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[1] The reactivation of faults with near-optimal orientations
is commonly considered to control the state of stress in the
crust. Near the surface, where a principal stress direction is
vertical, the attitude of such faults is explained by
Anderson’s theory. This raises the questions of how
prevalent this type of faulting actually is in current
seismicity, down to what depth it frequently occurs, and
what range of friction angles explains it best. The Global
Centroid Moment Tensor catalog is analyzed to address
these questions. Dip-slip and strike-slip mechanisms are
dominant, and oblique slips are relatively rare for well-
constrained events with depths shallower than 30 km.

Preferred Andersonian faulting is the simplest, but not the
unique, explanation for this dominance. Isolating reverse,
strike-slip, and normal events reveals an asymmetry in the
distribution of nodal plane dips and plunges of the P, B, and
T axes between reverse and normal faulting. Assuming that
the most frequent events correspond to reactivation near
optimal orientations yields 40–60� and 0–20� friction
angles for reverse and normal faults, respectively. This
indicates that reverse and normal faulting mechanics are not
symmetrical with respect to stress configuration as predicted
by Anderson’s theory.

Citation: Célérier, B. (2008), Seeking Anderson’s faulting in seismicity: A centennial celebration, Rev. Geophys., 46, RG4001,

doi:10.1029/2007RG000240.

1. INTRODUCTION

[2] Ernest M. Anderson proposed the simplest, yet

realistic, theory that relates faulting to the state of stress

to the Edinburgh Geological Society about a century ago

[Anderson, 1905]. Walter Bucher derived strikingly similar

concepts a few years later [Bucher, 1920, 1921].

[3] This theory of faulting is based on the three simple

assumptions (1) that rocks can be considered isotropic as a

first approximation, (2) that they fail along shear planes

when the state of stress satisfies a Coulomb [1776] failure

criterion, and (3) that the Earth’s free surface requires a

principal stress direction to be vertical. The reliance on ‘‘the

simplest and most important’’ [Jaeger and Cook, 1979]

failure criterion and the ability to relate the three major

types of faulting, normal, strike slip, and reverse, to three

possible attitudes of the principal stress directions gave this

theory a deep influence that persists to this day.

[4] However, it has also been clear since its outset that

this theory cannot explain all types of faulting because of

two main limitations. First, it predicts slip to be along the

fault plane strike or dip direction only and therefore does

not account for frequently observed oblique slips. Second, if

assuming isotropy simplifies the theory by locating failure

on two optimally oriented conjugate fault planes only, it is

not consistent with the fact that most often slip occurs on

preexisting faults, therefore within an anisotropic material

containing planes of weakness.

[5] The model of frictional slip on a preexisting plane of

weakness overcame the isotropy assumption [Wallace,

1951; Bott, 1959; Jaeger, 1960; McKenzie, 1969], and

rotation of the principal stress axes away from the vertical

direction at depth was proposed as an explanation for

oblique slips [Anderson, 1905; Hafner, 1951; Williams,

1958]. A widely relevant alternate explanation for oblique

slips that does not require rotated stress axes was also found

in the model of frictional slip on a nonoptimally oriented

plane of weakness [Wallace, 1951; Bott, 1959].

[6] The compilation of homogeneous worldwide earth-

quake source parameter databases such as the Global

Centroid Moment Tensor catalog [Dziewonski et al., 1981;

Dziewonski and Woodhouse, 1983; Jost and Herrmann,

1989; Frohlich and Apperson, 1992; Jackson, 2002; Ekström

et al., 2005] and the development of methods to assess the

reliability of these data [Frohlich and Davis, 1999] provide

an opportunity to analyze the relative importance of three

scenarios: (1) Anderson’s faulting, (2) frictional slip on a

preexisting fault, and (3) rotated principal stress axes. An

analysis of the geometry of focal mechanisms of shallow

focus (depth within 0–30 km) earthquakes suggests prev-

alent Andersonian conditions on one hand [Frohlich, 2001],

yet reveals an asymmetry between normal and reverse

faulting that contradicts Anderson’s theory on the other
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hand, as will be shown here. Which of these three scenarios

prevails in crustal deformation is a subject of interest for

multiple reasons including the use of faulting as a stress

indicator, the frictional paradox of slip on low-dip-angle

normal faults, and the strength of the brittle crust.

[7] Simple geometrical methods have been proposed to

derive the principal stress orientations from fault plane and

slip orientations [Bucher, 1920, 1921; Compton, 1966;

Etchecopar, 1984] and from earthquake focal mechanisms,

albeit with an additional uncertainty when the fault plane is

not distinguished from the two nodal planes [Raleigh et al.,

1972; Molnar and Chen, 1982]. Although these methods

are justified in the case of Anderson faulting, using them in

the more common case of slip on a preexisting fault can

lead to angular errors reaching 90� [McKenzie, 1969;

Célérier, 1988]. How much principal stress directions can

deviate from the vertical at depth to overcome the frictional

paradox of slip on low-dip-angle normal faults is the subject

of ongoing debate [Yin, 1989; Bradshaw and Zoback, 1988;

Melosh, 1990; Wills and Buck, 1997; Westaway, 1999].

[8] There is a current consensus that the magnitude of

differential stress in the brittle crust is controlled by slip on

faults with coefficients of friction around 0.6 [Byerlee,

1978] and with a sufficiently wide range of orientations to

include those nearly optimal with respect to any state of

stress [Brace and Kohlstedt, 1980; Kohlstedt et al., 1995].

This scenario is supported by borehole stress magnitude

measurements [Zoback and Healy, 1984; Zoback et al.,

1993; Townend and Zoback, 2000]. However, within the

scale of this framework, the brittle crust is considered

uniformly weak in any direction and thus mechanically

isotropic [Talobre, 1957; Jaeger, 1962]. The characteristics

of the active faults that control the state of stress near the

surface, where a principal stress direction is vertical, should

then be compatible with Anderson’s theory because all its

assumptions are satisfied. Considerations of the layered

rheology of the lithosphere or of the distribution of defor-

mation also raise the same question of whether slip parti-

tioning along dip and strike is favored in upper crustal

faulting [McKenzie and Jackson, 1983; Richard and Cobbold,

1990; Molnar, 1992].

[9] The work presented in this paper proposes to review

this question by focusing on the characterization of Ander-

son’s faulting in global earthquake fault plane solutions and

was initiated to celebrate the centenary of Anderson’s

contribution [Célérier, 2005]. In a first step, both Ander-

son’s theory and frictional reactivation will be reviewed. It

will be argued that frictional reactivation on planes with

orientation close to optimal results in a faulting geometry

similar to that of Anderson’s theory that will be qualified as

‘‘near Andersonian.’’ It will then be shown that this ‘‘near-

Andersonian’’ faulting prevails under ‘‘standard’’ fault and

stress conditions that will be defined and that therefore,

determining its prevalence is a way of evaluating the

relative importance of these ‘‘standard’’ conditions with

respect to other conditions that include low friction coeffi-

cient, high pore pressure, or rotated stress axes. In a second

step, we will address how Anderson’s faulting can be

identified in seismological source parameters such as dip

of nodal planes, slip rake, and orientations of the P, B, and

T axes. In a third step, the data of the Global Centroid

Moment Tensor catalog will be reduced to those with well-

constrained orientations. They will then be sorted by depth

in order to assess the relative importance of Andersonian

faulting as the distance to the stress-free surface decreases.

Finally, the best candidates for Andersonian faulting within

shallow depth (0–30 km) will be extracted to characterize

their geometry and its mechanical implications.

2. FAULTING AND SLIDING

[10] In this section, Andersonian faulting and frictional

reactivation are reviewed to argue that as the range of

orientations spanned by preexisting fractures in a rock mass

widens, the predictions of these two models become more

and more similar. This is because frictional slip requires less

stress difference as the plane orientation becomes closer to

that of the optimal conjugate planes. Thus, as more and

more weak plane orientations become available, those

activated become closer and closer to optimal. Within

shallow crust this leads to a situation similar to that of

Andersonian faulting. These two cases will then be grouped

and called ‘‘near-Andersonian’’ faulting.

[11] In the case where the number of available weak

orientations is small, those activated may differ significantly

from the optimal ones. However, a statistical bias toward

optimal orientations is expected when grouping a large

number of such cases.

2.1. Andersonian Faulting

[12] The first premise of Anderson’s theory is that rupture

is controlled by a Coulomb [1776] criterion (variables are

defined in Table 1):

t ¼ t0 þ msn; ð1Þ

where t is the shear stress, sn is the normal stress, t0 is the
cohesion, and m is the coefficient of internal friction, related

to the angle of internal friction, 80, by

m ¼ tan 80ð Þ: ð2Þ

The second premise is that the medium is isotropic, so that

rupture occurs when the applied stress on the most

favorably oriented planes reaches the Coulomb rupture

criterion (Figure 1a). This requires a stress difference

threshold to be reached. Subtracting pore pressure from

total stress to obtain the effective principal stress magnitudes,
s1 � s2 � s3 (compression being positive), and defining the

normalized stress difference, s0, as

s0 ¼
s1 � s3ð Þ

s1

; ð3Þ

this requirement can be expressed as

s0 � st m; t0; s1ð Þ; ð4Þ
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with

st m; t0; s1ð Þ ¼ 1þ t0
ms1

� �
sc mð Þ; ð5Þ

where sc(m) depends only on the coefficient of friction

sc mð Þ ¼ 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
� m

� �
ð6Þ

or, alternatively, on the friction angle

sc 80ð Þ ¼ 2 sin80

1þ sin80

¼ 2 tan80

tan81

¼ sin80

sin2 81

; ð7Þ

with

81 ¼
80

2
þ p

4
: ð8Þ

[13] When cohesion is negligible with respect to stress

magnitudes, equation (5) can be reduced to

st m; t0; s1ð Þ � sc mð Þ: ð9Þ

This formulation (equation (4)) encapsulates two different

stress paths leading s0 to the rupture threshold: one where the

stress difference numerator increases at constant denominator

and the other where the maximum effective stress denomi-

nator decreases as pore pressure increases at constant

numerator. The range of the st (m, t0, s1) threshold for

crustal rocks can be estimated from values of s0 reached at

failure during triaxial tests from Brace [1964], Brace et al.

