ2, we say that θ2 divides θ1 if there exists an

inner function θ3 such that θ1 = θ2θ3.
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Lemma 2.3. Suppose that θ and Θ are two inner functions such that θ3 divides zΘ. Then:

(a) θKθ ⊂ Kθ2 ⊂ KΘ;

(b) if f ∈ H∞ ∩ θKθ and ϕ ∈ Kθ +Kθ, then the functions ϕf and ϕ̄f belong to KΘ.

Proof. Since θ3 divides zΘ, there exists an inner function θ1 such that zΘ = θ3θ1. In

particular it follows from this factorization that θ(0)θ1(0) = 0, which implies that θθ1H
2 ⊂

zH2.

Using Kθ = H2 ∩ θ zH2, we have

θKθ = θH2 ∩ θ2 zH2 ⊂ H2 ∩ θ2 zH2 = Kθ2 .

Further,

Kθ2 = H2 ∩ θ2 zH2 = H2 ∩ ΘzΘθ2H2 = H2 ∩ Θ θθ1H2 ⊂ H2 ∩ Θ zH2 = KΘ,

because θθ1H
2 ⊂ zH2; thus (a) is proved.

Let now f = θf1 and ϕ = ϕ1 +ϕ2, with f1 ∈ H∞ ∩Kθ and ϕ1, ϕ2 ∈ Kθ. Since ϕ2 ∈ Kθ,

using Lemma 2.1, we have ϕ2 = θz̄ϕ̃2, with ϕ̃2 ∈ Kθ, which implies that

ϕf = θf1(ϕ1 + ϕ2) = θf1ϕ1 + zf1ϕ̃2.

But it follows from Lemma 2.2 that zf1ϕ̃2 ∈ Kθ2 ; by (a), we obtain zf1ϕ̃2 ∈ KΘ. So it

remains to prove that θf1ϕ1 ∈ KΘ. Obviously θf1ϕ1 ∈ H2; moreover, for every function

h ∈ H2, we have

〈θf1ϕ1,Θh〉 = 〈zθf1ϕ1, zΘh〉 = 〈zθf1ϕ1, θ
3θ1h〉 = 〈zf1ϕ1, θ

2θ1h〉 = 0,

because another application of Lemma 2.2 yields zf1ϕ1 ∈ Kθ2 . That proves that θf1ϕ1 ∈
KΘ and thus ϕf ∈ KΘ. Since KΘ +KΘ is invariant under the conjugation, we obtain also

the result for ϕ̄f . �

2.3. Angular derivatives and evaluation on the boundary. The inner function Θ is

said to have an angular derivative in the sense of Carathéodory at ζ ∈ T if Θ and Θ′ have

a non-tangential limit at ζ and |Θ(ζ)| = 1. Then it is known [1] that evaluation at ζ is

continuous on KΘ, and the function kΘ
ζ , defined by

kΘ
ζ (z) :=

1 − Θ(ζ)Θ(z)

1 − ζ̄z
, z ∈ D,

belongs to KΘ and is the corresponding reproducing kernel. Replacing λ by ζ in the

formula (2.4) gives a function k̃Θ
ζ which also belongs to KΘ and ω(kΘ

ζ ) = k̃Θ
ζ = ζ̄Θ(ζ)kΘ

ζ .



6 A. BARANOV, I. CHALENDAR, E. FRICAIN, J. MASHREGHI, AND D. TIMOTIN

Moreover we have ‖kΘ
ζ ‖2 = |Θ′(ζ)|1/2. We denote by E(Θ) the set of points ζ ∈ T where

Θ has an angular derivative in the sense of Carathéodory.

In [1] and [13] precise conditions are given for the inclusion of kΘ
ζ into Lp (for 1 < p <∞);

namely, if (ak) are the zeros of Θ in D and σ is the singular measure on T corresponding

to the singular part of Θ, then kΘ
ζ ∈ Lp if and only if

(2.5)
∑

k

1 − |ak|2
|ζ − ak|p

+

∫

T

dσ(τ)

|ζ − τ |p < +∞.

We will use in the sequel the following easy result.

Lemma 2.4. Let 1 < p < +∞ and let Θ be an inner function. Then we have:

(a) E(Θ2) = E(Θ);

(b) inf
λ∈D∪E(Θ)

‖kΘ
λ ‖2 > 0;

(c) for λ ∈ D, we have

(2.6) C‖kΘ
λ ‖p ≤ ‖kΘ2

λ ‖p ≤ 2‖kΘ
λ ‖p,

where C = ‖PΘ‖−1
Lp→Lp is a constant which depends only on Θ and p. Also, if

ζ ∈ E(Θ), then kΘ2

ζ ∈ Lp if and only if kΘ
ζ ∈ Lp, and (2.6) holds for λ = ζ.

Proof. The proof of (a) is immediate using the definition. For the proof of (b) note that,

for λ ∈ D ∪E(Θ), we have

|1 − Θ(0)Θ(λ)| = |kΘ
0 (λ)| ≤ ‖kΘ

0 ‖2‖kΘ
λ ‖2 = (1 − |Θ(0)|2)1/2‖kΘ

λ ‖2,

which implies ‖kΘ
λ ‖2 ≥

(
1−|Θ(0)|
1+|Θ(0)|

)1/2

.

It remains to prove (c). We have kΘ2

λ = (1 + Θ(λ)Θ)kΘ
λ , whence PΘk

Θ2

λ = kΘ
λ . Thus

the result follows from the fact that PΘ is bounded on Lp and from the trivial estimate

|1 + Θ(λ)Θ(z)| ≤ 2, z ∈ T. �

2.4. The continuous case. It is useful to remember the connection with the “continuous”

case, for which we refer to [15, 22]. If u(w) = w−i
w+i

, then u is a conformal homeomorphism

of the Riemann sphere. It maps −i to ∞, ∞ to 1, R onto T and C+ to D (here C+ = {z ∈
C : Im z > 0}).

The operator

(Uf)(t) =
1√

π(t+ i)
f(u(t))
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maps L2(T) unitarily onto L2(R) and H2 unitarily onto H2(C+), the Hardy space of the

upper half-plane. The corresponding transformation for functions in L∞ is

(2.7) Ũ(ϕ) = ϕ ◦ u;

it maps L∞(T) isometrically onto L∞(R), H∞ isometrically onto H∞(C+) and inner func-

tions in D into inner functions in C+. Now if Θ is an inner function in D, we have

UPΘ = PΘU and then UKΘ = KΘ, where Θ = Θ ◦u, KΘ = H2(C+)⊖ΘH2(C+) and PΘ

is the orthogonal projection onto KΘ. Moreover

(2.8) UhΘ
λ = cµh

Θ

µ and U h̃Θ
λ = cµh̃

Θ

µ ,

where µ = u−1(λ) ∈ C+, cµ = µ̄−i
|µ+i|

is a constant of modulus one,

hΘ

µ (ω) =
i√
π

√
Imµ

1 − |Θ(µ)|2
1 − Θ(µ)Θ(ω)

ω − µ̄
, ω ∈ C+,

is the normalized reproducing kernel for KΘ, while

h̃Θ

µ (ω) =
1

i
√
π

√
Imµ

1 − |Θ(µ)|2
Θ(ω) −Θ(µ)

ω − µ
, ω ∈ C+,

is the normalized difference quotient in KΘ.

3. Truncated Toeplitz operators

In [29], D. Sarason studied the class of truncated Toeplitz operators which are defined as

the compression of Toeplitz operators to coinvariant subspaces of H2.

Note first that we can extend the definitions of Mϕ, Tϕ, and Hϕ in Section 2 to the

case when the symbol is only in L2 instead of L∞, obtaining (possibly unbounded) densely

defined operators. Then Mϕ and Tϕ are bounded if and only if ϕ ∈ L∞ (and ‖Mϕ‖ =

‖Tϕ‖ = ‖ϕ‖∞), while Hϕ is bounded if and only if P−ϕ ∈ BMO (and ‖Hϕ‖ is equivalent

to ‖P−ϕ‖BMO).

In [29], D. Sarason defines an analogous operator on KΘ. Suppose Θ is an inner function

and ϕ ∈ L2; the truncated Toeplitz operator AΘ
ϕ will in general be a densely defined, possibly

unbounded, operator on KΘ. Its domain is KΘ ∩H∞, on which it acts by the formula

AΘ
ϕf = PΘ(ϕf), f ∈ KΘ ∩H∞.

In particular, KΘ ∩ H∞ contains all reproducing kernels kΘ
λ , λ ∈ D, and their linear

combinations, and is therefore dense in KΘ.
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We will denote by T (KΘ) the space of all bounded truncated Toeplitz operators on KΘ.

It follows from [29, Theorem 4.2] that T (KΘ) is a Banach space in the operator norm.

Using Lemma 2.1 and the fact that ωMϕω = Mϕ̄, it is easy to check the useful formula

(3.1) ωAΘ
ϕω = AΘ

ϕ̄ = (AΘ
ϕ )∗.

