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Generalization of Cramer's rule and its application to The projection of Hartree-Fock wave function

We generalize the Cramer's rule of linear algebra. We apply it to calculate the spectra of nucleus by applying Hill-Wheeler projection operator to Hartree-Fock wave function, and to derive Löwdin formula and Thouless theorem. We derive by an elementary method the infinitesimal or Löwdin projection operators and its integral representation to be useful for the projection of Slater determinant.

Introduction

The Hartree-Fock variationnelle method provides an approximate determination of ground states and ground state energies of quantum mechanical systems, and widely used in physics and chemistry. In Hartree-Fock method [START_REF] Brink | Enrico Fermi[END_REF][START_REF] Ripka | Fundamentals in nuclear Theory[END_REF][START_REF] Praharaj | Contemporary Nuclear Physics[END_REF] we approximate the ground state of the system by a Slater determinant HF Φ constructed from the states of nucleons which are eigenstates of a single particle hamiltonien called Hartree-Fock hamiltonien. This wave function is not function of angular momentum, and the calculation of rotational energy [START_REF] Praharaj | Contemporary Nuclear Physics[END_REF][START_REF] Hill | [END_REF]7] can be done by using the integral representation of Hill-Wheeler operator or using the infinitesimal projection operators [8]. The great recent interest [START_REF] Praharaj | Band Structure of nuclei in Deformed Hartree-Fock and Angular Momentum Projection theory[END_REF][13][14][15][START_REF] Naik | Rotational bands of 169,171,173 Lu in deformed Hartree-Fock and angular momentum projection model[END_REF] to study the projection theory and their application in nuclear physics leads me to resume my former works on the projection of angular momentum [START_REF] Hage-Hassan | thèse 3éme cycle juin 1970[END_REF].

Löwdin [START_REF] Praharaj | Contemporary Nuclear Physics[END_REF]7] proposed a formula for the calculation of the spectrum of energy levels, but this method requires a long calculation [START_REF] Brink | Enrico Fermi[END_REF][9][10][START_REF] Hage-Hassan | thèse 3éme cycle juin 1970[END_REF][START_REF] Praharaj | Band Structure of nuclei in Deformed Hartree-Fock and Angular Momentum Projection theory[END_REF] and does not take account the conditions of stability resulting from the minimization of the energy of the system.

We observe that the calculation of the rotational energy using the Hartree-Fock theory implies the calculation of a determinant, the overlap of rotation, and a set of determinants which differs from it by the change of two columns [START_REF] Ripka | Fundamentals in nuclear Theory[END_REF][START_REF] Praharaj | Contemporary Nuclear Physics[END_REF][START_REF] Hage-Hassan | thèse 3éme cycle juin 1970[END_REF][START_REF] Praharaj | Band Structure of nuclei in Deformed Hartree-Fock and Angular Momentum Projection theory[END_REF]. This leads us to the generalization of Cramer's rule of linear algebra [START_REF] Hage-Hassan | thèse 3éme cycle juin 1970[END_REF] allowing us to calculate all these determinants by Gauss Elimination method. This method takes into account the conditions of stability and minimizes the time of executions. Using this generalization we derive the Löwdin formula and the well known Thouless theorem [17,[START_REF] Rowe | Fundamentals in nuclear Theory[END_REF].

The infinitesimal projection operators of Löwdin [START_REF] Shapiro | [END_REF][START_REF] Tolstoy | Fortieth Anniversary of Extremal Projector Method for Lie Symmetries[END_REF][START_REF] Molev | Gelfand-Tsetlin bases for classical Lie algebras[END_REF] was ignored or "not known to most physicists" [START_REF] Tolstoy | Fortieth Anniversary of Extremal Projector Method for Lie Symmetries[END_REF], despite the important mathematical works that was devoted to extend it to the Lie groups. The calculations using this operator is not easy and especially to project a Slater determinant. To overcome this difficulty, we present an elementary and general method for the determination of infinitesimals projection operators. Thus, we find the projections operators for the harmonic oscillator, for angular momentum and their relationship with the Gauss function. Then we find the integral representation of Löwdin operator useful for the projection of Slater determinant.

We present in the second section the generalization of Cramer's rule. We present in the third section a brief review of Hartree-Fock and the projection methods of the wave function to obtain the spectra of nuclei. In the fourth section we apply the general Cramer's rule for the derivation of the Löwdin formula and Thouless theorem. In the fifth section we derive the integral representation of Löwdin operator.

Generalization of Cramer's rule

Let E be a vector space of dimension (n) with basis is another set of linearly independent vectors, belonging to E. We denote by (A) the matrix formed by the components of the vectors ) ( i a r and ( )
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Prove: We will proceed by induction, s = 1 then 2, etc.