[1966], Byerlee [1967], Mogi [1965, 1966a, 1996b], and

Matsushima [1959, 1960] and also compiled by Ohnaka

[1973] and Sheorey [1997]. The decreasing trend of this

threshold with respect to s1 (Figure 2) results from the

superposition of three factors: the inverse dependence on s1
(equation (5)) and also the increase of the apparent cohesion,

t0, and the decrease of the apparent angle of internal friction,
80, that are defined by the tangential approximation of the

rupture envelope which is typically concave downward (see

compilation by Lockner [1995]).

[14] The plane of rupture can be located within the direct

orthogonal frame of principal stress unit eigenvectors, s1, s2,

and s3, corresponding to the eigenvalues s1, s2, and s3: it
occurs along either of the two conjugate planes that contain

s2 and have a normal at angle 81 from s1 (Figure 1b). If the

slip direction is further assumed to be along the shear stress

direction, it is then normal to s2 within each plane.

[15] Conversely, the orientations of the principal stresses

can be determined from the fault plane and slip orientation

(Figure 1c). Defining the fault and slip orthogonal frame of

unit vectors, e1, e2, and e3, as in the work by McKenzie

[1969], where e3 is normal to the plane and points to what is

defined as the upper half-space, e1 is along the slip of the

lower half-space with respect to the upper half-space, and e2
is normal to both e1 and e3 and chosen so that the frame is

direct, then s1, s2, and s3 are obtained by rotating e1, e2, and e3
by an angle 82 around �e2, with

82 ¼
p
4
� 80

2
¼ p

2
� 81: ð10Þ

Three perpendicular planes are thus convenient to consider:

the fault plane that contains e1, e2, and s2, the auxiliary

plane of a fault plane solution that contains e2, e3, and s2,

and the plane of movement that contains e1, e3, s1, and s3
[Arthaud, 1969]. This has been used to infer the stress

orientation from a single fault and slip datum or from a pair

of conjugate faults [Bucher, 1920, 1921; Compton, 1966;

Etchecopar, 1984]. In the case of conjugate faults, this

method requires the slip on each plane to be perpendicular

to the intersection of the fault planes and yields inconsistent

Figure 1. Optimal plane orientation and applied stress.
(a) Mohr’s [1882] plane. (b) Orientation of the optimal
conjugate planes with respect to the principal stress
directions. (c) Principal stress and P, B, and T axis
orientations with respect to an active optimal plane with
known slip direction. F, fault plane; A, auxiliary nodal
plane; M, plane of movement [Arthaud, 1969]. Other
symbols are defined in Table 1.
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results otherwise. In the case of focal mechanisms where the

fault plane is not determined, this justifies approximating the

P, B, and T axes with the principal stress axes s1, s2, and s3 if

an angular error of 80/2 � 15� is accepted (Figure 1c)

[Raleigh et al., 1972; Molnar and Chen, 1982; Célérier,

1988].

[16] The third premise that a principal stress direction is

vertical near the Earth’s surface restricts the state of stress to

three tectonic regimes associated with specific types of

faulting [Anderson, 1905]. In the extensional regime, s1 is

vertical, faulting is purely normal (rake = �90�), the fault

plane dips at 81, and the second nodal plane dips at 82
(Figure 3a). In the compressional regime, s3 is vertical,

faulting is purely reverse (rake = +90�), the fault plane dips
at 82, and the second nodal plane dips at 81 (Figure 3b).

Sandbox modeling, using isotropic material, supports both

cases [Hubbert, 1951]. In the first and second cases, the P

and T axes should be at angle 80/2 � 15� from the vertical,

respectively. The symmetry that exchanges s1 with s3 also

exchanges the fault plane with the auxiliary plane: the dip

distribution of nodal planes should therefore be similar in

both cases. In the wrench regime, s2 is vertical, faulting is

purely strike slip (rake = 0� or 180�), and both nodal planes

are vertical (Figure 3c).

2.2. Frictional Reactivation

[17] The simplest model to take the strength anisotropy

from preexisting structures into account is probably that of

frictional slip on a plane of weakness [Wallace, 1951;

Talobre, 1957; Bott, 1959; Jaeger, 1959, 1960; Handin,

1969; McKenzie, 1969; Byerlee, 1978]. The friction law is

identical to the Coulomb criterion (equation (1)), but the

cohesion and friction coefficients are lower than those for

new rupture, and the plane of weakness orientation is not

necessary optimal.

[18] In this situation, the friction line intersects Mohr’s

outer circle instead of being tangent to it. This implies that a

range of orientations of weak planes can be activated by the

same state of stress, as opposed to a couple of conjugate

planes in the case of rupture. Conversely, slip on a given

fault plane can be due to a range of states of stress and

therefore provides only a weak constraint on the principal

stress orientations.

TABLE 1. Meanings of Symbols

Symbol Equations Comments

Stress
Te effective stress tensor
s1, s2, and s3 principal stress directions frame

(eigenvectors of Te)
s1 � s2 � s3 (3), (5), (11), and (15) principal effective stress magnitudes

(eigenvalues of Te)
r0 ¼ s1�s2

s1�s3
(11) stress tensor aspect ratio

s0 ¼ s1�s3ð Þ
s1

(3) and (4) normalized stress difference
t (1), (12), and (13) shear stress
sn (1), (12), and (13) effective normal stress

Failure or Friction
t0 (1) and (5) cohesion
m = tan(80) (1), (2), (5), and (6) coefficient of friction (standard value: 0.6)
80 (2), (7), (8), (10), (16), (17), and (18) angle of friction (standard value: 31�)
81 ¼

80
2
þ p

4
(7), (8), (10), and (18) (standard value: 30�)

82 ¼ p
4
� 80

2
(10) and (17) (standard value: 60�)

sc ¼ 2 tan80
tan81

(5), (6), (7), (9), and (14) failure threshold for s0 when cohesion is naught
(standard value: 0.68)

st ¼ 1þ t0
ms1

� �
sc (4), (5), (9), (14), and (15) failure threshold for s0 with cohesion

Fault Plane
e3 fault plane normal pointing toward upper half space
e1 slip direction of lower with respect to upper half space
e2 normal to e1 and e3 chosen

so that e1, e2, and e3 are direct

Seismic Moment Tensor
M (22) and (24) seismic moment tensor

(isotropic component set to zero)
P, B, and T eigenvectors of M
mP, mB, and mT (25) eigenvalues of M
mij (22) components of M
DM (23) and (24) seismic moment tensor error
dmij (23) components of DM
Erel (20) and (24) relative error on the determination of M
Mw moment magnitude
nfree (19) number of components of M inverted for
fclvd (21) and (25) compensated linear vector dipole component
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[19] It is thus usual to rely on the assumption that the slip

direction is parallel to the resolved shear stress on the

reactivated plane, to further constrain the problem [Schmidt

and Lindley, 1938; Wallace, 1951; Bott, 1959; McKenzie,

1969; Célérier, 1988, 1995]. Bott [1959] showed that the

shear stress direction depends only on the principal stress

orientation and the stress tensor aspect ratio

r0 ¼
s1 � s2

s1 � s3

; ð11Þ

and McKenzie [1969] demonstrated that shear stress could

be along the slip direction with principal stress orientations

significantly away from, and even perpendicular to, the

optimal stress orientations. This seriously undermines the

relevance of optimal stress orientations in the case of

reactivation.

[20] Yet the friction law restricts the range of orientations

that can be activated with respect to a given system of

principal stress directions. This range is controlled by the

frictional parameters, t0 and m, and by the state of stress

parameters, s0, r0, and s1 [Jaeger, 1959, 1960; Jaeger and
Rosengren, 1969; Célérier, 1988]. However, within the

framework introduced in equations (1)–(11), three param-

eters are sufficient to discuss this control: m, which controls

the optimal orientations (Figure 1), and s0 � st (m, t0, s1)
and r0, which control the extent around the optimal ori-

entations.

[21] When s0 � st (m, t0, s1) < 0, no plane can be

reactivated. When s0 � st (m, t0, s1) = 0, activation is

possible on the optimal conjugate planes only. The only

exception occurs if the intermediate stress magnitude equals

either of the extreme stress magnitudes, i.e., r0 = 0 or r0 = 1.

