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Abstract
This paper presents an algebraic approach of fault diagnosis in linear dynamical system. Additive
actuator and sensor faults are considered. Using tools and results of algebraic identification and
pseudospectra analysis, a method is proposed for the generation of a residual sensitive to faults.
The main advantage of this new approach is to realize fault diagnosis only from knowledge
of input and output measurements and without identifying explicitly model parameters. A
numerical example is provided and discussed to illustrate the efficiency of the proposed fault
diagnosis method.
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1. INTRODUCTION

Fault diagnosis methods include some actions imple-
mented in order to detect, isolate and identify any ab-
normal phenomenon on a system.
One can find in (Isermann [2006]), (Patton et al. [2000])
and the references therein the classical approaches using
analytical information and which allow to do robust fault
diagnosis in the presence of unknown entries and para-
metric uncertainties, namely parity space, observer and
parameter estimation. These methods depend not only
on structural knowledge of the system, but also require
knowledge of system parameters that can be more or less
accurate.
The fault diagnosis approach proposed in this paper, con-
trary to the usual approaches, does not need a process
identification procedure. In particular, the only assump-
tions that we will make concern:

• the process structure,
• the fault structure.

It means that:
- for the first assumption, we consider only known the
degree of the differential equation modelling the system
although its coefficients are assumed to be unknown and
constant.
- for the second assumption, we consider structured addi-
tive actuator and sensor faults (Fliess and Sira-Ramirez
[2003]) which take a large variety of signals into account.

For the design of the fault diagnosis algorithm, we adopt
a distributional formulation (also used in (Fliess and Sira-
Ramirez [2003]) and (Belkoura and Richard [2006])). This
formulation allows us to transform the diagnosis problem
into spectrum analysis problem from which we can detect
and isolate faults without estimating system parameters.
The paper is organized as follows. Section 2 is devoted to
the recall of mathematical tools which will be used along

the paper. In section 3, different assumptions are made on
the system structure and the fault signal structures before
defining and solving the fault diagnosis problem. Section
4 illustrates our approach with an academic example.

2. MATHEMATIC TOOLS

2.1 Distribution theory

We recall in this section some definitions and results
from the distribution theory (Schwartz [1966]) and fix the
notations we will use later.

Let K be an open set of R, the support of a function
f defined on set K is the closure of the set of points
where the function is not zero and is written Supp(f).
The space of smooth functions (infinitely differentiable)
with compact support in K is denoted by D(K), D′(K)
is the space of distributions on K, i.e. the space of linear
and continue functionals on D(K). Distributions extend
the concept of derivative to all locally integrable functions.
If a function f is locally measurable on K, we define
the regular distribution Tf in D′(K) for all φ ∈ D(K)
by < Tf , φ >=

∫
f(s)φ(s)ds. In addition, if function f

is continuous except at point x with a finite jump sx,
the associated distribution derivative is given by Ṫf =

ḟ − sxδx, where ḟ is the usual derivative of function
f . The complement of the largest open subset of K in
which the distribution T vanishes 1 is called the support
of T ; we denote it also by Supp(T ). A subspace of
distributions of great interest in control theory is the
subspace D′

+ of distributions with left bounded support
(contained in [0, +∞[). Equipped with convolution and
addition operations, this subspace becomes a convolution
algebra with Dirac delta distribution δ as convolution
identity. The Dirac distribution with delay τ is written

1 We said that a distribution T vanishes on Ω ⊂ K if T (φ) = 0 for
all φ ∈ D(Ω)



as δτ . The distribution T is said to be finite order if there
exists a natural number m so that, for all compact subsets
Ω ⊂ K with no empty interior

∃C > 0 : ∀φ ∈ D(Ω), |T (φ)| ≤ C sup
0≤i≤m

||φ(i)||∞

The smallest number m satisfying the above inequality is
called the order of the distribution T and is written as
Ord(T ).

Example 2.1. Supp(δτ ) = {τ} and Ord(δτ ) = 0.
Supp(Tf) = Supp(f) and Ord(Tf ) = 0.