We call ϕ a symbol of the operator AΘ
ϕ . It is not unique; in [29], it is shown that AΘ

ϕ = 0

if and only if ϕ ∈ ΘH2 + ΘH2. Let us denote SΘ = L2 ⊖ (ΘH2 + ΘH2) and PSΘ
the

corresponding orthogonal projection. Two spaces that contain SΘ up to a subspace of

dimension at most 1 admit a direct description, and we will gather their properties in the

next two lemmas.

Lemma 3.1. Denote by QΘ the orthogonal projection onto KΘ ⊕ z̄KΘ. Then:

(a) QΘ(Θ̄) = Θ̄ − Θ(0)
2
Θ;

(b) we have

KΘ ⊕ z̄KΘ = SΘ ⊕ CqΘ,

where qΘ = ‖QΘ(Θ̄)‖−1
2 QΘ(Θ̄);

(c) QΘ and PSΘ
are bounded on Lp for 1 < p <∞.

Proof. Since by Lemma 2.1 z̄KΘ = Θ̄KΘ, we have KΘ ⊕ z̄KΘ = KΘ ⊕ Θ̄KΘ, and therefore

QΘ = PΘ +MΘ̄PΘMΘ. Thus QΘ is bounded on Lp for all p > 1. Further, if we denote by

1 the constant function equal to 1, then

QΘ(Θ̄) = PΘ(Θ̄) +MΘ̄PΘMΘ(Θ̄) = PΘ(Θ(0)1) +MΘ̄PΘ1

= (Θ(0) + Θ̄)(1 − Θ(0)Θ) = Θ̄ − Θ(0)
2
Θ.

Thus (a) is proved.

Since L2 = ΘH2 ⊕ ΘH2
0 ⊕KΘ ⊕ z̄KΘ, it follows that SΘ ⊂ KΘ ⊕ z̄KΘ and thus

(3.2) KΘ ⊕ z̄KΘ = QΘ

(
SΘ + ΘH2 + ΘH2

0 + CΘ̄
)

= SΘ ⊕ CQΘ(Θ̄),

which proves (b). Note that according to (a), one easily see that QΘ(Θ̄) 6≡ 0.

Now we have for f ∈ L∞

(3.3) PSΘ
f = QΘf − 〈f, qΘ〉qΘ.

and the second term is bounded in Lp, since qΘ belongs to L∞. This concludes the proof

of (c). �
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Lemma 3.2. We have SΘ ⊂ KΘ + KΘ. Each truncated Toeplitz operator has a symbol

ϕ of the form ϕ = ϕ+ + ϕ− with ϕ± ∈ KΘ; any other such decomposition corresponds to

ϕ+ + ckΘ
0 , ϕ− − c̄kΘ

0 for some c ∈ C. In particular, ϕ± are uniquely determined if we fix

(arbitrarily) the value of one of them in a point of D.

Proof. See [29, Section 3]. �

The formulas ψ = limn→∞ z̄nTψ(zn) and P−ψ = Hψ(1) allow one to recapture simply

the unique symbol of a Toeplitz operator as well as the unique symbol in H2
− of a Hankel

operator. It is interesting to obtain a similar direct formula for the symbol of a truncated

Toeplitz operator. Lemma 3.2 says that the symbol is unique if we assume, for instance,

that ϕ = ϕ+ + ϕ−, with ϕ± ∈ KΘ and ϕ−(0) = 0. We can then recapture ϕ from the

action of AΘ
ϕ on kΘ

λ and k̃Θ
λ . Indeed, one can check that

AΘ
ϕk

Θ
0 = ϕ+ − Θ(0)Θϕ−,

AΘ
ϕ k̃

Θ
0 = ω

(
ϕ− + ϕ+(0) − Θ(0)Θϕ+

)
.

(3.4)

From the first equation we obtain ϕ+(0) = 〈AΘ
ϕk

Θ
0 , k

Θ
0 〉. Then (3.4) imply, for any λ ∈ D,

ϕ+(λ) − Θ(0)Θ(λ)ϕ−(λ) = 〈AΘ
ϕk

Θ
0 , k

Θ
λ 〉,

ϕ−(λ) − Θ(0)Θ(λ)ϕ+(λ) = 〈AΘ
ϕ k̃

Θ
0 , k̃

Θ
λ 〉 − 〈AΘ

ϕk
Θ
0 , k

Θ
0 〉.

This is a linear system in ϕ+(λ) and ϕ−(λ), whose determinant is 1 − |Θ(0)Θ(λ)|2 > 0;

therefore, ϕ± can be made explicit in terms of the products in the right hand side.

Note, however, that AΘ
ϕ is completely determined by its action on reproducing kernels,

so one should be able to recapture the values of the symbol only from AΘ
ϕk

Θ
λ . The next

proposition shows how one can achieve this goal; moreover, one can also obtain an estimate

of the L2-norm of the symbol. Namely, for an inner function Θ and any (not necessarily

bounded) linear operator T whose domain contains KΘ ∩H∞, define

(3.5) ρr(T ) := sup
λ∈D

‖ThΘ
λ ‖2.

We will have the occasion to come back to the quantity ρr in the next section.

To simplify the next statement, denote

(3.6) Fλ,µ = (I − λS∗)ω(AΘ
ϕk

Θ
λ ) − (I − µS∗)ω(AΘ

ϕk
Θ
µ ), λ, µ ∈ D.



10 A. BARANOV, I. CHALENDAR, E. FRICAIN, J. MASHREGHI, AND D. TIMOTIN

Proposition 3.3. Let Θ be an inner function, AΘ
ϕ a truncated Toeplitz operator, and µ ∈ D

such that Θ(µ) 6= 0. Suppose ϕ = ϕ+ + ϕ− is the unique decomposition of the symbol with

ϕ± ∈ KΘ, ϕ−(µ) = 0. Then

(3.7) ϕ−(λ) =
〈(S − µ)(I − µS∗)−1Fλ,µ, k

Θ
µ 〉

Θ(µ)(Θ(0)Θ(µ) − 1)
, λ ∈ D,

and ϕ+ = ω(ψ+), where

(3.8) ψ+ = (I − µS∗)ω(AΘ
ϕk

Θ
µ ) + Θ(µ)S∗ϕ−.

Moreover, there exists a constant C depending only on Θ and µ such that

(3.9) max{‖ϕ−‖2, ‖ϕ+‖2} ≤ Cρr(A
Θ
ϕ ).

Proof. First note that for any λ ∈ D, we have

(3.10) (I − λS∗)ω(AΘ
ϕk

Θ
λ ) = ψ+ + ϕ−(λ)S∗Θ − Θ(λ)S∗ϕ−.

Indeed,

PΘ(ϕ+k
Θ
λ ) = PΘ

(
ϕ+

1

1 − λz

)
= ϕ+ + λ̄PΘ

(
Θzψ+

z − λ

)

= ϕ+ + λ̄Θz

(
ψ+ − ψ+(λ)

z − λ

)
.

Thus,

ω(AΘ
ϕ+
kΘ
λ ) = ψ+ + λ

ψ+ − ψ+(λ)

z − λ
=
zψ+ − λψ+(λ)

z − λ
.

One can easily check that

(3.11) (I − λS∗)−1S∗f =
f − f(λ)

z − λ
,

for every function f ∈ H2; then we obtain

(3.12) (I − λS∗)ω(AΘ
ϕ+
kΘ
λ ) = ψ+.

On the other hand,

PΘ(ϕ−k
Θ
λ ) = PΘ

(
z
ϕ− − ϕ−(λ)

z − λ
+
ϕ−(λ)

1 − λz

− Θ(λ)zΘ
ϕ− − ϕ−(λ)

z − λ
− Θ(λ)Θ

ϕ−(λ)

1 − λz

)

= ϕ−(λ)kΘ
λ − Θ(λ)zΘ

(
ϕ− − ϕ−(λ)

z − λ

)
.
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Hence,

ω(AΘ
ϕ−

kΘ
λ ) = ϕ−(λ)

Θ − Θ(λ)

z − λ
− Θ(λ)

ϕ− − ϕ−(λ)

z − λ
and

(3.13) (I − λS∗)ω(AΘ
ϕ−

kΘ
λ ) = ϕ−(λ)S∗Θ − Θ(λ)S∗ϕ−.

Thus (3.10) follows immediately from (3.12) and (3.13). If we take λ = µ in (3.10), we get

(remembering that ϕ−(µ) = 0)

(3.14) ψ+ = (I − µS∗)ω(AΘ
ϕk

Θ
µ ) + Θ(µ)S∗ϕ−.

Now plugging (3.14) into (3.10) yields

ϕ−(λ)S∗Θ + (Θ(µ) − Θ(λ))S∗ϕ− = Fλ,µ.