In that case the symmetry of the stress tensor defines a set of

optimal planes that are tangent to a cone of revolution

around the singular stress axis [Wallace, 1951; Jaeger and

Rosengren, 1969; Célérier, 1988]. Reactivating nonopti-

mally oriented planes requires s0 � st (m, t0, s1) > 0, and

the range of orientations that can be activated away from the

optimal conjugate planes grows as s0 � st (m, t0, s1)
increases, as shown by two-dimensional analysis [Jaeger,

1959, 1960; Sibson, 1985]. Three-dimensional analysis adds

the secondary possibility of further spreading this range in

other directions when r0 becomes close to 0 or 1 [Jaeger

and Rosengren, 1969; Célérier, 1988].

2.3. Crustal Scenarios

[22] To apply this to crustal conditions, let us consider the

fault frictional properties determined in the laboratory by

Byerlee [1978] for most crustal rocks:

t ¼ 0:85 sn for sn � 200 MPa ð12Þ

t ¼ 50þ 0:6 sn for sn � 200 MPa; ð13Þ

where t is in MPa. The corresponding reactivation thresh-

old, st (m, t0, s1), is obtained by combining equations (5)

and (6) with equations (12) and (13):

st m; t0; s1ð Þ ¼ sc mð Þ ¼ 0:79 for s1 � 500 MPa ð14Þ

and

st m; t0; s1ð Þ ¼ 0:68þ 56:66

s1

for s1 � 500MPa; ð15Þ

where s1 is in MPa. Whether reactivation on optimal

planes, on nonoptimal planes, or new fault creation occurs

thus depends on where s0 for crustal stress falls between this

frictional bound, plotted as a line, and that for new failure,

shown by symbols, on Figure 2. To address this question, let

us consider first a standard scenario for fault properties and

the state of stress and then significant variations.

[23] The standard scenario is that proposed by Brace and

Kohlstedt [1980] where preexisting ‘‘standard faults,’’ de-

fined as those with the above frictional properties and

submitted to hydrostatic pore pressure, span a sufficiently

wide range of orientations to include those close to optimal

Figure 2. Normalized stress difference, s0, required to
generate a new fracture or to activate an optimally oriented
preexisting fracture as a function of the maximum effective
stress. New fracture generation in (1) Orikabe Diorite [Mogi,
1965], (2) Frederick Diabase [Brace, 1964], (3) Westerly
Granite [Byerlee, 1967], (4) Mannari Granite [Mogi, 1965],
(5) Haruyama Peridotite [Mogi, 1965], (6) Kitashirakawa
Granite [Matsushima, 1959, 1960], (7) Marble [Brace et al.,
1966], (8) Westerly Granite [Mogi, 1966a, 1966b], (9) Blair
Dolomite [Brace, 1964], (10) Webatuk Dolomite [Brace,
1964], (11) Aplite [Brace et al., 1966], (12) Cheshire
Quartzite [Brace, 1964], and (13) Westerly Granite [Brace
et al., 1966] and (14) reactivation of optimally oriented
fracture with standard frictional properties as in
equations (14) and (15) [Byerlee, 1978]. The small arrow
to the bottom right indicates the high-pressure threshold,
sc(m) (equation (6)), which is also applicable when cohesion
is negligible. Data 1–13 are also found in the compilations
of Ohnaka [1973] and Sheorey [1997].
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for any stress system. This scenario is then that of a

fractured, yet isotropic, material where reactivation occurs

on nearly optimal orientations as soon as s0 reaches the

threshold st (m, t0, s1) given by equations (14) and (15)

[Talobre, 1957; Jaeger, 1962]. This threshold thus becomes

the upper limit of s0 for in situ stress with hydrostatic pore

pressure [Brace and Kohlstedt, 1980; Kohlstedt et al.,

1995]. If we define ‘‘standard’’ stress conditions as those

not only limited by this threshold but also with a vertical

principal stress direction and with an intermediate stress

magnitude significantly different from extreme stress mag-

nitudes, then ‘‘standard’’ faults in these ‘‘standard’’ stress

conditions will be reactivated only for orientations close to

the optimal Andersonian conjugate planes [Raleigh et al.,

1972; Célérier, 1988]. This will be called ‘‘near’’-Anderson

faulting, and its geometry is thus indistinguishable from that

of original Anderson faulting. Both cases will therefore be

lumped together in the rest of this paper.

[24] The isotropy of this standard scenario can be broken

down in two different ways. First, standard faults may not

span enough orientations, so that preexisting optimal ori-

entations may not be available. The stress difference may

then rise above the frictional threshold, and nonoptimally

oriented preexisting faults may be activated. If the preexist-

ing faults are too severely misoriented, the stress difference

may rise even further to reach the rupture threshold, and new

optimal faults may be created. However, these new faults

will be Andersonian if a principal stress direction remains

vertical and the medium remains sufficiently isotropic.

[25] Second, a few orientations may correspond to faults

with nonstandard properties due to either lower frictional

parameters or local overpressures. In the first case, the

reactivation threshold, st (m, t0, s1), is lower than that for

standard faults (for example, t0 = 0 and m = 0.5 gives

st (m, t0, s1) = 0.54, which is well below the standard

curve shown on Figure 2). In the second case, st (m, t0, s1)
remains that of equations (14) and (15), but s0 can reach

values up to 1 as pore pressure reaches the least total

principal stress magnitude (s3 = 0). In both cases, the

difference s0 � st (m, t0, s1) may be large for the nonstan-

dard fault even though it remains negative for nearby

‘‘standard’’ faults sustaining the same total stress. As a

consequence, the nonstandard fault can be reactivated even

if misoriented and thus appears weaker than the ‘‘standard’’

faults that remain stable. Conversely, the stress axes can be

significantly away from the optimal directions deduced

from the nonstandard fault attitude [McKenzie, 1969].

[26] Borehole stress measurements remain below the

threshold of equations (14)–(15) and reach it in zones of

active tectonics [Zoback and Healy, 1984; Zoback et al.,

1993; Townend and Zoback, 2000]. This supports the

standard scenario and suggests that standard fault properties

are ubiquitous, whereas nonstandard properties are

restricted to a few orientations in a given region. This also

suggests that values of s0 above the threshold of

equations (14)–(15) are more likely to be related to local-

ized overpressures [Rice, 1992; Sleep and Blanpied, 1992],

rather than to abnormally high regional stress difference.

[27] Determining how prevalent ‘‘near-Andersonian’’

faulting is in earthquake focal mechanisms is thus an

alternate way of evaluating the relative importance of this

standard scenario with respect to other conditions that

include low friction coefficient, high stress difference, high

pore pressure, or rotated stress axes.

3. RECOGNIZING ANDERSONIAN FAULTING IN
FOCAL MECHANISMS

[28] The three types of Andersonian faulting have char-

acteristic fault plane, slip, and principal stress orientations

that can be recognized in the dip angles of the nodal planes,

slip rake angles, and orientations of the P, B, and T axes of

fault plane solutions.

Figure 3. Anderson’s [1905] faulting geometry. Fault
plane solution auxiliary plane and P, B, and T axes are also
shown. Symbols are explained in Table 1. (a) Extensional
regime. (b) Compressional regime. (c) Wrench regime.
Figures 3a and 3b represent a vertical cross section whereas
Figure 3c represents a map of the horizontal plane.
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3.1. Dips of Nodal Planes

[29] Normal and reverse faults, having complementary

dip angles, exchange fault and auxiliary planes to yield the

same values of dip, 81 and 82, when both nodal planes are

considered together (Figures 3a and 3b). With ‘‘standard’’

friction values these angles become

80 � 31	; ð16Þ

82 ¼
p
4
� 80

2
� 30	; ð17Þ

81 ¼
80

2
þ p

4
� 60	: ð18Þ

[30] Nodal planes for strike-slip faulting are vertical. The

relative abundance of these orientations can be estimated on

histograms of nodal plane dips. Such histograms, however,

present a geometrical bias due to the variation of the area

covered by each interval on a sphere. To facilitate the

interpretation, density-corrected histograms are superposed

on the raw histograms. The applied correction is detailed in

Appendix A.

3.2. Slip Rake

[31] Using Aki and Richard’s [1980, p.106] convention

for orientation angles of nodal planes, normal and reverse

faults yield rake angles of �90� and +90�, respectively,
whereas strike-slip faults yield rake angles of 0� and ±180�.
The abundance of these values can be directly estimated on

histograms of slip rake angles.

3.3. P, B, and T Axes

[32] The P, B, and T axes are deduced from the optimal

stress orientation, s1, s2, and s3, by a rotation of 80/2 � 15�
around s2 (Figure 1c). Andersonian faulting is therefore

expected to result in plunges of the P and T axes of 90 �
80/2 � 75� and 80/2 � 15� in the case of normal faulting

(Figure 3a) and of 80/2 � 15� and 90 � 80/2 � 75� in the

case of reverse faulting (Figure 3b). In both cases the B axis

should be horizontal. For strike-slip faulting, the P and

T axes should be horizontal, and the B axis should be

vertical (Figure 3c).

[33] Plunge histograms of P, B, and T axes are therefore

used to estimate the importance of Anderson faulting, as

done before [Bossu and Grasso, 1996; Bokelmann and

Beroza, 2000]. Density-corrected and raw histograms are

superposed to facilitate interpretation as done for dip of

nodal planes (Appendix A).