Derivation, integration and translation can be formed from

the convolution product ẏ = δ(1) ∗ y,
∫ t

0 y = H ∗ y,
y(t− τ) = δτ ∗ y, where H is the unit step function (Heav-
iside distribution). The next theorem is the main result
from which we will design our fault diagnosis algorithm.

Theorem 2.1. (Schwartz [1966]) If a distribution T has
a compact support Supp(T ) and a finite order m then
αT = 0 whatever smooth function α and all its derivatives
of order≤ m vanish on Supp(T ).

According to the above theorem, it follows

tkδ(n) =







0 if k > n

(−1)k n!

(n − k)!
δ(n−k)
τ else

(1)

Finally, if the convolution product of distributions S and
T is well defined, we have the following equality

tn(S ∗ T ) =
n∑

k=0

Ck
n(tkS) ∗ (tn−kT ), ∀t ∈ R, n ∈ N (2)

2.2 Spectral analysis

Given matrices Ã0, Ã1, .., Ãk ∈ R
m×n, we assume that

there exists at least one vector of reals β̃ which reduces
the rank of the pencils Ã0 − β̃1Ã1 − β̃2Ã2− ...− β̃kÃk, i.e.,
there exists X̃ ∈ R

n/{0} so that

(Ã0 − β̃1Ã1 − β̃2Ã2 − ... − β̃kÃk)X̃ = 0 (3)

Consider now matrices A0, A1, .., Ak originated from ma-
trices Ã0, Ã1, .., Ãk by perturbation (additive noises). The
problem we want to solve in this section is the following:
Given perturbed matrices A0, A1, .., Ak (without knowing

matrices Ã0, Ã1, .., Ãk), we search vector β = (β1, ..., βk)
solution of the problem

{
min

||X||=1,λ
||(A0 − λ1A1 − λ2A2 − ... − λkAk)X ||2

(Ã0 − λ1Ã1 − λ2Ã2 − ... − λkÃk)X = 0
(4)

Note that if || • || is the 2-norm, then

min
||X||=1

||(A0 − λ1A1 − ...− λkAk)X|| = σmin(A0 − λ1A1... − λkAk)

and β can be characterized by

β = argmin
λ

σmin(A0 − λ1A1... − λkAk)

where σmin(•) denotes the smallest singular value of •.
Let, for each ǫ ≥ 0, Λǫ(A0, ..., Ak) be the set

{λ ∈ R
k : σmin(A0 − λ1A1 − .. − λkAk) ≤ ǫ}

Sets Λǫ(A0, ..., Ak) are most likely to be empty for very
small values of ǫ. As this value grows, we obtain a family
of nonempty sets Λǫ(A0, ..., Ak). Then, β can be estimated

as local minimum of this famly of sets. The case k = 1
which has been the subject of a wide literature ((Boutry
et al. [2005]) and (Wright and Trefethen [2002])) is called
generalized eigenvalue problem. If k > 1, we will show
that, with a suitable choice of dimensions m and n, one
can always bring back to the case k = 1.

Definition 2.1. (cokernel)
The cokernel of matrix M , denoted by coker(M), is a
matrix N such that matrix NM is the zero. A matrix
can admit more than one matrix as cokernel.

Let m, n ∈ N with m > n and A a matrix in R
m×n.

There exists an orthogonal matrix Q ∈ R
m×m and an

upper triangular matrix R ∈ R
m×n so that A = QR. This

decomposition is called qr decomposition. It also gives a
cokernel of dimension ((m−n)×m) of matrix A, it’s matrix
N which rows are the transpose of the m−n last columns
of matrix Q (i.e. N = Q(:, n + 1 : m)T ). Indeed Q being
orthogonal, we have

NQ = (0m−n,nIm−n) and

NA = NQR

= [0m−n,nIm−n]R

= 0m−n,nR(1 : n, :) + Im−nR(n + 1 : m, :)