Therefore, applying (S − µ)(I − µS∗)−1 and using ϕ−(µ) = 0 and (3.11), we obtain

(3.15) ϕ−(λ)(Θ − Θ(µ)) + (Θ(µ) − Θ(λ))ϕ− = (S − µ)(I − µS∗)−1Fλ,µ.

Finally, we take the scalar product of both sides with kΘ
µ and use the fact that Θ ⊥ KΘ,

PΘ1 = 1 − Θ(0)Θ, and again ϕ−(µ) = 0. Therefore

−ϕ−(λ)Θ(µ)(1 − Θ(0)Θ(µ)) = 〈(S − µ)(I − µS∗)−1Fλ,µ, k
Θ
µ 〉,

which immediately implies (3.7).

To obtain the boundedness of the L2 norms, fix now λ ∈ D such that Θ(λ) 6= Θ(µ).

Since

‖(I − µS∗)ω(AΘ
ϕk

Θ
µ )‖2 ≤ 2‖AΘ

ϕk
Θ
µ ‖2 ≤ 2‖kΘ

µ ‖2ρr(A
Θ
ϕ )

and a similar estimate holds for ‖(I−λS∗)ω(AΘ
ϕk

Θ
λ )‖2, we have ‖Fλ,µ‖2 ≤ C1ρ(A

Θ
ϕ ), where

C1, as well as the next constants appearing in this proof, depends only on Θ, λ, µ. By (3.15),

it follows that

‖ϕ−(λ)(Θ − Θ(µ)) + (Θ(µ) − Θ(λ))ϕ−‖2 ≤ C2ρr(A
Θ
ϕ ).

Projecting onto KΘ decreases the norm; since PΘ(ϕ−(λ)Θ) = 0 and PΘ(1) = kΘ
0 , we obtain

‖ − Θ(µ)ϕ−(λ)kΘ
0 + (Θ(µ) − Θ(λ))ϕ−‖2 ≤ C2ρr(A

Θ
ϕ ).

Write now ϕ− = h + ckΘ
0 with h ⊥ kΘ

0 . Then ‖(Θ(µ) − Θ(λ))h‖2 ≤ C2ρr(A
Θ
ϕ ), whence

‖h‖2 ≤ C3ρr(A
Θ
ϕ ). Since ϕ−(µ) = 0, we have h(µ) + ckΘ

0 (µ) = 0, which implies that

|c| = |kΘ
0 (µ)|−1|h(µ)| ≤ C4ρr(A

Θ
ϕ )
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Therefore we have ‖ϕ−‖2 ≤ C5ρr(A
Θ
ϕ ). Finally, (3.8) yields a similar estimate for ψ+ and

then for ϕ+. �

The following proposition yields a relation between truncated Toeplitz operators and

usual Hankel operators.

Proposition 3.4. With respect to the decompositionsH2
− = Θ̄KΘ⊕Θ̄H2

−, H2 = KΘ⊕ΘH2,

the operator H∗
Θ̄
HΘ̄ϕH

∗
Θ̄

: H2
− → H2 has the matrix

(3.16)

(
AΘ
ϕMΘ 0

0 0

)
.

Proof. If f ∈ Θ̄H2
−, then H∗

Θ̄
f = 0. If f ∈ Θ̄KΘ, then H∗

Θ̄
f = Θf ∈ KΘ. Since PΘ =

P+MΘP−MΘ̄, it follows that, for f ∈ KΘ,

AΘ
ϕf = PΘMϕf = P+MΘP−MΘ̄Mϕf = H∗

Θ̄HΘ̄ϕf,

and therefore, if f ∈ Θ̄KΘ, then AΘ
ϕΘf = H∗

Θ̄
HΘ̄ϕH

∗
Θ̄
f as required. �

The non-zero entry in (3.16) consists in the isometry MΘ : Θ̄KΘ → KΘ, followed by AΘ
ϕ

acting onKΘ. There is therefore a close connection between properties of AΘ
ϕ and properties

of the corresponding product of three Hankel operators. Such products of Hankel operators

have been studied for instance in [4, 8, 33].

Remark 3.5. Truncated Toeplitz operators can be defined also on model spaces ofH2(C+),

that is, KΘ = H2(C+) ⊖ ΘH2(C+) for an inner function Θ in the upper half-plane C+.

We start then with a symbol ϕ ∈ (t + i)L2(R) (which contains L∞(R)) and define (for

f ∈ KΘ ∩ (z + i)−1H∞(C+), a dense subspace of KΘ) the truncated Toeplitz operator

AΘ

ϕf = PΘ(ϕf).

Let us briefly explain the relations between the truncated Toeplitz operators correspond-

ing to model spaces on the upper half-plane and those corresponding to model spaces on

the unit disk. If Θ = Θ ◦ u−1 and ψ = ϕ ◦ u−1, using the fact that UPΘU∗ = PΘ and

UMψ = MϕU , we easily obtain

AΘ

ϕ = UAΘ
ψU∗.

In particular, if A is a linear operator on KΘ, then A is a truncated Toeplitz operator on

KΘ if and only if A = U∗AU is a truncated Toeplitz operator on KΘ, and ϕ is a symbol

for A if and only if ψ := ϕ ◦ u−1 is a symbol for A. It follows that A is bounded (or
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has a bounded symbol) if and only if A is bounded (respectively, has a bounded symbol).

Moreover we easily deduce from (2.8) that

‖AΘ

ϕh
Θ

µ‖2 = ‖AΘ
ψh

Θ
λ ‖2 and ‖AΘ

ϕ h̃
Θ

µ‖2 = ‖AΘ
ψ h̃

Θ
λ ‖2,

for every µ ∈ C+ and λ = u(µ). Finally, the truncated Toeplitz operator AΘ

ϕ = 0 if and

only if the symbol ϕ ∈ (t+ i)
(
ΘH2(C+) ⊕ΘH2(C+)

)
(note that the sum is in this case

orthogonal, since H2(C+) ⊥ H2(C+)).

4. Existence of bounded symbols and the Reproducing Kernel Thesis

As noted in Section 3, a Toeplitz operator Tϕ has a unique symbol, Tϕ is bounded if

and only if this symbol is in L∞, and the map ϕ 7→ Tϕ is isometric from L∞ onto the

space of bounded Toeplitz operators on H2. The situation is more complicated for Hankel

operators: there is no uniqueness of the symbol, while the map ϕ 7→ Hϕ is contractive

and onto from L∞ to the space of bounded Hankel operators (the boundedness condition

P−ϕ ∈ BMO is equivalent to the fact that any bounded Hankel operator has a symbol in

L∞).

In the case of truncated Toeplitz operators, the map ϕ 7→ AΘ
ϕ is again contractive from

L∞ to T (KΘ). It is then natural to ask whether it is onto, that is, whether any bounded

truncated Toeplitz operator is a compression of a bounded Toeplitz operator in H2. This

question has been asked by Sarason in [29].

Question 1. Does every bounded truncated Toeplitz operator on KΘ possess an L∞ symbol?

One may expect the answer to depend on the function Θ, and indeed we show below

that it is the case. Assume that for some inner function Θ, any operator in T (KΘ) has

a bounded symbol. Then if follows from the open mapping theorem that there exists

a constant C such that for any A ∈ T (KΘ) one can find ϕ ∈ L∞ with A = AΘ
ϕ and

‖ϕ‖∞ ≤ C‖A‖.
A second natural question that may be asked about truncated Toeplitz operators is the

Reproducing Kernel Thesis (RKT). This is related to the quantity ρr defined in (3.5). The

functions hΘ
λ have all norm 1, so if AΘ

ϕ is bounded then obviously ρr(A
Θ
ϕ ) ≤ ‖AΘ

ϕ‖2. The

following question is then natural:

Question 2. (RKT for truncated Toeplitz operators): let Θ be an inner function and

ϕ ∈ L2. Assume that ρr(A
Θ
ϕ ) < +∞. Is AΘ

ϕ bounded on KΘ?
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As we have seen in the introduction, the RKT is true for various classes of operators

related to the truncated Toeplitz operators, and it seems natural to investigate it for this

class. We will see in Section 5 that the answer to this question is in general negative.

As we will show below, it is more natural to restate the RKT by including in the

hypothesis also the functions h̃Θ
λ . Thus, for any linear operator T whose domain contains

KΘ ∩H∞, define

ρd(T ) = sup
λ∈D

‖T h̃Θ
λ ‖2,

and ρ(T ) = max{ρr(T ), ρd(T )}. The indices r and d in notation ρr and ρd stand for

”reproducing kernels“ and ”difference quotients“.

Note that if AΘ
ϕ is a truncated Toeplitz operator, then by (3.1), we have ρd(A

Θ
ϕ ) =

ρr((A
Θ
ϕ )∗), and then

ρ(AΘ
ϕ ) = max{ρr(AΘ

ϕ ), ρr((A
Θ
ϕ )∗)}.