[34] The triangular representation introduced by Frohlich

[1992], and detailed in Appendix B, is also used because it

concentrates the information on the three plunges in a single

diagram [Frohlich and Apperson, 1992; Frohlich, 1992,

2001]. It can be interpreted as representing the orientation of

the vertical with respect to the P, B, and T frame of

reference, as demonstrated in Appendix B. It is based on

the gnomonic projection that does not conserve area, and we

therefore rely on the histograms for density considerations

and on the triangular representation for a synthetic view of

the orientations of the axes. This diagram proves helpful

when analyzing the relationship between vertical P, B, and T

axes and pure dip-slip and pure strike-slip nodal planes.

Such an analysis leads to two useful conclusions: (1) low B

plunge is a better proxy for pure dip slip than high P or T

plunge and (2) high B plunge is not a good proxy for pure

strike slip (Appendix B).

3.4. Necessary but Not Sufficient Conditions

[35] Whereas Anderson faulting requires the conditions

detailed in sections 3.1–3.3, they are not sufficient to

ensure that faulting is Andersonian. Andersonian faulting

means activation of optimal planes with a vertical principal

stress direction. Verifying these two requirements requires

determining fault and slip geometry and principal stress

orientations.

[36] Whereas fault plane solutions do provide fault and

slip orientation, albeit with the nodal plane ambiguity, the

associated P, B, and T axes are reasonable proxies for the

principal stress directions, with the 80/2 � 15� bias men-

tioned in section 2.1, only if the activated plane is close to

optimal, which happens to be one of the clauses to verify.

Overcoming this circular reasoning is possible in regional

studies where the state of stress can be determined inde-

pendently from the fault plane solution but is beyond the

scope of the global analysis presented in this paper.

4. GLOBAL DATA SET

4.1. Initial Data Set

[37] The initial data set, CMT (Table 2), is the 1976 to

2004 Global Centroid Moment Tensor catalog that contains

22,477 events and is considered complete down to Mw �
5.5 [Dziewonski et al., 1981; Dziewonski and Woodhouse,

1983; Ekström et al., 2005].

4.2. Quality Criteria

[38] To obtain reliable orientations of the nodal planes

and P, B, and T axes, the data are reduced to those that

satisfy the three quality criteria proposed by Frohlich and

Davis [1999] and applied to plate boundary tectonics

analyses [Frohlich and Apperson, 1992; Frohlich, 2001].

These three criteria are (1) that all components are actually

inverted for, (2) that the relative error of the moment tensor is

sufficiently small, and (3) that the double couple component

is dominant. To obtain orientation angular uncertainties

around 5–10� these requirements become [Frohlich and

Davis, 1999]

nfree ¼ 6; ð19Þ

Erel � 15%; ð20Þ

jfclvd j � 0:2; ð21Þ
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with

Mk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

X3
j¼1

m2
ij

vuut ; ð22Þ

DMk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

X3
j¼1

dm2
ij

vuut ; ð23Þ

Erel ¼
DMk k
Mk k ; ð24Þ

fclvd ¼ � mB

max jmPj; jmT jð Þ ; ð25Þ

where M is the moment tensor; DM is its standard error;

mP, mB, and mT are its eigenvalues; and nfree is the number

of actually inverted components.

[39] The first condition (equation (19)) is particularly

relevant to this analysis. Close to the surface, two compo-

nents of the moment tensor are often too poorly constrained

to be inverted for and are instead arbitrarily set to zero. This

results in a moment tensor with a vertical principal axis and

either in pure dip-slip focal mechanisms (rake = ±90�) with
45� dipping nodal planes or in pure strike-slip mechanisms

(rake = 0� or 180�) with vertical nodal planes. These

artifacts could be misinterpreted as Andersonian faults, even

if, in the dip-slip cases, the dip of the nodal planes would

suggest negligible friction.

4.3. Reduced Data Set

[40] Extracting the data that satisfy the three quality

criteria of equations (19)–(21) from the CMT data set

yields the 10,709 event data set labeled FD (Table 2). The

data reduction is about 48% on average and decreases with

depth: it varies from 42% for shallow data up to 61% for

deep data (Table 2, sixth column). This bias remains small

and the depth distribution remains reasonably representative

of the initial data set (Figure 4).

[41] The rake distribution of the FD data set shows four

modes (Figure 5a). The major mode, +90�, corresponds to
pure reverse faulting and is more than twice as large as the

next modes. The three minor modes have similar magnitude

and correspond to pure strike-slip (0� and ±180�) and pure

normal (�90�) faulting. The four distribution minima are

about one third of the minor mode magnitude and occur for

oblique slip at 45� from the modes.

[42] The raw distribution of dips of nodal planes is

widely spread with a deficit in the 0–15� range. This deficit
is compensated by the density correction (Appendix A) that

reveals a 15–25� mode (Figure 5b).

TABLE 2. Data Sets and Selection Ratios

Initial Data Set With
Depth Range (km) Number of Data Selection Criteriaa

Selected Data Set With
Depth Range (km) Number of Data Ratio

Depth
CMTb 22,477 DR CMT 0–30 6,355 28%
CMTb 22,477 DR CMT 30–40 8,018 36%
CMTb 22,477 DR CMT 40–300 6,798 30%
CMTb 22,477 DR CMT 300–700 1,306 6%

Quality
CMTb 22,477 FD FD 10,709 48%
CMT 0–30 6,355 FD+DR FD 0–30 2,685 42%
CMT 30–40 8,018 FD+DR FD 30–40 3,619 45%
CMT 40–300 6,649 FD+DR FD 40–300 3,609 53%
CMT 300–700 1,455 FD+DR FD 300–700 796 61%

Rake: One Nodal Plane
FD 0–30 2,685 FD+DR+R1P FD 0–30 R1P 528 20%
FD 0–30 2,685 FD+DR+S1P FD 0–30 S1P 1,130 42%
FD 0–30 2,685 FD+DR+N1P FD 0–30 N1P 217 8%
FD 0–30 2,685 FD+DR+ (R1P*S1P*N1P) total strike slip or dip slip on one plane 1,875 70%

Rake: Both Nodal Planes
FD 0–30 2,685 FD+DR+R2P FD 0–30 R2P 267 10%
FD 0–30 2,685 FD+DR+S2P FD 0–30 S2P 437 16%
FD 0–30 2,685 FD+DR+N2P FD 0–30 N2P 147 5%
FD 0–30 2,685 FD+DR+ (R2P*S2P*N2P) total strike slip or dip slip on both planes 851 32%

Rake: One Versus Both Nodal Planes
FD 0–30 R1P 528 FD+DR+R2P FD 0–30 R2P 267 51%
FD 0–30 S1P 1,130 FD+DR+S2P FD 0–30 S2P 437 39%
FD 0–30 N1P 217 FD+DR+N2P FD 0–30 N2P 147 68%
Total strike slip or dip slip on one plane 1,875 FD+DR+ (R2P*S2P*N2P) total strike slip or dip slip on both planes 851 45%

aFD, Frohlich and Davis [1999] quality criteria; DR, depth range selection; R1P, rake on one nodal plane within 10� of pure reverse (+90�); R2P, rake on
both nodal planes within 10� of pure reverse (+90�); S1P, rake on one nodal plane within 10� of pure strike slip (0� or 180�); S2P, rake on both nodal planes
within 10� of pure strike slip (0� or 180�); N1P, rake on one nodal plane within 10� of pure normal (�90�); N2P, rake on both nodal planes within 10� of
pure normal (�90�). For combinations, ‘‘and’’ is denoted by pluses, and ‘‘or’’ is denoted by asterisks.

bCMT, the Global Centroid Moment Tensor catalog for the time period 1976–2004. The depth range is 0–700 km.
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[43] The plunge distributions of the P, B, and T axes are

bimodal with a shallow and steep mode, except for that of

the raw P axes that has a shallow mode only (Figures 5c–

5e). The shallow mode is horizontal for the B and T axes

and spreads over 0–25� for the P axes. The steep mode is

sensitive to the density correction: it is shifted from 65–70�
to 65–75� for the raw and corrected T axis plunge and from

70–80� to 85–90� for the raw and corrected B axis plunge,

and it appears at 80–90� in the corrected data only for the P

axis plunge.

4.4. Interpretation

[44] The clear preference for pure dip slip and strike slip

shown in the rake distribution is surprising given the

diversity of geodynamic conditions integrated in this global

data set. However, this consistency quickly reaches its limits:

whereas a significant contribution of Andersonian mecha-

nisms would result in similar rake modes, it would produce

different dip distributions of nodal planes and plunge dis-

tributions of the P and T axes. Further analysis therefore

requires separating the diverse geodynamic settings and, in

particular, subduction and nonsubduction related events.

5. DEPTH ANALYSIS

[45] A first-order separation aims to isolate those crustal

events more likely to succumb to the Andersonian tempta-

tion from subduction zone events more likely to be influ-

enced by the dipping slab geometry. A 40 km lower limit,

which is shallower than the traditional 70 km limit for

shallow earthquakes and may exclude a few rare lower

crustal events in orogenic belts, is chosen because it better

focuses on near-surface events. These shallow events are

subdivided into 0–30 km and 30–40 km intervals because

of two considerations. First, this yields two intervals with

similar amounts of data and gives a chance to identify a

possible variation with depth of the influence of a vertical

principal stress. Second, this allows the isolation from the

upper 0–30 km interval of the significant number of poorly

constrained hypocenter depths set at 33 km (Figure 5a) that

may correspond to deeper mislocated events.