= 0m−n,n

We give now a solution of the above problem. Let m >
(k − 1)n and consider Nk the cokernel of matrix Ak with
dimension (m− n)×m computed from qr decomposition.
Then, we can write

σmin(A0 − β1A1 − .. − βkAk) =

σmin(NkA0 − β1NkA1 − ... − βk−1NkAk−1)

because σmin is invariant under orthogonal transforma-
tions.
Now, let Nk−1 ∈ R

(m−2n)×(m−n) be the cokernel of matrix
NkAk−1. We have

σmin(NkA0 − β1NkA1 − ... − βk−1NkAk−1) =

σmin(Nk−1NkA0 − ... − βk−2Nk−1NkAk−2)

and so on, this process gives the following equality

σmin(A0 − β1A1 − ... − βkAk) =

σmin(P1,kA0 − β1P1,kA1)

where P1,k = N2N3...Nk and Nj is a cokernel of di-
mension (m − (k − j + 1)n) × (m − (k − j)n) of matrix
Nj+1Nj+2...NkAj , 2 ≤ j ≤ k − 1 (that justifies the choice
m > (k − 1)n). These operations allow to determinate β1.
The estimations of β2,..., βk can be achieved by applying
the same steps.

The obvious algorithm to calculate argmin
λ

σmin(A− λB)

where A and B are matrices of same dimension is to
evaluate σmin(A − λiB) for values of λi on a grid in the
complex plane and then to generate a contour plotted
from this data. Finally, we can take the possible minima
on the intersection of the real axis and the contour. The
number of possible local minima depends on the matrix
rank. For example, in the above study, for each element βi,



the number of distinct solutions varies from 1 to inf(n, m−
(k − 1)n). Additional constraints on βi permit to search
particular solution of the problem.

In the next section, we show the interest of concepts
presented in this section. The design of the fault diagnosis
algorithm leads to solve a problem expressed as (4), where
matrices Ai are composed of process signal measurements
and vector β contains the useful parameter to accomplish
the fault diagnosis task.

3. FAULT DIAGNOSIS

Before detailing the algorithm stages, we make in the next
subsections some assumptions about the system structure
and the fault signals.

3.1 Model structure

Consider system (
∑

) where control signal ur(t) and out-
put signal yr(t) satisfy a differential equation described
by

{

any(n)
r + an−1y

(n−1)
r + ... + a0yr = bur

y(i)
r (0), i = 0, ..., n − 1

(5)

Parameter ai, b and the initial conditions are supposed
unknown and constant. In the distributional formulation
(by kipping the same notation for the signals and their
associated distributions), the system (5) becomes

any(n)
r + an−1y

(n−1)
r + ... + a0yr = bur + φ0 (6)

where φ0 is a linear combination of derivatives Dirac
distribution of order less or equal to n − 1 and contains
the contributions of the initial conditions.

When an actuator fault denoted fa and a sensor fault
denoted fc occur, then the system is controlled by u(t)+fa

and generates output y(t)−fc where u(t) is the true control
computed by the controller and y(t) is the measured
output, as illustrated in figure (1). Then, signals u and
y satisfy an equation of the form:

any(n) + ...+a0y = φ0 +bu+bfa +anfc
(n) + ...+a0fc (7)

∑

u ur yr

fa fc

y

Figure 1. System with actuator and sensor faults.

3.2 Fault signal structure

We deal with fault signals modelled by structured sig-
nals (Fliess and Sira-Ramirez [2003]). A structured signal
can be defined, in an informal way, as a solution of a
linear differential equation. The main fault signals found
in literature (abrupt, ramp, intermittent faults) can be
modelled as structured signals (Fliess et al. [2010]). For
this presentation, we deal with the case of abrupt faults
fa and fc modelled as delayed step signals, i.e.

fa = laH(t − τa) (8)

fc = lcH(t − τc) (9)

where τa, la and τc, lc are respectively the occurrence time
and the magnitude of faults fa and fc. This assumption
concerning the structure of faults fa and fc is not a
restriction since the proposed algorithm can be applied
for all types of faults modelled by structured signals.