Question 3. Let Θ be an inner function and ϕ ∈ L2. Assume that ρ(AΘ
ϕ ) < ∞. Is AΘ

ϕ

bounded on KΘ?

In Section 5, we will show that the answer to Questions 1 and 2 may be negative.

Question 3 remains in general open. In Section 6, we will give some examples of spaces

KΘ on which the answers to Questions 1 and 3 are positive.

In the rest of this section we will discuss the existence of bounded symbols and the RKT

for some simple cases.

First, it is easy to deal with analytic or antianalytic symbols. The next proposition is a

straightforward consequence of Bonsall’s theorem [7] and the commutant lifting theorem.

The equivalence between (i) and (ii) has already been noticed in [29].

Proposition 4.1. Let ϕ ∈ H2 and let AΘ
ϕ be a truncated Toeplitz operator. Then the

following assertions are equivalent:

(i) AΘ
ϕ has a bounded symbol;

(ii) AΘ
ϕ is bounded;

(iii) ρr(A
Θ
ϕ ) < +∞.

More precisely there exists a universal constant C > 0 such that any truncated Toeplitz

operator AΘ
ϕ has a symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρr(A

Θ
ϕ ).

Proof. It is immediate that (i) =⇒ (ii) =⇒ (iii). The implication (ii) =⇒ (i) has already

been noted in [29]; indeed if ϕ ∈ H2 and AΘ
ϕ is bounded, then AΘ

ϕ commutes with SΘ := AΘ
z
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and then, by a corollary of the commutant lifting theorem, AΘ
ϕ has an H∞ symbol with

norm equal to the norm of AΘ
ϕ .

So it remains to prove that there exists a constant C > 0 such that ‖AΘ
ϕ‖ ≤ Cρr(A

Θ
ϕ ).

If f ∈ KΘ ∩ H∞, then ϕf ∈ H2. Therefore PΘ(ϕf) = ΘP−(Θ̄ϕf), or, in other words,

AΘ
ϕ (f) = ΘHΘ̄ϕf .

On the other hand, ΘH2 ⊂ kerHΘ̄ϕ, and therefore, with respect to the decompositions

H2 = KΘ ⊕ ΘH2, H2
− = Θ̄KΘ ⊕ Θ̄H2

−, one can write

(4.1) HΘ̄ϕ =

(
Θ̄AΘ

ϕ 0

0 0

)
.

It follows that AΘ
ϕ is bounded if and only if HΘ̄ϕ is. By Bonsall’s Theorem [7], there exists

a universal constant C (independent of ϕ and Θ) such that the boundedness of HΘ̄ϕ is

equivalent to supλ∈D
‖HΘ̄ϕhλ‖2 <∞, and

‖HΘ̄ϕ‖ ≤ C sup
λ∈D

‖HΘ̄ϕhλ‖2.

But, again by (4.1) and using (2.1) and (2.2), we have

HΘ̄ϕhλ = Θ̄AΘ
ϕPΘhλ = Θ̄(1 − |Θ(λ)|2)1/2AΘ

ϕh
Θ
λ ,

and thus supλ∈D
‖HΘ̄ϕhλ‖2 ≤ supλ∈D

‖AΘ
ϕh

Θ
λ ‖2 = ρr(A

Θ
ϕ ). The proposition is proved. �

A similar result is valid for antianalytic symbols.

Proposition 4.2. Let ϕ ∈ H2 and let AΘ
ϕ be a truncated Toeplitz operator. Then the

following assertions are equivalent:

(i) AΘ
ϕ has a bounded symbol;

(ii) AΘ
ϕ is bounded;

(iii) ρd(A
Θ
ϕ ) < +∞.

More precisely there exists a universal constant C > 0 such that any truncated Toeplitz

operator AΘ
ϕ has a symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρd(A

Θ
ϕ ).

Proof. Suppose ϕ ∈ H2. Since ‖AΘ
ϕ‖ = ‖(AΘ

ϕ )∗‖ = ‖AΘ
ϕ̄‖, and ϕ̄ ∈ H2, we may apply

Proposition 4.1 to AΘ
ϕ̄ because by (3.1), we have

ρr(A
Θ
ϕ̄ ) = sup

λ∈D

‖AΘ
ϕ̄h

Θ
λ ‖2 = sup

λ∈D

‖AΘ
ϕωh

Θ
λ ‖2 = sup

λ∈D

‖AΘ
ϕ h̃

Θ
λ ‖2 = ρd(A

Θ
ϕ ). �
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As we have seen, if ϕ is bounded, then obviously the truncated Toeplitz operator AΘ
ϕ

is bounded. We will see now that one can get a slightly more general result. It involves

the so-called Carleson curves associated with an inner function (see for instance [19]).

Recall that if Θ is an inner function and α ∈ (0, 1), then the system of Carleson curves

Γα associated to Θ and α is the countable union of closed simple and rectifiable curves in

clos D such that:

• The interior of curves in Γα are pairwise disjoint.

• There is a constant η(α) > 0 such that for every z ∈ Γα ∩ D we have

η(α) ≤ |Θ(z)| ≤ α.(4.2)

• Arclength |dz| on Γα is a Carleson measure, which means that there is a constant

C > 0 such that ∫

Γα

|f(z)|2 |dz| ≤ C‖f‖2
2,

for every function f ∈ H2.

• For every function ϕ ∈ H1, we have
∫

T

ϕ(z)

Θ(z)
dz =

∫

Γα

ϕ(z)

Θ(z)
dz.(4.3)

Proposition 4.3. Let ϕ ∈ H2 and assume that |ϕ||dz| is a Carleson measure on Γα. Then

AΘ
ϕ is a bounded truncated Toeplitz operator on KΘ and it has a bounded symbol.

Proof. Let f, g ∈ KΘ and assume further that f ∈ H∞. Then we have

〈AΘ
ϕf, g〉 = 〈ϕf, g〉 =

∫

T

ϕ(z)f(z)g(z)dz.

Since g ∈ KΘ, we can write (on T), g(z) = z̄h(z)Θ(z), with h ∈ KΘ. Therefore

〈AΘ
ϕf, g〉 =

∫

T

zϕ(z)f(z)h(z)

Θ(z)
dz.

But zf(z)ϕ(z)h(z) ∈ H1 and using (4.3), we can write

〈AΘ
ϕf, g〉 =

∫

Γα

zϕ(z)f(z)h(z)

Θ(z)
dz.

Therefore, according to (4.2), we have

|〈AΘ
ϕf, g〉| ≤

∫

Γα

|zϕ(z)f(z)h(z)|
|Θ(z)| |dz| ≤ 1

η(α)

∫

Γα

|f(z)||h(z)||ϕ(z)||dz|.
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Hence, by the Cauchy-Schwarz inequality and using the fact that |ϕ||dz| is a Carleson

measure on Γα, we have

|〈AΘ
ϕf, g〉| ≤ C

1

η(α)
‖f‖2‖g‖2.

Finally, we get that AΘ
ϕ is bounded. Since ϕ is analytic it follows from Proposition 4.1 that

AΘ
ϕ has a bounded symbol. �

Corollary 4.4. Let ϕ = ϕ1+ϕ2, with ϕi ∈ H2, i = 1, 2. Assume that |ϕi||dz| are Carleson

measures on Γα for i = 1, 2. Then AΘ
ϕ is bounded and has a bounded symbol.

Proof. Using Proposition 4.3, we get immediately that AΘ
ϕi

is bounded and has a bounded

symbol ϕ̃i, for i = 1, 2. Therefore, AΘ
ϕ2

= (AΘ
ϕ2

)∗ is also bounded and has a bounded

symbol ϕ̃2. Hence we get that AΘ
ϕ = AΘ

ϕ1
+ AΘ

ϕ2
is bounded and it has a bounded symbol,

say ϕ̃1 + ϕ̃2. �

Remark 4.5. By the construction of the Carleson curves Γα associated to an inner function

Θ, we know that |dz| is a Carleson measure on Γα. Therefore, Proposition 4.3 can be applied

if ϕ is bounded on Γα and Corollary 4.4 can be applied if ϕ1, ϕ2 are bounded on Γα.

5. Counterexamples

We will show that under certain conditions on the inner function Θ there exist rank one

bounded truncated Toeplitz operators that have no bounded symbol. It is proven in [29,

Theorem 5.1] that any rank one truncated Toeplitz operator is either of the form kΘ
λ ⊗ k̃Θ

λ

or k̃Θ
λ ⊗ kΘ

λ for λ ∈ D, or of the form kΘ
ζ ⊗ kΘ

ζ where ζ ∈ T and Θ has an angular derivative

at ζ . In what follows we will use a representation of the symbol of a rank one operator

which differs slightly from the one given in [29].

Lemma 5.1. If λ ∈ D ∪ E(Θ), then ϕλ = Θz̄kΘ2

λ ∈ KΘ ⊕ z̄KΘ is a symbol for k̃Θ
λ ⊗ kΘ

λ .