[46] The change from reverse to normal in the dominant

faulting mode of deeper events with increasing depth

suggests a separation of the data at the 300 km boundary

commonly used to distinguish intermediate (70–300 km)

from deep focus (>300 km) earthquakes. The data are thus

sorted into four depth intervals, 0–30, 30–40, 40–300, and

300–700 km (Table 2), on the basis of hypocenter depth,

assumed to be more representative of the rupture initiation

location than centroid depth.

5.1. Deep Events: 300–700 km

[47] The data within the 300–700 km depth range are

localized exclusively in subduction zones, as expected

Figure 4. FD data set (10,709 events, Table 2), satisfying the quality requirements [Frohlich and Davis,
1999]. (a) Hypocenter depth and (b) centroid depth.
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(Figure 6a). The rake distribution is dominated by a normal

faulting mode (Figure 6b). The frequency of other slip rakes

is around a third of that mode except that of sinistral slip.

The sinistral slip frequency is half that of dextral slip, which

is intriguing, even if the small number of events does not

preclude statistical undersampling. Because strike-slip

events with steeply dipping nodal planes yield both a

sinistral and a dextral slip, the origin of this imbalance is

to be found in events combining a low-dip strike-slip and a

high-dip oblique-slip nodal plane. Above 500 km such

events with dextral and sinistral slip roughly balance each

other. But below that depth, the dextral events, mostly

located in the Tonga subduction zone, dominate.

[48] The horizontal B axis mode (Figure 6f) reflects the

dip-slip rake mode. The P and T axis plunge distributions

are widely spread with weak modes around 40–60� and

20–40�. The wide scatter of the triangular representation

illustrates the importance of oblique axes (Figure 6d). The

Figure 5. FD data set (10,709 events, Table 2). (a) Rake and (b) dip histograms of both nodal planes
together. (c) P, (d) B, and (e) T axis plunge histograms. The top of the solid rectangles outlines the raw
histograms whereas that of the hollow rectangles outlines histograms corrected for density as explained in
Appendix A. Rake follows Aki and Richards’s [1980, p. 106] convention. Because both nodal planes are
considered, the number of data in Figures 5a and 5b is twice that in Figures 5c–5e.
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Figure 6. The FD 300–700 data set with hypocentral depth within the 300–700 km range (796 events,
Table 2). (a) Epicenter map. Sanson-Flamsteed sinusoidal equal area projection [Snyder, 1987]. Latitude
and longitude grid drawn every 10�. (b) Rake and (c) dip of both nodal planes together. (d) Triangular
representation of the orientation of the vertical with respect to the P, B, and T axes [Frohlich, 1992, 2001]
(Appendix B). (e) P, (f) B, and (g) T axis plunge histograms. The top of the filled rectangles outlines the
raw histograms whereas the top of the hollow rectangles outlines the dip or plunge-corrected histograms
(the correction is explained in Appendix A).
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Figure 7. The FD 40–300 data set with hypocentral depth within the 40–300 km range (3609 events,
Table 2). Same conventions as in Figure 6.
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Figure 8. The FD 30–40 data set with hypocentral depth within the 30–40 km range (3619 events,
Table 2). Same conventions as in Figure 6.
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Figure 9. The FD 0–30 data set with hypocentral depth within the 0–30 km range (2685 events,
Table 2). Same conventions as in Figure 6.
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raw distribution of the nodal plane dip is wide with a slight

low-dip deficit. The density correction compensates for this

deficit and reveals a 5–10� mode (Figure 6c).

5.2. Intermediate Events: 40–300 km

[49] Seismicity in the 40–300 km depth interval is

located mainly along subduction zones but also within

continental convergence zones (Figure 7a). The orientation

parameters from this interval show significant differences

from those from the 300–700 km interval.

[50] The slip rake is dominated by a reverse faulting

mode, with a secondary normal faulting mode about three

times smaller (Figure 7b). Strike-slip faulting has about the

same frequency as any oblique faulting: about an eighth of

the major mode. The strong horizontal mode of the B axes

(Figure 7f) is consistent with the dip-slip modes (Figure 7b).

The raw distributions of the P and T axis plunges are widely

spread with weak modes around 15–25� and 60–75�,
respectively (Figures 7e–7g). The corrected distributions

show two steps, with the high step at 10–30� and 65–90�
for P and T axes, respectively. Oblique axes with various

orientations are also well represented by the dispersion of

the data in the triangular diagrams (Figure 7d).

5.3. Interpretation of Deep and Intermediate Events

[51] The distribution modes and dispersion described in

sections 5.1 and 5.2 are consistent with the typical subduc-

tion system, with subhorizontal B axes and either of the P or

T axes along the slab dip direction, as well as with the

numerous deviations from this typical system, reported

since the first focal mechanisms studies of subduction zones

[Isacks and Molnar, 1969, 1971; Apperson and Frohlich,

1987; Chen et al., 2004]. The shift from normal to reverse

dominated mechanisms between deep and intermediate

events is also consistent with the general downdip com-

pression for the deep events and the mixed downdip

extension and compression for the intermediate events

detailed in the same studies. This effect may be reinforced

by the decrease of slab dip from 40–70� below 125 km to

10–40� above it [Lallemand et al., 2005] because downdip

compression along a low-dip slab will produce reverse

events. The smaller rotation of the P and T axis modes

from the horizontal or vertical directions for the intermedi-

ate events with respect to the deep events can also be

attributed to this slab dip decrease.

5.4. Shallow Events: 30–40 km

[52] The data from the 30–40 km depth interval are

located in various tectonic settings that are not restricted

to convergence zones (Figure 8a). The slip rake distribution

has four modes, each corresponding to pure dip slip or strike

slip (Figure 8b). The pure reverse mode is about five times

larger than the next strike-slip modes, and the smallest mode

corresponds to pure normal slip. The frequency is minimal

for oblique slips at 45� from the modes where it is less than

a tenth of the major reverse mode.

[53] The distributions of the plunges of the P, B, and T

axes are bimodal with a shallow and steep mode (Figures

8e–8g). The B axis horizontal mode reflects the dip-slip

rake modes. Its steeper mode around 70–80� in the raw data

becomes vertical after density correction. The P axis major

mode is 15–30� from the horizontal, and its minor mode

ranges from 70 to 75� for the raw data to 80–85� for the

corrected data. The T axis minor mode is horizontal, and its

major mode is 60–75�. The triangular diagram with few

scattered data in the center confirms the trend for the

vertical to be close to one of the three axes (Figure 8d).

Nodal plane dips are weakly bimodal with modes at 15–25�
from the horizontal and the vertical (Figure 8c).

5.5. Shallow Events: 0–30 km

[54] The 0–30 km depth interval includes various

tectonic settings like the previous 30–40 km interval but

with the notable addition of mid-oceanic ridge events

(Figure 9a). The rake distribution has four modes: three

major modes of similar magnitudes, sinistral, dextral, and

reverse, and one minor normal mode that is about half the

major modes (Figure 9b). Frequency is minimal for oblique

slip at 45� from pure dip slip or strike slip where it is less

than a tenth of the major modes. Comparing the frequencies

with that of an equivalent uniform distribution, which is 75

for a 5� bin, highlights a deficit in oblique slips: the four

minima are about five times smaller than this yardstick,

whereas the three major modes are two and a half to three

times larger, and the minor mode is about a third larger.

[55] The distributions of the plunges of the P, B, and T

axes are bimodal with a horizontal and a steep mode

(Figures 9e–9g). The major mode is horizontal for the

raw data but becomes vertical after density correction for

P and B. The P and B steep modes are around 75–80� for
the raw data but become vertical after density correction.

The T steep mode is around 65–70� for the raw data and

spreads within 65–90� after density correction. This strong-

ly bimodal distribution of the P, B, and T axis plunges is

confirmed by the triangular diagram with only sparse data in

the central region (Figure 9d). A vertical mode in the nodal

plane dip distribution (Figure 9c) distinguishes this depth

interval from all deeper intervals.

5.6. Interpretation of Shallow Events

[56] Three major differences distinguish the shallow

events from the deeper events: strike-slip rake modes, very

low rake minima for oblique slips at 45� from strike or dip,

and strong vertical and horizontal plunge modes of the P, B,

and T axes. This, together with the pure dip-slip rake modes,

is consistent with the idea that near-Andersonian conditions

dominate the distribution, without discounting the impor-

tance of other conditions expressed by the significant non-

modal values of the distributions.

[57] This trend is less marked within 30–40 km than

within 0–30 km. This is consistent with the expectation that

these conditions are best expressed near the surface where

the vertical is most likely to be close to a principal stress

direction. However, it may also be due to the fact that many

events with poorly constrained depth within the 30–40 km

interval may actually be deeper and give this interval some

attributes of deeper intervals.
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Figure 10. The CMT 0–30 data set with hypocentral depth within the 0–30 km range (6355 events,
Table 2). Same conventions as in Figure 6.
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5.7. Selected Versus Complete Data Set

[58] The effect of the selection process is best assessed in

the 0–30 km interval, not only because this is where

Andersonian conditions dominate but also because this is

where the selection is the most stringent with only 42% of

retained data (Table 2). The full data set, CMT 0–30,

distributions of rake, nodal plane dips, and plunges of the

P, B, and T axes are shown on Figure 10.

[59] The most obvious difference between the selected

(Figure 9) and the full data set (Figure 10) is the elimination

of a significant number of pure dip-slip or pure strike-slip

rakes, of 45� and 90� nodal plane dips, and of horizontal and
vertical P, B, and T axes. This difference can be attributed to

the elimination of moment tensors with arbitrarily imposed

naught components at shallow depth (equation (19)).