3.3 System with actuator fault

Under the assumption of the occurrence of an abrupt
actuator fault, equation (6) becomes

any(n) + .. + a0y = φ0 + bu + blaH(t − τa) (10)

From this model structure, a fault diagnosis algorithm is
designed by assuming known only order n, control u(t)
and output y(t). Thus ai, b and φ0 are supposed to be
unknown. This algorithm is composed of two stages, the
generation of redundancy relations and the analysis of
these relations.

In that follows, steps needed to generate redundancy
equations are described.

First, let us derive the two members of equation (10) to
obtain

any(n+1) + .. + a0y
(1) − bu(1) = φ

(1)
0 + blaδτa

(11)

where δτa
and φ

(1)
0 (singularities) have the following prop-

erties:

(1) Supp(φ
(1)
0 ) = {0} and Ord(φ

(1)
0 ) = n

(2) Supp(δτa
) = {τa} and Ord(δτa

) = 0

To eliminate these singularities, let us just multiply equa-
tion (11) by a suitable function (theorem 2.1). Set

α1(t) = tn+1(t − τa) (12)

then
α1(any(n+1) + .. + a0y

(1) − bu(1)) = 0 (13)

because tn+1φ
(1)
0 = 0 and (t − τa)δτa

= 0. It follows, from
(13) that for t ≥ 0

tn+2[any(n+1) + ... + a0y
(1) − bu] −

τatn+1[any(n+1) + ... + a0y
(1) − bu] = 0 (14)

or, by setting for i = 1, 2 and j = 0, .., n

Wi,j = tn+iy(j+1) and Vi = tn+iu(1)

[ n∑

j=0

ajW2,j − bV2

]

− τa

[ n∑

j=0

ajW1,j − bV1

]

= 0 (15)

Wi,j and Vi can be expressed, according to (1) and (2), like
a linear finite combination of the derivatives of products
tky and tku respectively. Indeed, we have

Wi,j =

inf(n+i,j+1)
∑

k=0

(−1)kCn+i
k

(j + 1)!

(j + 1 − k)!
δ(j+1−k) ∗ (tn+i−ky)

Vi = δ(1) ∗ (tn+iu) − (n + i)(tn+i−1u)



Equality (15) is satisfied in spite of τa (τa is not identifi-
able before fault occurence) because, for t < τa

tn[
n∑

i=0

aiy
(i+1) − bu(1)] = 0

However, for t ≥ τa, the redundancy relations obtained by
applying successive convolutions on equation (15) by H
lead to the following spectral formulation

[A2 − τaA1]X = 0 (16)

by setting, for i = 1, 2

Ai =










H∗n+1 ∗ Wi,n ... H∗n+1 ∗ Vi

H∗n+2 ∗ Wi,n ... H∗n+2 ∗ Vi

. . .

. . .

. . .
H∗n+m ∗ Wi,n ... H∗n+m ∗ Vi










X = ( an an−1 . . . an−p . . . a0 −b )
T

(17)

m > 0 (number of rows), H∗p = H ∗ H ∗ ... ∗ H
︸ ︷︷ ︸

p times

.

The initial successive convolution (H∗n+1) ensures the
elimination of all derivatives (numerically less robust than
integrations).

In general, for any structured fault, the generation of
redundancy relations is the same than the previous one
and consists of three steps

(1) Derivation (apparition of singularities)
(2) Multiplication (elimination of singularities)
(3) Integration (spectral formulation)

From expression (16), the estimation of τa consists in
the computation of generalized eigenvalues of A2 and A1.
In practice, signals u and y being corrupted by noises,
we rather have τa ∈ Λǫ(A2, A1), ǫ > 0 (see section
2.2). Matrices A2 and A1 being time-varying, thus the
estimation of τa is also. At each time t, the value of τa

estimated (chosen among the possible values) consists of
the generalized eigenvalue associated with vector X wich
is the closest possible to the vector associated with the
earlier value.

The decision rule is based on the time behaviour of τa and
la estimations (characteristics of the fault).