In particular, if ζ ∈ E(Θ), then ϕζ = Θz̄kΘ2

ζ is a symbol for Θ(ζ)ζ kΘ
ζ ⊗ kΘ

ζ .

Proof. If ζ ∈ E(Θ), then by Lemma 2.4, Θ2 has an angular derivative at ζ , and so kΘ2

ζ ∈
KΘ2 = KΘ ⊕ΘKΘ. It follows from Lemma 2.1 that Θz̄kΘ2

λ ∈ KΘ ⊕ z̄KΘ for λ ∈ D∪E(Θ).

Take g, h ∈ KΘ, and, moreover, let g ∈ L∞. Then

〈AΘ
ϕλ
g, h〉 = 〈ϕλg, h〉 =

∫

T

Θz̄kΘ2

λ gh̄ dm.
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But Θz̄h̄ = ω(h) ∈ KΘ, g ∈ KΘ ∩ L∞, and so by Lemma 2.2 gΘz̄h̄ ∈ KΘ2 . Therefore
∫

T

Θz̄kΘ2

λ gh̄ dm = 〈gω(h), kΘ2

λ 〉 = g(λ)(ω(h))(λ) = 〈g, kΘ
λ 〉〈ω(h), kΘ

λ 〉

= 〈g, kΘ
λ 〉〈h, ω(kΘ

λ )〉 = 〈g, kΘ
λ 〉〈h, k̃Θ

λ 〉 = 〈(k̃Θ
λ ⊗ kΘ

λ )g, h〉.

Therefore AΘ
ϕλ

= k̃Θ
λ ⊗ kΘ

λ as claimed. Finally, recall that, for ζ ∈ E(Θ), we have k̃Θ
ζ =

ω(kΘ
ζ ) = Θ(ζ)ζ kΘ

ζ . �

The construction of bounded truncated Toeplitz operators that have no bounded symbol

is based on the next lemma.

Lemma 5.2. Let Θ be an inner function and 1 < p < ∞. There exists a constant C

depending only on Θ and p such that, if ϕ, ψ ∈ L2 are two symbols for the same truncated

Toeplitz operator, with ϕ ∈ KΘ ⊕ z̄KΘ, then

‖ϕ‖p ≤ C(‖ψ‖p + ‖ϕ‖2).

In particular, if ψ ∈ Lp, then ϕ ∈ Lp.

Proof. By hypothesis PSΘ
ϕ = PSΘ

ψ; therefore, using (3.3),

ϕ = QΘϕ = PSΘ
ϕ+ 〈ϕ, qΘ〉qΘ = PSΘ

ψ + 〈ϕ, qΘ〉qΘ.

By Lemma 3.1 we have ‖PSΘ
ψ‖p ≤ C1‖ψ‖p, while

‖〈ϕ, qΘ〉qΘ‖p ≤ ‖ϕ‖2 · ‖qΘ‖p,

whence the lemma follows. �

If Θ is an inner function and ζ ∈ E(Θ), then, as noted above, kΘ
ζ ⊗ kΘ

ζ is a rank one

operator in T (KΘ). In [29] Sarason has asked specifically whether this operator has a

bounded symbol. We can now show that in general this question has a negative answer.

Theorem 5.3. Suppose that Θ is an inner function which has an angular derivative at

ζ ∈ T. Let p ∈ (2,+∞). Then the following are equivalent:

(1) the bounded truncated Toeplitz operator kΘ
ζ ⊗ kΘ

ζ has a symbol ψ ∈ Lp;

(2) kΘ
ζ ∈ Lp.

In particular, if kΘ
ζ 6∈ Lp for some p ∈ (2,∞), then kΘ

ζ ⊗kΘ
ζ is a bounded truncated Toeplitz

operator with no bounded symbol.
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Proof. A symbol for the operator kΘ
ζ ⊗ kΘ

ζ is, by Lemma 5.1, ϕ = Θ(ζ)ζΘz̄kΘ2

ζ . Since by

Lemma 2.4 ϕ ∈ Lp if and only if kΘ
ζ ∈ Lp, we obtain that (2) implies (1). Conversely,

assume that ψ ∈ Lp is a symbol for kΘ
ζ ⊗ kΘ

ζ . We may then apply Lemma 5.2 and obtain

that ϕ ∈ Lp. Once again according to Lemma 2.4, we get that kΘ
ζ ∈ Lp, which proves that

(1) implies (2). �

To obtain a bounded truncated Toeplitz operator with no bounded symbol, it is sufficient

to have a point ζ ∈ T such that (2.5) is true for p = 2 but not for some strictly larger value

of p. It is now easy to give concrete examples, as, for instance:

(1) a Blaschke product with zeros ak accumulating to the point 1, and such that

∑

k

1 − |ak|2
|1 − ak|2

< +∞,
∑

k

1 − |ak|2
|1 − ak|p

= +∞ for some p > 2;

(2) a singular function σ =
∑

k ckδζk with
∑

k ck < +∞, ζk → 1, and

∑

k

ck
|1 − ζk|2

< +∞,
∑

k

ck
|1 − ζk|p

= +∞ for some p > 2.

Remark 5.4. A related question raised in [29] remains open. Let µ be a positive measure

on T such that the support of the singular part of µ (with respect to the Lebesgue measure)

is contained in T\σ(Θ), where σ(Θ) is the spectrum of the inner function Θ. Then we say

that µ is a Carleson measure for KΘ if there is a constant c > 0 such that

(5.1)

∫

T

|f |2 dµ ≤ c‖f‖2
2, f ∈ KΘ.

It is easy to see (and had already been noticed in [12]) that (5.1) is equivalent to the

boundedness of the operator AΘ
µ defined by the formula

(5.2) 〈AΘ
µ f, g〉 =

∫

T

f ḡ dµ, f, g ∈ KΘ;

it is shown in [29] that AΘ
µ is a truncated Toeplitz operator. More generally, a complex

measure ν on T is called a Carleson measure for KΘ if its total variation |ν| is a Carleson

measure for KΘ. In this case there is a corresponding operator AΘ
ν , defined also by formula

(5.2), which belongs to T (KΘ). Now if a truncated Toeplitz operator AΘ
ϕ has a bounded

symbol ψ ∈ L∞ then the measure dµ = ψ dm is a Carleson measure for KΘ and AΘ
ϕ = AΘ

µ .

The natural question whether every operator in T (KΘ) is of the form AΘ
µ (for some Carleson

measure µ for KΘ) is not answered by our counterexample; indeed (as already noticed
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in [29]) if Θ has an angular derivative in the sense of Carathéodory at ζ ∈ T, then δζ is a

Carleson measure for KΘ and kΘ
ζ ⊗ kΘ

ζ = AΘ
δζ

.

Remark 5.5. We arrive at the same class of counterexamples as in Theorem 5.3 if we follow

an idea due to Sarason [29] (we would like to emphasize that our first counterexample was

obtained in this way). It is shown in [29, Section 5] that, for an inner function Θ which

has an angular derivative at the point ζ ∈ T, the rank one operator kΘ
ζ ⊗kΘ

ζ has a bounded

symbol if and only if there exists a function h ∈ H2 such that

(5.3) Re

(
Θ(ζ)Θ

1 − ζz
+ Θh

)
∈ L∞.

Since Re(1 − ζ̄z)−1 = 1/2 a.e. on T, condition (5.3) is, obviously, equivalent to

Re
(
kΘ
ζ + Θh

)
∈ L∞.

Then, by the M. Riesz theorem, kΘ
ζ + Θh ∈ Lp for any p ∈ (2,∞) and the boundedness of

the projection PΘ in Lp implies that kΘ
ζ ∈ Lp.

The next theorem provides a wider class of examples.

Theorem 5.6. Suppose that Θ is an inner function with the property that each bounded

operator in T (KΘ) has a bounded symbol. Then for each p > 2 we have

(5.4) sup
λ∈D

‖kΘ
λ ‖p

‖kΘ
λ ‖2

2

<∞.

Proof. As mentioned in the previous section, it follows from the open mapping theorem

that there exists a constant C > 0 such that for any operator A ∈ T (KΘ) one can always

find a symbol ψ ∈ L∞ with ‖ψ‖∞ ≤ C‖A‖.
Fix λ ∈ D, and consider the rank one operator k̃Θ

λ ⊗kΘ
λ , which has operator norm ‖kΘ

λ ‖2
2.

Therefore there exists ψλ ∈ L∞ with AΘ
ψλ

= k̃Θ
λ ⊗ kΘ

λ and

(5.5) ‖ψλ‖p ≤ ‖ψλ‖∞ ≤ C‖kΘ
λ ‖2

2.

On the other hand, ϕλ = Θz̄kΘ2

λ ∈ KΘ⊕ z̄KΘ is also a symbol for k̃Θ
λ ⊗kΘ

λ by Lemma 5.1.