[60] A more subtle effect of the selection is indicated by a

similarity rather than by a difference between the two rake

distributions. The minima at oblique rakes at 45� from pure

strike or dip slip are about a tenth of the highest modes in both

cases. This happens despite the fact that the modes are reduced

by about a factor of three in the selected data. The selection is

therefore also reducing these oblique slips by a factor of three.

This means many oblique slips in the full data set do not meet

the requirement either of low error (equation (20)) or of high

double couple component (equation (21)). The preference for

slip to be close to dip or strike direction is thus enhanced in

well-constrained data, as shown by the reduction of the

number of events located near the center of the triangular

diagrams (Figure 9d versus 10d).

6. DIP-SLIP OR STRIKE-SLIP EVENTS

[61] The distributions of rake and plunges of the P, B, and T

axes clearly suggest a dominant contribution of Andersonian

mechanisms in the shallow (0–30 km) seismicity (Figure 9).

However, although the wrench regime is well represented in

the nodal plane dip distribution by a vertical mode, the 30� and
60� modes of the compressional and extensional regimes are

not found. Furthermore, the P and T axis steep plunge modes

are not similar, contrary to what is expected from Anderson

normal and reverse faulting. These discrepancies may in part

be due to the mixing of Andersonian with non-Andersonian

events.

[62] This suggests isolating the three types of Anderso-

nian faulting to characterize their geometry. As mentioned

before, we can only rely on necessary conditions to try and

identify these events. Selecting on the basis of the plunges

of the P, B, and T axes is not straightforward, as mentioned

before and detailed in Appendix B (Figure B1). Selecting on

the basis of nodal plane dip or plunges of the P, B, and T

axes would require an estimate of friction angles (Figure 3).

Selecting on the basis of rake is simple, can directly be

applied to the raw data, and allows the use of the resulting

plunges of the P, B, and T axes and nodal dips to infer the

fault frictional properties. The choice is thus easily made to

isolate pure dip-slip and pure strike-slip mechanisms.

6.1. Method

[63] A first approach is to select within the FD 0–30 km

data set events with at least one nodal plane with slip rake

within 10� of pure reverse, normal, or strike slip and isolate

them into three data sets. This approach yields a reasonable

amount of data for each type of faulting (Table 2).

[64] However, this does not guarantee that the actual fault

plane slip is within 10� of pure strike slip or dip slip because
it may correspond to the nodal plane other than that which

justified the selection. How much the alternate nodal plane

rake may vary can be assessed on stereographic projection

after distinguishing the two cases where the selected slip is

close to the dip or to the strike direction.

[65] In the dip-slip case, let us consider two events with

the same first nodal plane of pole P1 but with two different

slip vectors: one, V1, exactly along dip and the other, V2, at

Figure 11. Pure and near-dip-slip nodal plane and
corresponding second nodal plane. The pure dip-slip nodal
plane pole is P1, and its slip direction is along V1; its
associated second nodal plane pole is V1, and slip direction
is P1. The near-dip-slip nodal plane pole is P1, and its slip is
along V2; its associated second nodal plane pole is V2, and
slip direction is P1. The dip direction within this second
plane is labeled D1. The angles between V1 and V2 and P1

and D1 are named a and b, respectively. The central angle
bounded by P1 and D1 and by V1 and V2 is named g.
(a) Case where the first nodal plane has a steep dip. (b) Case
where the first nodal plane has a shallow dip.
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small rake angle, a, from pure dip (Figure 11). The pole and

slip direction of the second nodal plane for each event is

obtained by exchanging those of the first nodal plane. The

pure dip-slip event thus corresponds to a pure dip-slip

second nodal plane of pole V1 and slip P1. The other event

corresponds to a second nodal plane with pole V2 and slip

P1. Let us call D1 the downdip direction within this second

plane and b the rake angle between P1 and D1. The angles a
and b, measured within each nodal plane, are linked by the

same dihedral angle, g, between the two vertical planes than

contain the pole, V2, and the slip, P1, respectively. This

dihedral angle is also the central angle in stereographic

projection. This geometry implies that if the dip of the first

nodal plane is steep, then that of the second nodal plane is

shallow, and b is larger than a (Figure 11a). Conversely, if

the dip of the first nodal plane is shallow, that of the second

nodal plane is steep, and b is smaller than a (Figure 11b). In

other words, an event with near dip slip and steeply dipping

first nodal plane may correspond to a second nodal plane

with a significant strike-slip component.

[66] In the case of a near-strike-slip mechanism, the two

considered events also share the same first nodal plane of

pole P1 with different slip vectors: one, V1, exactly along

strike and the other, V2, at small rake angle, a, from pure

strike (Figure 12). Let us call d1 the first nodal plane dip.

The pure strike-slip event corresponds to a vertical second

plane with a slip vector along P1 plunging at 90� � d1. The
other event second nodal plane is steeply dipping because

its pole, V2, has a shallow plunge. The rake difference, b,
between the slip vector, P1, and pure strike slip, H1, remains

close to the plunge of P1, that is, to 90� � d1. The

conclusion is the reverse of that for dip-slip events: a

near-strike-slip shallow dip first nodal plane may corre-

spond to a second nodal plane with a significant dip-slip

component (Figure 12b).

[67] Hence, selecting slip orientation close to dip or strike

on one nodal plane may include a second nodal plane with

significant oblique slip depending on the first nodal plane

dip. Slip can then be required to be close to pure strike slip

or dip slip either on at least one of the nodal planes by a

loose constraint or on both of the nodal planes by a strict

constraint. Each approach has its advantages and draw-

backs: in the first case, actual oblique slip events may be

included in the selection, whereas in the second case, actual

pure dip-slip or strike-slip events may have been discarded

from the selection. The results of both methods are therefore

presented and labeled as 1P and 2P for one and two planes

slip requirement, respectively (Table 2). In both cases, rake

is required to be within 10� of pure dip slip or strike slip.

Globally, the strict method, 2P, culls 55% of the data

retained by the loose method, 1P. The above discussion is

thus relevant to a significant proportion of events.

6.2. Reverse 0–30 km

[68] Reverse events represent between 20% (R1P) and

10% (R2P) of the 0–30 km data (Table 2). This is about two

to three times the 6% ratio of the 20� rake selection sector to
the total rake range. Most events are located in convergence

zones, but a few are near mid-oceanic ridges (Figures 13a

and 14a).

[69] The B axis is subhorizontal with 0–10� plunge

(Figures 13f and 14f), as required for slip to be along the

dip direction. The plunge distributions of the P and T axes

are unimodal with a shallow, but not horizontal, P mode

around 20–30� and steep, but not vertical, T mode around

60–90� (Figures 13e–13g and 14e–14g and Table 3). The

steep T axis plunge mode is very sensitive to the density

correction that shifts it from 60–65� to 85–90�. In the

triangular diagram, these orientations are located in a band

along the P-T edge with a cluster at 20–30� from the T

vertex (Figures 13d and 14d).

[70] The R2P data set retains only 51% of the R1P set

(Table 2). The two corresponding distributions are more

Figure 12. Pure and near-strike-slip nodal plane and
corresponding second nodal plane. The pure strike-slip
nodal plane pole is P1, and its slip direction is along V1; its
associated second nodal plane pole is V1, and slip direction
is P1. The near-strike-slip nodal plane pole is P1, and its slip
is along V2; its associated second nodal plane pole is V2, and
slip direction is P1. The horizontal direction within this
second plane is labeled H1. The angles between V1 and V2

and P1 and H1 are named a and b, respectively. The first
nodal plane dip angle is named d1. (a) Case where the first
nodal plane has a steep dip. (b) Case where the first nodal
plane has a shallow dip.
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Figure 13. The FD 0–30 R1P data set with depth within the 0–30 km range and with rake within 10�
of pure reverse for at least one nodal plane (528 events, Table 2). Same conventions as in Figure 6.
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Figure 14. The FD 0–30 R2P data set with depth within the 0–30 km range and with rake within 10�
of pure reverse for both nodal planes (267 events, Table 2). Same conventions as in Figure 6.
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related by similarities than separated by differences, yet the

analysis of these few differences illustrates the contrast

between the two selection procedures.

[71] Few rakes from the R1P set deviate by more than 30�
from pure reverse (Figure 13b), whereas in the R2P set, the

10� maximum deviation is required (Figure 14b). The

relative frequency of steep (>70�) and shallow (<15�) nodal
plane dips is lower in the 2P distribution than in the 1P

distribution. This is consistent with the analysis in section 6.1:

steeply dipping and near-dip-slip planes with shallow dipping

and oblique slip second nodal planes are eliminated in the 2P

set. This is best illustrated in the triangular representation

where data from the R1P set (Figure 13d) along the BA0 line

(defined in Appendix B, Figure B1) are clearly absent from the

R2P set (Figure 14d).