For an actuator fault (here delayed step), the estimation
of τa becomes stationary just after the time of the fault
occurrence.

After having estimated τa, a similar reasoning leads to the
estimation of la. Indeed, setting α2 = tn+1 yields

α2(any(n+1) + .. + a0y
(1) − bu(1)) = blaα2δτa

⇒ ∀ t ≥ τa and k ≥ n + 1:

la =
H∗k ∗ [α2(qn+2y

(n+1) + .. + q2y
(1) + q1u

(1))]

H∗k ∗ [−q1α2δτa
]

where q = (qn+2, ..., q1)
T is the ”smallest singular vec-

tor” 2 of matrix A2 − τaA1.

2 associated to the smallest singular value

The successive convolutions H∗p (successive integrations)
proceed like a low-pass filter and contribute to attenuate
high frequency noises.

For the generation of matrices Ai, we have taken the
polynomial function α1 in order to simplify computations.
Damped functions, like α = e−attn+1(t − τa), a > 0, can
improve the approach robustness to measurement noises.
Indeed, these functions contribute to attenuate noises, in
opposition to polynomial functions which accentuate the
noise effects.

3.4 System with sensor faults

In this part, it is provided the algorithm ensuring system
fault diagnosis when (

∑
) is corrupted by a sensor fault.

This fault is modelled as a delayed step. We keep the same
assumptions as previously.

So, under the assumption of the occurrence of an abrupt
sensor fault at time τc with a magnitude lc, the faulty
system equation becomes

any(n) + ... + a0y = φ0 + bu

+lc(anδ(n−1)
τc

+ ... + a0H(t − τc)) (18)

The derivation yields to

any(n+1) + ... + a0y
(1) − bu(1) =

φ
(1)
0 + lc(a1δ

(n)
τc

+ ... + a0δτc
) (19)

To eliminate the singularities in the second member of
equation (19), we can consider the function

α3(t) = tn+1(t − τc)
n+1 (20)

which yields (according to theorem (2.1))

α3(any(n+1) + .. + a0y
(1) − bu(1)) = 0 (21)

By setting for i = 1, .., n + 2 and j = 0, .., n

Wi,j = tn+iy(j+1) and Vi = tn+iu(1)

we obtain the spectral formulation

[An+2 − λn+1An+1 − ... − λ2A2 − λ1A1]X = 0 (22)

where Ai, for i = 1, ..., n + 1 and X are defined like in
(17) and λi = (−1)n−i+1Cn+1

i−1 τn+2−i
c , 1 ≤ i ≤ n + 1 is

the coefficient associated to term ti−1 in the polynomial
function −(t − τc)

n+1.

From (22), τc can be estimated with the estimation of
any λi. Since only λn+1 gives a linear estimation of τc

(λn+1 = (n+1)τc), then the estimation is obtained through
the computation of Λǫ(PAn+2, (n + 1)PAn+1) where

P = coker(coker(...coker(A1)A2...)An−1)An)

The decision rule is made like in the previous subsection.

As well, the amplitude lc is estimated after the estimation
of τc by setting α4 = tn+1(t − τc)

n:
∀ t ≥ τc and k ≥ n + 1

lc = (−1)n H∗k ∗ [α4(qn+2y
(n+1) + .. + q2y

(1) + q1u
(1))]

n!H∗k ∗ δτc

where q = (qn+2, ..., q1)
T is the smallest singular vector

of matrix PAn+2 − (n + 1)τcPAn+1.



3.5 System with both actuator and sensor faults

In the case of multiple faults (actuator and sensor faults),
the use of the previous approaches do not ensure the
system fault diagnosis.