Applying Lemma 5.2, it follows that there exists a constant C1 > 0 such that

‖ϕλ‖p ≤ C1(‖ψλ‖p + ‖ϕλ‖2).

By (2.6) and Lemma 2.4 (b), we have

(5.6) ‖ϕλ‖2 = ‖kΘ2

λ ‖2 ≤ 2‖kΘ
λ ‖2 ≤ C2‖kΘ

λ ‖2
2.
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Therefore (5.5) and (5.6) yield

‖ϕλ‖p ≤ C1(C + C2)‖kΘ
λ ‖2

2.

Since ‖ϕλ‖p = ‖kΘ2

λ ‖p, using once more (2.6) concludes the proof. �

It is easy to see that if there exists ζ ∈ E(Θ) such that kΘ
ζ 6∈ Lp, then

sup
r<1

‖kΘ
rζ‖p

‖kΘ
rζ‖2

2

= ∞.

Therefore the existence of operators in T (KΘ) without bounded symbol, under the hypoth-

esis of Theorem 5.3, is also a consequence of Theorem 5.6. Note however that Theorem 5.6

does not show that the particular operator kΘ
ζ ⊗ kΘ

ζ is a bounded truncated Toeplitz oper-

ator without bounded symbol. A larger class of examples is described below.

Example 5.7. Let Θ be a Blaschke product such that for some sequence of its zeros zn

and some points ζn ∈ T (which are ”close to zn”), we have, for some p ∈ (2,∞),

(5.7) |Θ′(ζn)| = ‖kΘ
ζn‖2

2 ≍
1 − |zn|
|ζn − zn|2

, ‖kΘ
ζn‖pp ≍

1 − |zn|
|ζn − zn|p

(notation X ≍ Y means that the fraction X/Y is bounded above and below by some

positive constants), and

(5.8) lim
n→+∞

(1 − |zn|)1− 1

p

|ζn − zn|
= 0.

Condition (5.7) means that the main contribution to the norms of kΘ
ζn

is due to the closest

zero zn. Then, by Theorem 5.6, there exists a bounded truncated Toeplitz operator without

bounded symbol.

Such examples may be easily constructed. Take a sequence wk ∈ D such that wk → ζ

and

lim
k→+∞

(1 − |wk|)γ
|wk − ζ | = 0

for some ζ ∈ T and γ ∈ (0, 1). Then it is not difficult to see that for any p > max(2, (1 −
γ)−1) one can construct recurrently a subsequence zn = wkn of wk and a sequence ζn ∈ T

with the properties (5.7) and (5.8).

Although related to the examples of Theorem 5.3, this class of examples may be different.

Indeed, it is possible that Θ has no angular derivative at ζ , e.g., if 1−|zn| = |ζ−zn|2. Also,
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if the zeros tend to ζ ”very tangentially”, it is possible that kΘ
ζ is in Lp for any p ∈ (2,∞),

but there exists a bounded truncated Toeplitz operator without a bounded symbol.

We pass now to the Reproducing Kernel Thesis. The next example shows that in general

Question 2 has a negative answer.

Example 5.8. Suppose Θ is a singular inner function and s ∈ [0, 1). Then

AΘ
Θ̄sk

Θ
λ = PΘ

(
Θ̄s − Θ(λ)Θ1−s

1 − λ̄z

)

= PΘ

(
Θ̄s − Θ(λ)s + Θ(λ)s

(
1 − Θ(λ)1−sΘ1−s

)

1 − λ̄z

)

= PΘ

(
z̄
Θ̄s − Θs(λ)

z̄ − λ̄

)
+ Θ(λ)sPΘ

(
1 − Θ(λ)1−sΘ1−s

1 − λ̄z

)

= PΘ

(
z̄k̃Θs

λ

)
+ Θ(λ)sPΘ

(
kΘ1−s

λ

)
.

The first term z̄k̃Θs

λ is in z̄H2, which is orthogonal toKΘ, while the second kΘ1−s

λ is contained

in KΘ1−s ⊂ KΘ. Therefore we have

AΘ
Θ̄sk

Θ
λ = Θ(λ)skΘ1−s

λ ,

and

‖AΘ
Θ̄sk

Θ
λ ‖2

2 = |Θ(λ)|2s1 − |Θ(λ)|2−2s

1 − |λ|2 , ‖AΘ
Θ̄sh

Θ
λ ‖2

2 =
|Θ(λ)|2s(1 − |Θ(λ)|2−2s)

1 − |Θ(λ)|2 .

It is easy to see that supy∈[0,1)
ys−y
1−y

≤ 1 − s→ 0 when s→ 1, and therefore

ρr(A
Θ
Θ̄s) = sup

λ∈D

‖AΘ
Θ̄sh

Θ
λ ‖2

2 → 0 for s→ 1.

On the other hand, ΘsKΘ1−s ⊂ KΘ and Θ̄s(ΘsKΘ1−s) = KΘ1−s ⊂ KΘ; therefore AΘ
Θ̄s acts

isometrically on ΘsKΘ1−s , so it has norm 1. Thus there is no constant M such that

‖AΘ
ϕ‖ ≤M sup

λ∈D

ρr(A
Θ
ϕ )

for all ϕ.

It seems natural to deduce that in the previous example we may actually have a truncated

Toeplitz operator which is uniformly bounded on reproducing kernels but not bounded.

This is indeed true, by an abstract argument based on Proposition 3.3. Note that the
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quantity ρr introduced in (3.5) is a norm, and ρr(T ) ≤ ‖T‖, for every linear operator T

whose domain contains H∞ ∩KΘ.

Proposition 5.9. Assume that for any (not necessarily bounded) truncated Toeplitz opera-

tor A on KΘ the inequality ρr(A) <∞ implies that A is bounded. Then T (KΘ) is complete

with respect to ρr, and ρr is equivalent to the operator norm on T (KΘ).

Proof. Fix µ ∈ D such that Θ(µ) 6= 0. Let AΘ
ϕn

be a ρr-Cauchy sequence in T (KΘ).

Suppose all ϕn are written as ϕn = ϕn,+ + ϕn,−, with ϕn,+, ϕn,− ∈ KΘ, and ϕn,−(µ) = 0.

According to (3.9), the sequences ϕn,± are Cauchy sequences in KΘ and thus converge to

functions ϕ± ∈ KΘ; moreover we also have ϕ−(µ) = 0 (because norm convergence in H2

implies pointwise convergence). Define then ϕ = ϕ+ + ϕ− ∈ L2. By (3.10), we have

AΘ
ϕn
kΘ
λ = ω

[
(I − λS∗)−1 (ω(ϕn,+) + ϕn,−(λ)S∗Θ − Θ(λ)S∗ϕn,−)

]
,

so the sequence AΘ
ϕn
kΘ
λ tends (in KΘ) to AΘ

ϕk
Θ
λ , for all λ ∈ D. In particular, we have

ρr(A
Θ
ϕ ) < +∞, whence AΘ

ϕ ∈ T (KΘ). Now it is easy to see that AΘ
ϕn

→ AΘ
ϕ in the ρr-norm.

Thus T (KΘ) is indeed complete with respect to the ρr-norm. The equivalence of the

norms is then a consequence of the open mapping theorem. �

Proposition 5.9 and Example 5.8 imply that, if Θ is a singular inner function, then there

exist truncated Toeplitz operators AΘ
ϕ with ρr(A

Θ
ϕ ) finite, but AΘ

ϕ unbounded. Therefore

Question 2 has a negative answer for a rather large class of inner functions Θ. If we con-

sider such a truncated Toeplitz operator, then its adjoint, AΘ
ϕ̄ , is an unbounded truncated

Toeplitz operator with ρd(A
Θ
ϕ̄ ) = ρr(A

Θ
ϕ ) < +∞.

It is easy to see, however, that in Example 5.8 ρd(A
Θ
Θ̄s) = 1 for all s < 1. This suggests

that we should rather consider boundedness of the action of the operator on both the

reproducing kernels and the difference quotients, and that the quantity ρ might be a

better estimate for the norm of a truncated Toeplitz operator than either ρr or ρd. We

have been thus lead to formulate Question 3 as a more relevant variant of the RKT; further

arguments will appear in the next section.

6. Positive results

There are essentially two cases in which one can give positive answers to Questions 1

and 3. There are similarities between them: in both one obtains a convenient decomposition
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of the symbol in three parts: one analytic, one coanalytic, and one that is neither analytic

nor coanalytic, but well controlled.

6.1. A general result. As we have seen in Proposition 4.1 and 4.2, the answers to Ques-

tions 1 and 3 are positive for classes of truncated Toeplitz operators corresponding to

analytic and coanalytic symbols. We complete these propositions with a different bound-

edness result, which covers certain cases when the symbol is neither analytic nor coanalytic.

The proof is based on an idea of Cohn [14].

Theorem 6.1. Suppose θ and Θ are two inner functions such that θ3 divides zΘ and Θ

divides θ4. If ϕ ∈ Kθ +Kθ then ‖ϕ‖∞ ≤ 2ρr(A
Θ
ϕ ).