[72] The distribution of the nodal plane dip is clearly

bimodal (Figures 13c and 14c). The two modes are around

15–25� and 65–70� and are further detailed in Table 3 for

the four cases corresponding to R1P or R2P and to raw or

density-corrected distributions. These dip modes can be

compared with those from former compilations by Molnar

and Chen [1982], Triep et al. [1995], Frohlich [2001], and

Sibson and Xie [1998]. Molnar and Chen’s [1982] data are

limited to a few convergent zones and are not sorted by rake

so that they include mixed strike-slip and reverse mecha-

nisms. They show a 30–60� dip mode. Triep et al. [1995]

used the CMT database, albeit for the 1977–1992 period

and the 0–40 km depth range, and selected reverse events

on the basis on P and T axis plunges. They analyzed the dip

distribution of that of the two nodal planes with the lower

dip. This yields 15–20� and 40–45� modes. Frohlich’s

[2001] compilation is also based on the CMT database

within the same 0–30 km range as here but for the 1977–

1999 period. The events, which are not sorted by rake

range, show a cluster corresponding to reverse mechanisms

on the triangular representation at 25� from the T vertex.

This corresponds most closely to the full FD 0–30 km data

set triangular diagram cluster (Figure 9d) and T axis plunge

65–70� mode (Figure 9g) and remains consistent with the

R1P and R2P distribution (Figures 13 and 14). Sibson and

Xie [1998] compiled 31 earthquakes where the actual fault

plane is identified and where slip rake is within 30� of pure
reverse. The resulting fault plane dip distribution is bimodal

with modes around 25–35� and 45–55� and is limited to

dips below 60�. The superposition of the two nodal planes

makes a direct comparison difficult, but the low-dip mode

remains compatible with, even if not identical to, that of the

R2P raw distribution (Figure 14c). Thus, even if the R1P

and R2P distributions cannot be directly compared to these

various compilations because of their different approaches,

they remain roughly consistent with them.

6.3. Strike Slip 0–30 km

[73] Strike-slip events represent between 42% (1P) and

16% (2P) of the 0–30 km data (Table 2) whereas the

corresponding 40� rake selection sector represents only

11% of the total rake range. They are located in all types

of geodynamic settings (Figures 15a and 16a).

[74] Vertical nodal planes, subvertical B axes, and hori-

zontal P and T axes dominate the orientation distributions

(Figures 15 and 16). The similarity between the nodal plane

dip distribution (Figures 15c and 16c) and the density-

corrected B axis plunge distribution (Figures 15f and 16f)

could be viewed as reflecting the geometrical constraint that

a horizontal slip imposes a B axis along the downdip

direction of the corresponding nodal plane, hence with a

plunge similar to the plane dip. Yet the raw distributions

with the same vertical dip modes of the nodal planes but

with lower B plunges with a 75–85� mode seem to

contradict this. This bias toward lower B plunges is

explained by the fact that a nearly, but not completely,

vertical plane with a nearly, but not completely, horizontal

slip will yield a B axis slightly away from the downdip

direction, thus with a plunge lower than the plane dip. This

effect is overturned by the density correction that yields a

deceptive correspondence.

[75] The difference between the two types of rake selec-

tion is best illustrated in this case because this is where the

reduction is most stringent, with the S2P set retaining only

39% of the S1P data (Table 2), and the resulting distribu-

tions are the most contrasted (Figures 15 and 16). As in the

case of reverse events, rake deviations from pure strike slip

TABLE 3. Dip and Plunge Modal Values and Inferred Friction Anglesa

Data Set Distribution

Fault Plane Auxiliary Plane P T

Dip ’0 Dip ’0 Plunge ’0 Plunge ’0

FD 0–30 R1P raw 15–25 40–60 65–70 40–50 20–25 40–50 60–65 50–60
FD 0–30 R1P compensatedb 15–20 50–60 65–70 40–50 20–30 40–60 85–90 0–10
FD 0–30 R2P raw 20–25 40–50 65–70 40–50 20–25 40–50 65–70 40–50
FD 0–30 R2P compensatedb 20–25 40–50 65–70 40–50 20–25 40–50 85–90 0–10
FD 0–30 N1P raw 45–50 0–10 30–45 0–30 80–85 10–20 0–5 0–10

30–45 <0
FD 0–30 N1P compensatedb 45–50 0–10 30–35 20–30 80–90 0–20 0–5 0–10

30–35 <0 5–10 70–80
5–10 <0

FD 0–30 N2P raw 45–50 0–10 45 (?) 0 (?) 80–85 10–20 0–5 0–10
FD 0–30 N2P compensatedb 45–50 0–10 30–35 (?) 20–30 (?) 80–90 0–20 0–5 0–10

30–35 (?) <0 (?) 40–45 (?) 0–10 (?)
aUnit is degrees.
bDip or plunge compensated distribution, as explained in Appendix A.
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Figure 15. The FD 0–30 S1P data set with depth within the 0–30 km range and with rake within 10� of
pure strike for at least one nodal plane (1130 events, Table 2). Same conventions as in Figure 6.
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Figure 16. The FD 0–30 S2P data set with depth within the 0–30 km range and with rake within 10� of
pure strike for both nodal planes (437 events, Table 2). Same conventions as in Figure 6.
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Figure 17. The FD 0–30 N1P data set with depth within the 0–30 km range and with rake within 10�
of pure normal for at least one nodal plane (217 events, Table 2). Same conventions as in Figure 6.
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are rarely larger than 30� in the S1P set and imposed below

10� in the S2P set. This results in a significantly larger

deviation of nodal plane dips from the vertical in the S1P

distribution than in the S2P distribution (Figure 15c versus

16c). This is well illustrated in the triangular diagram where

the B axis may substantially deviate from the vertical and

even reach the horizontal in the S1P set (Figure 15d) but

remains within 15� of the vertical in the S2P set

(Figure 16d). This 10–15� S2P deviation is within the

error range of nodal plane dips after the quality selection

[Frohlich and Davis, 1999].

[76] The S2P subvertical nodal planes and B axes are

consistent with Andersonian faulting. However, as dis-

cussed in section 6.1, the 2P selection has eliminated

strike-slip events along shallow dip nodal planes with

oblique slip on a second steep nodal plane. Whether a

significant number of these S1P events correspond to actual

strike slip on low-angle fault depends on which of the two

nodal planes is the fault plane. Whereas this can be

determined on a regional basis, it remains beyond the scope

of this study, and so does the relative importance of actual

non-Andersonian strike-slip events in the S1P data.

6.4. Normal 0–30 km

[77] Normal events represent between 8% (1P) and 5%

(2P) of the 0–30 km data (Table 2). This is comparable to

the corresponding rake selection sector of about 6% of the

total range. Two factors limit how much these data are

representative of global normal faulting. First, the small size

of these samples (217 and 147 for N1P and N2P, respec-

tively) makes them statistically weaker than those

for reverse or strike-slip faulting. Second, they are more

representative of oceanic than of continental extension

because they are dominated by mid-oceanic ridge events

(Figures 17a and 18a).

[78] The dip angles of the nodal planes show a single

mode at 45� for the raw data and within 30–50� after

compensation but with one exception (Figures 17c and 18c

and Table 3). The exception is a secondary very low 5–10�
dip mode in the N1P compensated distribution (Figure 17c).

This secondary mode, however, results from the enhance-

ment by a factor of 8 (Table A1, Appendix A) of a dozen

data only, most of which are eliminated in the N2P set, and

its significance is therefore uncertain. The constraint that

dip-slip nodal planes have complementary dip angles

enhances the rise of a 45� mode as dips become close to

that value, as illustrated by Thatcher and Hill [1991]. This

general 45� dip mode can be found in most previous

analyses of seismic normal fault dips, whether focusing

on the continental domain and related to the debate on low-

angle normal faulting [Jackson, 1987, 2002; Jackson and

White, 1989; Doser and Smith, 1989; Thatcher and Hill,

1991; Wernicke, 1995; Abers et al., 1997; Braunmiller and

Nabelek, 1996; Hatzfeld et al., 2000; Collettini and Sibson,

2001] or addressing mid-oceanic ridge earthquakes [Huang

et al., 1986; Jemsek et al., 1986; Huang and Solomon,

1987, 1988]. These latter studies show typical dip-slip

mechanisms with 45� dips of nodal planes and are made

all the more relevant by the large proportion of near-oceanic

ridge events in the N1P and N2P data sets. The few dip

distributions based on the actual fault plane identification

consistently show both a 45� dip mode and a cutoff below

30� [Jackson, 1987; Jackson and White, 1989; Collettini

and Sibson, 2001].

[79] The B axis horizontal mode reflects the dip-slip con-

straint (Figures 17f and 18f). The horizontal and subvertical

modes of the TandP axes are consistent with the 45� dipmode

of nodal planes and the �90� rake mode, except for two

notable discrepancies. First, the raw plunge mode of P axes is

at 80–85� instead of being vertical. Next, the frequency of

vertical P axes is much less than half the frequency of 45� dip
and �90� rake for both nodal planes. This is a reminder that

whereas events with both�90� rake and 45� dip correspond to
verticalP axes, eventswith either�90� rake or 45� dip, but not
both together, correspond to P axes deviated from the vertical.

[80] The N2P set retains 68% of the N1P data (Table 2).

The N1P rake dispersion (Figure 17b) is similar to that of

reverse events (Figure 13b) with few data deviating by more

than 30� from dip slip. Similarly to the reverse events

situation, the 2P selection eliminates most of the steep

(>60�) and shallow (<30�) dip nodal planes from the 1P

data set (Figure 18c versus 17c).