Assuming for example the presence of an actuator fault
fa(t) = laH(t− τa) and a sensor fault fc(t) = lcH(t− τc),
the corresponding model is

any(n) + .. + a0y = φ0 + bu (23)

+blaH(t − τa) + lc(anδ(n−1)
τc

+ .. + a0H(t − τc))

The multiplication of the previous equation by

α1 = tn+1(t − τa) or α3(t) = tn+1(t − τc)
n+1

does not eliminate all singularities obtained after deriva-
tion. For this, we can consider the function

α5 = tn+1(t − τa)(t − τc)
n+1

The spectral expression obtained thanks to α5 is

[An+2 − βn+1An+1 − ... − β1A1 − β1A1]X = 0 (24)

where Ai and X are obtained according to (17) and βi is
the coefficient associated to term ti−1 in the polynomial
function −(t − τa)(t − τc)

n+1.

From (24), τa and τc can be estimated, as for sensor
fault case, by the means of the estimation of any βi. The
first fault can be detected like in subsections 3.3 and 3.4.
The detection of the second fault can be made through
the estimation of βn+1 = τa + (n + 1)τc which becomes
stationary after time t ≥ max(τa, τc).

Finally, the second fault magnitude can be also estimated
through τa and τc estimations.

4. APPLICATION

Consider the first order system (n = 1) modelled by the
input-output equation

a1ẏ + a0y = bu

This system is controlled with a PI-controller. The pro-
posed approach is applied to diagnose the system above,
simulated in first with a sensor drift and then with actu-
ator and sensor bias. Recall that the proposed appoach
assumes that parameters a1, a0 and b are unknown and
will not be explicitely estimated.

Figure (2) shows input u and output y simulated with a
drift (of slope lc = 0.3 at instant τc = 1) of the output
sensor.

0 1 2 3 4 5
0

1

2

3

4

5

6

Y
Y

free fault

U
free fault

U

Figure 2. Input and output signals with a sensor fault

Figures (3)-(4) show the graphical results of the estima-
tions (of τc and lc) given by the proposed algorithms.
According to these observations, we can conclude to the
occurence of a sensor drift, modelled as fc(t) = 0.3(t −
1)H(t − 1).
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Figure 3. evolution of τc estimation
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Figure 4. evolution of lc estimation

In the next, he system is simulated with an actuator and
sensor faults of type delayed step (bias). Input u and
output y are represented on figure (5).
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Figure 5. Input and output signals in the case of multiple
faults

Graphical results of the estimations given by the proposed
algorithms are represented on figures (6)-(10). On figure
(6), we can easily see the stationary value of τa estimation
around value τ̄a = 1 in the time interval [1, 2]. The
associated magnitude estimation is equal to 0 before time
t = 1 and takes a value around 0.8 in the time interval
[1, 2] (figure 7).

According to these two observations, the detection of an
actuator fault, modelled by fa(t) = 0.8H(t − 1), can be
accomplished in the time interval [1, 2]. From t > 2, the
estimation of τa and la fails due to the occurrence of a
sensor fault. It is important to notice that the later cannot
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Figure 6. time evolution of τa estimation
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Figure 7. time evolution of la estimation

be detected by means of the time evolution of τc estimation
according to the fact that the actuator fault affects the
sensor fault detection.
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Figure 8. time evolution of τc estimation

However, the stationary value of β2 = τa + 2τc from t > 2
around 5 (figure 9) allows the detection of the sensor fault.
Figure (10) shows the time evolution of the estimation
of the sensor fault magnitude obtained by means of β2

and τa estimations. Thanks to τa and β2 estimations, the
detection of a sensor bias can be accomplished, it is about
fc(t) = 0.3H(t− 2).
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Figure 9. time evolution of β2 estimation
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Figure 10. time evolution of lc estimation

5. CONCLUSION

The algebraic approach for fault diagnosis presented in
this paper is only based on the structural knowledge of the
system and the faults. On the one hand, the parameters of
the system can be unknown and we do not need to estimate
them explicitly. On the other hand, the decision rule is
not based on the outputs of some residual generators, but
rather on the time behaviour of some fault characteristic
estimations. Simulation results show that the proposed
method gives good results for detecting and isolating
actuator and sensor faults even in the case of multiple
faults. In future works, robustness of the proposed method
with respect to noise signals will be investigated.
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