Proof. Using Lemma 2.3, if f ∈ L∞ ∩ θKθ, then f ∈ KΘ and ϕ̄f ∈ KΘ; thus AΘ
ϕ̄f = ϕ̄f .

If we write f = θf1, ϕ1 = θϕ̄, then ϕ1 ∈ H2, f1 ∈ Kθ, and ϕ1f1 = ϕ̄f = AΘ
ϕ̄f ∈ KΘ.

Therefore, for λ ∈ D,

|ϕ1(λ)f1(λ)| = |〈ϕ1f1, k
Θ
λ 〉| = |〈θf1, ϕk

Θ
λ 〉| = |〈θf1, A

Θ
ϕk

Θ
λ 〉|

≤ ‖f1‖‖AΘ
ϕk

Θ
λ ‖2 ≤ ‖f1‖‖kΘ

λ ‖2ρr(A
Θ
ϕ ),

where we used the fact that θf1 ∈ KΘ.

For a fixed λ ∈ D,

sup
f1∈Kθ∩L∞

‖f1‖2≤1

|f1(λ)| = sup
f1∈Kθ∩L∞

‖f1‖2≤1

|〈f1, k
θ
λ〉| = ‖kθλ‖2,

and thus

|ϕ1(λ)| ≤ ρr(A
Θ
ϕ )

‖kΘ
λ ‖2

‖kθλ‖2

= ρr(A
Θ
ϕ )

(1 − |Θ(λ)|2)1/2

(1 − |θ(λ)|2)1/2
.

If Θ divides θ4, then |Θ(λ)| ≥ |θ(λ)|4, and therefore

1 − |Θ(λ)|2 ≤ 1 − |θ(λ)|8 ≤ 4(1 − |θ(λ)|2).

It follows that |ϕ1(λ)| ≤ 2ρr(A
Θ
ϕ ) for all λ ∈ D, and thus ‖ϕ1‖∞ ≤ 2ρr(A

Θ
ϕ ). The proof is

finished by noting that ‖ϕ‖∞ = ‖ϕ1‖∞. �

As a consequence, we obtain a general result for the existence of bounded symbols and

Reproducing Kernel Thesis.
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Corollary 6.2. Let Θ be an inner function and assume that there is another inner function

θ such that θ3 divides zΘ and Θ divides θ4. Suppose also there are constants Ci > 0,

i = 1, 2, 3 such that any ϕ ∈ L2 can be written as ϕ = ϕ1 + ϕ2 + ϕ3, with:

(a) ϕ1 ∈ Kθ +Kθ, ϕ2 ∈ H2, and ϕ3 ∈ H2;

(b) ρ(AΘ
ϕi

) ≤ Ciρ(A
Θ
ϕ ) for i = 1, 2, 3.

Then the following are equivalent:

(i) AΘ
ϕ has a bounded symbol;

(ii) AΘ
ϕ is bounded;

(iii) ρ(AΘ
ϕ ) < +∞.

More precisely, there exists a constant C > 0 such that any truncated Toeplitz operator AΘ
ϕ

has a symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρ(AΘ
ϕ ).

There are of course many decompositions of ϕ as in (a); the difficulty consists in finding

one that satisfies (b).

Proof. It is immediate that (i) =⇒ (ii) =⇒ (iii), so it remains to prove (iii) =⇒ (i). Since

ρ(AΘ
ϕi

) < +∞, i = 2, 3, Proposition 4.1 and 4.2 imply that AΘ
ϕi

have bounded symbols ϕ̃i

with ‖ϕ̃i‖∞ ≤ C̃ρ(AΘ
ϕi

) ≤ C̃Ciρ(A
Θ
ϕ ). As for ϕ1, we can apply Theorem 6.1 which gives

that ϕ1 is bounded with ‖ϕ1‖∞ ≤ 2ρr(A
Θ
ϕ1

) ≤ 2C1ρ(A
Θ
ϕ ). Finally AΘ

ϕ has the bounded

symbol ϕ0 = ϕ1 + ϕ̃2 + ϕ̃3 whose norm is at most (2C1 + C̃(C2 + C3))ρ(A
Θ
ϕ ). �

6.2. Classical Toeplitz matrices. Suppose Θ(z) = zN ; the space KΘ is then an N -

dimensional space with orthonormal basis formed by monomials, and truncated Toeplitz

operators have a (usual) Toeplitz matrix with respect of this basis. Of course every trun-

cated Toeplitz operator has a bounded symbol; it is however interesting that there exists

a universal estimate of this bound. The question had been raised in [29, Section 7]; the

positive answer had actually been already independently obtained in [6] and [24]. The

following result is stronger, giving a universal estimate for the symbols in terms of the

action on the reproducing kernels.

Theorem 6.3. Suppose Θ(z) = zN . There exists a constant C > 0, independent of N , such

that any truncated Toeplitz operator AΘ
ϕ has a symbol ϕ0 ∈ L∞ such that ‖ϕ0‖∞ ≤ Cρ(AΘ

ϕ ).
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Proof. Consider a smooth function ηk on T, and the convolution (on T) ϕk = ηk ∗ ϕ, that

is,

ϕk(e
is) =

1

2π

∫ π

−π

ηk(e
it)ϕ(ei(s−t)) dt.

We have then ϕ̂k(n) = η̂k(n)ϕ̂(n), n ∈ Z.

The map τt defined by τt : f(z) 7→ f(eitz) is a unitary on KΘ and straightforward

computations show that

(6.1) τth
Θ
λ = hΘ

e−itλ and τth̃
Θ
λ = ei(N−1)th̃Θ

e−itλ,

for every λ ∈ D. By Fubini’s Theorem and a change of variables we have

〈AΘ
ϕk
f, g〉 =

1

2π

∫ π

−π

ηk(e
it)〈AΘ

ϕ τt(f), τt(g)〉 dt,

for every f, g ∈ KΘ. That implies that

‖AΘ
ϕk
hΘ
λ ‖ = sup

g∈KΘ

‖g‖2≤1

∣∣〈AΘ
ϕk
hΘ
λ , g〉

∣∣ ≤ sup
g∈KΘ

‖g‖2≤1

1

2π

∫ π

−π

|ηk(eit)||〈AΘ
ϕτt(h

Θ
λ ), τt(g)〉| dt,

and using (6.1), we obtain

‖AΘ
ϕk
hΘ
λ ‖ ≤ ‖ηk‖1ρr(A

Θ
ϕ ) ≤ ‖ηk‖1ρ(A

Θ
ϕ ).

A similar argument shows that

‖AΘ
ϕk
h̃Θ
λ ‖ ≤ ‖ηk‖1ρ(A

Θ
ϕ )

and thus

(6.2) ρ(AΘ
ϕk

) ≤ ‖ηk‖1ρ(A
Θ
ϕ ).

Now consider the Fejér kernel Fm, defined by the formula F̂m(n) = 1 − |n|
m

for |n| ≤ m

and F̂m(n) = 0 otherwise. It is well known that ‖Fm‖1 = 1 for all m ∈ N. If we take

M =
[
N+1

3

]
and define ηi (i = 1, 2, 3) by

η1 = FM , η2 = 2e2iMtF2M − e2iMtFM , η3 = η̄2,

then η̂2(n) = 0 for n < 0, η̂3(n) = 0 for n > 0, η̂1(n) + η̂2(n) + η̂3(n) = 1 for |n| ≤ N ,

and ‖η1‖1 = 1, ‖ηi‖1 ≤ 3 for i = 2, 3. If we denote ϕi = ηi ∗ ϕ, then ϕ = ϕ1 + ϕ2 + ϕ3,

ϕ1 ∈ KzM +KzM , ϕ2 is analytic and ϕ3 is coanalytic. Moreover z3M divides zN+1 and zN

divides z4M . According to (6.2), we can apply Corollary 6.2 to obtain that there exists a

universal constant C > 0 such that AΘ
ϕ has a bounded symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρ(AΘ

ϕ ).
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�

In particular, it follows from Theorem 6.3 that any (classical) Toeplitz matrix Az
N

ϕ has

a symbol ϕ0 such that ‖ϕ0‖∞ ≤ C‖AzN

ϕ ‖. The similar statement is proved with explicit

estimates ‖ϕ0‖∞ ≤ 4‖AzN

ϕ ‖ in [6] and ‖ϕ0‖∞ ≤ 3‖AzN

ϕ ‖ in [24].

We can obtain a slightly more general result (in the choice of the function Θ).

Corollary 6.4. Suppose Θ = bNα , with bα(z) = α−z
1−ᾱz

a Blaschke factor. There exists

a universal constant C > 0 such that any truncated Toeplitz operator AΘ
ϕ has a symbol

ϕ0 ∈ L∞ such that ‖ϕ0‖∞ ≤ Cρ(AΘ
ϕ ).