It is well known from the multilinear algebra [START_REF] Zamansky | Introduction à l'algèbre et l'analyse moderne[END_REF] 
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in the second term of the first member, we can interchange the order of vectors and we change the sign, by replacing the expressions of the first member using their value of (2.4) we get the expression.
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Using the result of the case s-1 and we note the minors by min, we find:

= + + - )) , ( min( ) , ( )) , ( min( ) , ( )) , ( min( ) , ( )[ det( 2 2 1 1 s s i s x i s x i s x i s x i s x i s x A K ) , , , , , , , , det( ) , ( ) , ( ) , 1 ( ) , 1 ( 
) det( 1 1 1 1 1 n s i i s s s a b a b a a i i x i s x i x i x A s K r r K r r K K M M M K = ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ =
(2.9)

The projection of the Hartree-Fock wave function

We present at first the basis of Hartree-Fock and then the calculation of the spectrum of rotations. For the calculation of the spectrum, we applied the projection of the Hartree-Fock wave function, and the application of Cramer's rule's generalization.

The Hartree-Fock basis

The variationnelle method leads to a hamiltonien called Hartree-Fock Hamiltonian whose eigenfunctions are the states of particles{ } i c .

We denote the occupied states by
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the unoccupied states. In the second quantization formalism we write the wave functions of the system with the creation and destruction operators
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and we choose the wave function of Hartree-Fock as starting point. 0
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We note the states { } , etc. All these states form a complete orthonormal basis which we call the Hartree-Fock basis.

The expression of the projection of the Hartree-Fock wave function

The spectrum of energy levels is given in the Peierls-Yoccoz theory [START_REF] Brink | Enrico Fermi[END_REF][START_REF] Ripka | Fundamentals in nuclear Theory[END_REF][START_REF] Praharaj | Contemporary Nuclear Physics[END_REF] by
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With H = T + V is the Hamiltonian, T is the kinetic energy and V is the potential energy.
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are the elements of the potential matrix.

We prove by simple calculation that [2]: ) , , , det( We performed the calculations of ) , ( i k x using the Gauss elimination method and the integration by Gauss method or Gauss-Legendre integration [START_REF] Hage-Hassan | thèse 3éme cycle juin 1970[END_REF].

Applications of generalized Cramer's rule to the derivation of

Löwdin formula and Thouless theorem

Generalization of Cramer's rule and Löwdin formula

We can extend the definition of variables ) , ( i k x by
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kj A are the minor of the matrix (A).

We deduce that the one body potential may be written in the formalism of second quantization:
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is the unitary operator in the space of one particle state.
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Following the same method we find for the two body potential
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The inconvenient of Löwdin formula is the calculation of the elements } { l k j i a a VR a a that require long calculation.

Generalization of Cramer's rule and Thouless theorem

Let Ψ and Φ be two wave functions such that Φ = Ψ U , U is an invertible linear transformation and I is the unit operator of Hartree-Fock basis. We have
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This expression is written in the form
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In the particular case where Φ Φ U = 1 we obtain the Thouless function [START_REF] Rowe | Fundamentals in nuclear Theory[END_REF].

Derivation of integral representation of Löwdin projection operator

The success of Hill-Wheeler [START_REF] Ripka | Fundamentals in nuclear Theory[END_REF] operator is due to the exponential form of the rotation operator so it is normal to find a similar expression for the infinitesimal operator. Thus, we find by a simple method the projections operators for the harmonic oscillator and angular momentum. Then we find the integral representation of Löwdin operator useful for the projection of Slater determinant. We start from the fact that the states of classical groups [START_REF] Louck | [END_REF][24] we can eliminate all the states before n ϕ , using the raising and lowering operators. We also find that these projectors have the form: 0 , ) (, ) (
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N, i γ are constants, z=1 is a root of the Gauss function, 1 2 F [START_REF] Rowe | Fundamentals in nuclear Theory[END_REF] and
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projection operators of the harmonic oscillator

We want to determine the projector We find that
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The identification of (5, 1) and (5.2) gives the triangular linear system of equations
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Thus we get the projection operator n n p n = of the harmonic oscillator:
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We obtain the same expression of Schwinger [START_REF] Schwinger | Quantum Theory of Angular Momentum[END_REF] for n = 0 and 0 0 0 = p .

If we replace n γ by 

Integral representation of the infinitesimal projection operator

We derive first the expression of Löwdin projection operator and then its integral representation.

Expression of Löwdin projection operator jm P

Let Φ be a wave function of a system that has axial symmetry, admitting m as eigenvalue of z J . The development of Φ on the basis{ } jm is:
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It is well known from the theory of angular momentum that: ,
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Using the relation (5.9) and taking into account the relations (5.10) we find the system: .
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We follow the same method as above for the derivation of the triangular linear system 0 ) ( = z P r γ . We get the solution: 
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 3 assure that the average value of H is minimal [], the variationnelle method imposes the condition:If we introduce the unitary operator of Hartree-Fock basis between H and R of the expression account the condition (3.3), we find in the case of axial symmetry:
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 6 According to the preceding theorem, we deduce the final expression of energy.
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  , a are the creations and destructions operators of the harmonic oscillator defined by:

2

 2 operator obtained by Löwdin[8] by a different method: Integral representation of the infinitesimal projection operator Using the expression of the integral[START_REF] Vilenkin | Fonctions spéciales et théorie de la représentation des groupes[END_REF] in[START_REF] Hill | [END_REF]14), we find by a simple calculation the integral representation of the infinitesimal projection operator.