Proof. The mapping U defined by

(U(f))(z) :=
(1 − |α|2)1/2

1 − ᾱz
f(bα(z)), z ∈ D, f ∈ H2,

is unitary on H2 and one easily checks that UPzN = PΘU . In particular, it implies that

U(KzN ) = KΘ; straightforward computations show that

(6.3) Uhz
N

λ = cλh
Θ
bα(λ) and Uh̃z

N

λ = −c̄λh̃Θ
bα(λ),

for every λ ∈ D, where cλ := |1 − λ̄α|(1 − λ̄α)−1 is a constant of modulus one.

Suppose AΘ
ϕ is a (bounded) truncated Toeplitz operator; if Φ = ϕ ◦ bα, then the relation

UPzN = PΘU yields Az
N

Φ = U∗AΘ
ϕU . Thus, using (6.3), we obtain

‖AzN

Φ hz
N

λ ‖2 = ‖U∗AΘ
ϕUh

zN

λ ‖2 = ‖AΘ
ϕh

Θ
bα(λ)‖2

and

‖AzN

Φ h̃z
N

λ ‖2 = ‖U∗AΘ
ϕUh̃

zN

λ ‖2 = ‖AΘ
ϕ h̃

Θ
bα(λ)‖2,

which implies that

(6.4) ρ(Az
N

Φ ) = ρ(AΘ
ϕ ) .

Now it remains to apply Theorem 6.3 to complete the proof. �

6.3. Elementary singular inner functions. Let us now take Θ(z) = exp( z+1
z−1

). A

positive answer to Questions 1 and 3 is a consequence of results obtained by Rochberg [28]

and Smith [31] on the Paley–Wiener space. We sketch the proof for completeness, without

entering into details.
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Theorem 6.5. If Θ(z) = exp( z+1
z−1

) and AΘ
ϕ is a truncated Toeplitz operator, then the

following are equivalent:

(i) AΘ
ϕ has a bounded symbol;

(ii) AΘ
ϕ is bounded;

(iii) ρ(AΘ
ϕ ) <∞.

More precisely, there exists a constant C > 0 such that any truncated Toeplitz operator

AΘ
ϕ has a symbol ϕ0 with ‖ϕ0‖∞ ≤ Cρ(AΘ

ϕ ).

Proof. By Remark 3.5 it is enough to prove the corresponding result for the space KΘ,

where Θ(w) = eiw, and ρ is the analogue of ρ for operators on KΘ. If F denotes the

Fourier transform on R, then KΘ = F−1(L2([0, 1])), and we may suppose that the symbol

ϕ ∈ (t+ i)F−1(L2([−1, 1])).

For a rapidly decreasing function η on R, define

(6.5) Ψ(s) =

∫

R

η(t)ϕ(s− t) dt.

We have then Ψ̂ = η̂ϕ̂ and ρ(AΘ

ψ ) ≤ ‖η‖1 · ρ(AΘ

ϕ ).

Take now ψi, i = 1, 2, 3, such that supp ψ̂1 ⊂ [−1/3, 1/3], supp ψ̂2 ⊂ [0, 2], supp ψ̂3 ⊂
[−2, 0], and ψ̂1 + ψ̂2 + ψ̂3 = 1 on [−1, 1]. If we define ϕi by replacing η with ψi in (6.5),

then there is a constant C1 > 0 such that ρ(AΘ

ϕi
) ≤ C1ρ(AΘ

ϕ) for i = 1, 2, 3.

On the other hand, ϕ = ϕ1 + ϕ2 + ϕ3, ϕ1 ∈ KΘ1/3 + KΘ1/3 , ϕ2 is analytic, ϕ3 is

antianalytic. We may then apply the analogue of Corollary 6.2 for the upper half-plane

which completes the proof.

�

One can see easily that a similar result is valid for any elementary singular function

Θ(z) = exp
(
az+ζ
z−ζ

)
, for ζ ∈ T, a > 0.

Remark 6.6. Truncated Toeplitz operators on the model space KΘ with Θ(w) = eiaw

are closely connected with the so-called truncated Wiener–Hopf operators. Let ϕ ∈ L1(R)

and let

(Wϕf)(x) =

∫ a

0

f(t)ϕ(x− t)dt, x ∈ (0, a),

for f ∈ L2(0, a) ∩ L∞(0, a). If W extends to a bounded operator on L2(0, a), then it is

called a truncated Wiener–Hopf operator. If ϕ = ψ̂ with ψ ∈ (t + i)L2(R) (the Fourier
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transform may be understood in the distributional sense), then

Wϕf = FPΘ(ψg)

for g = f̌ ∈KΘ. Thus, the Wiener–Hopf operator Wϕ is unitarily equivalent to AΘ

ψ .

7. Truncated Toeplitz operators with positive symbols

As noted in Remark 5.4, if ϕ ∈ L2 is a positive function, then AΘ
ϕ is bounded if and only

if ϕdm is a Carleson measure for KΘ. As a consequence mainly of results of Cohn [11, 12],

one can say more for positive symbols ϕ for a special class of model spaces. Recall that

Θ is said to satisfy the connected level set condition (and we write Θ ∈ (CLS)) if there is

ε ∈ (0, 1) such that the level set

Ω(Θ, ε) := {z ∈ D : |Θ(z)| < ε}

is connected. Such inner functions are also referred to as one-component inner functions.

Theorem 7.1. Let Θ be an inner function such that Θ ∈ (CLS). If ϕ is a positive function

in L2, then the following conditions are equivalent:

(1) AΘ
ϕ is a bounded operator on K2

Θ;

(2) supλ∈D
‖AΘ

ϕh
Θ
λ ‖2 < +∞;

(3) supλ∈D
|〈AΘ

ϕh
Θ
λ , h

Θ
λ 〉| < +∞;

(4) AΘ
ϕ has a bounded symbol.

Proof. The implications (4) =⇒ (1) =⇒ (2) =⇒ (3) are obvious.

We have

(7.1)

∫

T

ϕ|hΘ
λ |2 dm = 〈ϕhΘ

λ , h
Θ
λ 〉 = 〈PΘϕh

Θ
λ , h

Θ
λ 〉 = 〈AΘ

ϕh
Θ
λ , h

Θ
λ 〉.

It is shown in [11] that, for Θ ∈ (CLS), a positive µ satisfies supλ∈D
‖hΘ

λ ‖L2(µ) <∞ if and

only if it is a Carleson measure for KΘ. Thus (3) implies that ϕdm is a Carleson measure

for KΘ, which has been noted above to be equivalent to AΘ
ϕ bounded; so (1) ⇐⇒ (3).

On the other hand, it is proved in [12] that if AΘ
ϕ is bounded, then there are functions

v ∈ L∞(T) and h ∈ H2 such that ϕ = Re(v + Θh). Write then

ϕ = Re v +
1

2
(Θh+ Θ̄h̄),

which implies that ϕ − Re v ∈ ΘH2 + ΘH2. Therefore AΘ
ϕ = AΘ

Re v and Re v ∈ L∞(T).

Thus the last remaining implication (1) =⇒ (4) is proved. �
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Remark 7.2. In [11], Cohn asked the following question: let Θ be an inner function and

let µ be a positive measure on T such that the singular part of µ is supported on a subset

of T \ σ(Θ); is it sufficient to have

sup
λ∈D

∫

T

|hΘ
λ |2 dµ < +∞,

to deduce that µ is a Carleson measure for KΘ? In [23] Nazarov and Volberg construct a

counterexample to this question with a measure µ of the form dµ = ϕdm where ϕ is some

positive function in L2. In our context, this means that they provide an inner function Θ

and a positive function ϕ ∈ L2 such that

(7.2) sup
λ∈D

|〈AΘ
ϕh

Θ
λ , h

Θ
λ 〉| < +∞,

while AΘ
ϕ is not bounded. But the condition (7.2) is obviously weaker than ρr(A

Θ
ϕ ) < +∞

(note that since ϕ is positive, the truncated Toeplitz operator is positive and ρr(A
Θ
ϕ ) =

ρ(AΘ
ϕ )). Thus an answer to Question 3 does not follow from the Nazarov–Volberg result.

Remark 7.3. It is shown by Aleksandrov [3, Theorem 1.2] that the condition

sup
λ∈D

‖kΘ
λ ‖∞

‖kΘ
λ ‖2

2

< +∞

is equivalent to Θ ∈ (CLS). On the other hand, as we have seen in Theorem 5.6, the

condition

sup
λ∈D

‖kΘ
λ ‖p

‖kΘ
λ ‖2

2

= +∞

for some p ∈ (2,∞) implies that there exists a bounded operator in T (KΘ) without a

bounded symbol. Therefore, based on Theorem 7.1 and Theorem 5.6, it seems reasonable

to state the following conjecture.

Conjecture. Let Θ be an inner function. Then any bounded truncated Toeplitz operator

has a bounded symbol if and only if Θ ∈ (CLS).
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