7. DISCUSSION

7.1. Extent of Anderson’s Faulting

[81] The most striking result for shallow (0–30 km)

events is the sharp decline of the frequency of rake from

its maxima reached for pure dip slip and strike slip toward

its minima reached for oblique slip at 45� from strike or dip

and the resulting deficit in oblique slips (Figure 9). A

preponderance of Andersonian mechanisms is the simplest

way to explain this distribution, even if it is not impossible

for peculiar combinations of nonoptimal fault reactivation

and nonvertical principal stress systems to account for it.

[82] Pure dip-slip and strike-slip partitioning is still

important within the 30–40 km range (Figure 8). Finer

shallow depth analysis would require tighter determinations,

such as those of Engdahl et al. [1998], than those from the

U.S. Geological Survey National Earthquake Information

Center preliminary determination of epicenter and monthly

listing that constitute the overwhelming majority of the

CMT catalog hypocenters, with numerous undetermined

values set at 10 and 33 km (Figure 4a).

[83] Below 40 km, oblique-slip frequency rises above

half that of uniform density, and the modal mechanism is

dip slip with subhorizontal B axis (Figures 6 and 7). This

mode is thus shared between subduction-related events and

shallow Andersonian dip-slip events. This explains why the

superposition of these two different systems in the global FD

data set still yields such well-defined dip-slip and strike-slip

modes (Figure 5). The influence of the stress-free surface is

thus better expressed by the deficit in 45� oblique slips than
by the high frequencies of pure dip slips or strike slips.

[84] The CMT catalog is incomplete for magnitudes

Mw � 5.5 (Figure 19a). This is emphasized by the quality
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Figure 18. The FD 0–30 N2P data set with depth within the 0–30 km range and with rake within 10�
of pure normal for both nodal planes (147 events, Table 2). Same conventions as in Figure 6.
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selection that is more severe for small magnitudes

(Figure 19b). Yet the sampling remains reasonably repre-

sentative for Mw � 5.7 in the FD 0–30 data (Figure 19b)

with the most stringent selection (Table 2), as well as in

the much smaller pure dip-slip and strike-slip samples

(Figures 19c–19e). The preponderance of dip-slip and

strike-slip mechanisms is thus established for events above

that magnitude only. Another magnitude bias is implicit in

the choice of counting the number of events rather than

weighting them according to magnitude. This, however,

would mainly result in focusing on a few large events and in

discarding statistical considerations.

[85] This preponderance of Andersonian regimes is also

found in paleostress reconstructions, as shown by a recent

compilation [Lisle et al., 2006]. However, this compilation

yields extensional, wrench, and compressional regimes

frequencies in the ratio 2:2:1, in contrast with the 1:4:2

ratio obtained here. This raises the question of what these

two data sets represent. The amount of data, 2208 for

paleostress and 2685 for the FD 0–30 data set, is compa-

rable and so are the depths because the paleostress compi-

lation focused on brittle structures. The time span for the

seismic data is limited to 28 years whereas that for paleo-

stress is ill defined but most likely measured in Ma. The

paleostress sites are all located on continents whereas the

seismic data include a significant proportion of oceanic

events. However, the most important difference between

the two data sets may end up being that whereas the

paleostress sites are the result of deliberate individual

choices that did not include the goal of yielding a consol-

idated sample representative of all conditions of deforma-

tion, the seismic data set is exhaustive and limited only by a

magnitude threshold of Mw � 5.5. The relative paucity of

extensional regimes in the seismic catalog with respect to

the paleostress compilation, despite the fact that it includes

not only all those from continents but also all those from

mid-oceanic ridges, is intriguing. Explanations include a

possible sampling bias in the paleostress sites, a longer

recurrence time for normal than for other events that would

make the 28 years seismic sample unrepresentative, or a

bias toward smaller magnitudes for normal faulting. Statis-

tical analyses of earthquake frequency and magnitude [Okal

and Romanovicz, 1994; Triep and Sykes, 1997], including

those using seismic catalogs complete down to lower

magnitudes than the Global Centroid Moment Tensor cat-

alog [Frohlich and Davis, 1993; Schorlemmer et al., 2005],

lend support to this last possibility by showing higher b

values for normal than for reverse faulting.

7.2. Compensation Versus Consistency

[86] Correcting plunge and dip distribution with respect

to uniform spatial density is informative and therefore used

here and also often in the literature. Yet it leads to a large

emphasis on the highest plunges or lowest dips that may

obliterate the data geometrical consistency. For instance, the

correspondence between vertical T axes, horizontal B and P

axes, and 45� dipping nodal planes (discussed in Appendix B)
can be analyzed only in the raw distributions of Figures 9, 10,

13, and 14. The same is true for the correspondence between

vertical P axes, horizontal B and T axes, and 45� dipping

nodal planes in Figures 9, 10, 17, and 18 and that between

vertical B axes, horizontal P and T axes, and vertical nodal

planes in Figures 9, 10, 15, and 16. This suggests using both

raw and corrected distribution for interpretation.

7.3. Geometry and Mechanical Implications

[87] Isolating Andersonian faulting allows characterizing

its geometry and inferring the mechanical properties that

control it. In the strike-slip case, selecting rake on both

nodal planes instead of on a single one has the most

stringent effect with 61% of the S1P events discarded in

S2P (Table 2). These events, with inclined B axes, may

correspond either to actual strike slip on moderately dipping

fault planes or to oblique slip on vertical planes. A signif-

icant proportion of odd focal mechanisms with inclined B

axes may thus actually correspond to strike slip on moder-

ately dipping planes. Actual strike slip may thus correspond

to as little as 39% (S2P) and as much as 100% of the strike-

slip mode (S1P). In the first case, it would always corre-

spond to vertical nodal planes and thus would be totally

Andersonian. In the second case, nonvertical nodal planes,

hence non-Andersonian, events would dominate. Stated

otherwise, events with vertical B axes may represent only

a fraction, possibly as low as 39%, of actual strike-slip

faulting. Analysis of fault mechanical properties requires

azimuth constraints that are out of reach for this study but

that could be addressed on a regional basis [Nur et al., 1986;

Scotti et al., 1991].

[88] In the dip-slip case, selecting rake on both nodal

planes instead of on a single one tends to eliminate events

with very different nodal plane dips. This selection is thus

more stringent in the reverse (51% R2P) than in the normal

case (68% N2P) where nodal planes tend to have equivalent

dips. Actual dip slip is thus between 68% (N2P) or 51%

(R2P) and 100% (N1P or R1P) of the dip-slip mode. In this

case, the dip of the fault planes may be related to the

apparent friction coefficients by two different approaches.

[89] The first approach relies on the argument made in

sections 2.2 and 2.3 that the reactivation of misoriented

faults requires a deviation from standard conditions, either

in terms of stress difference or in terms of frictional

properties, and makes the assumption that the larger such

deviations, the less frequent they are. This implies that the

frequency of events should decrease as the fault plane

orientation gets further away from the optimum. The

decreasing frequency of shallow events as rake gets away

from the optimal pure dip-slip and strike-slip mechanisms is

consistent with this inference (Figure 9b). Relying on this

assumption a step further suggests identifying the modal

values of the dip of the nodal planes and of the plunge of the

P and T axes with the optimal orientations and using them to

infer the friction angle (Figure 3).

[90] For reverse events (FD 0–30 R1P and R2P,

Figures 13 and 14) this suggests associating the lower and

higher nodal plane dip modes with those of the fault and

auxiliary plane, respectively. This together with the plunge
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Figure 19. Surface wave magnitude (Ms) histograms for the (a) CMT 0–30, (b) FD 0–30, (c) FD 0–
30 R1P, (d) FD 0–30 S1P, and (e) FD 0–30 N1P data sets. In all cases, data without Ms determination are
not shown.
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modes of the P and T axes yields a 40–60� friction angle or

0.8 to 1.2 friction coefficient (Table 3). The only discrepancy

comes from the T axis density-corrected mode that rather

suggests a 0–10� friction angle. However, this mode is based

on 19 data that are enhanced by a factor of 23 (Table A1,

Appendix A) and may therefore indicate that the limits of

this correction have been reached. These friction coeffi-

cients are higher than the ‘‘standard’’ 31� expected for

reactivation but remain within a realistic range between that

value and those expected for new faulting.

[91] For normal events (FD 0–30 N1P and N2P, Figures 17

and 18), the plunge modes of the P and T axes and the 45–

50� dip mode of the nodal planes, taken as that of the fault

planes, yield 0–20� friction angles (Table 3). Considering

the secondary 30–45� dip mode of the nodal planes as that

of the auxiliary planes yields 0–30� friction angles; con-

sidering it as that of the fault planes would yield a negative

friction coefficient. Interpreting the very low 10� N1P

compensated dip mode as that of auxiliary planes yields

70–80� friction angles that are unrealistic because they are

higher than those for rupture of intact rocks. This confirms

that the significance of this mode is uncertain. This approach

thus leads to the determination of friction coefficients around

0–20� for normal faults and around 40–60� for reverse

faults. This suggests weaker and stronger faults than the

expected standard fault with 30� friction coefficient.

[92] The other approach focuses on a much smaller

number of events where the fault plane is distinguished

from the auxiliary plane and seeks the tail of the dip angle

distribution that corresponds to the ‘‘lock up’’ angle, i.e., to

the situation where the maximum principal stress direction

is within the friction cone and movement is inhibited

[Sibson, 1994]. This has led to estimates of the lock up

dip angle around 30� for normal faults [Jackson, 1987;

Jackson and White, 1989; Collettini and Sibson, 2001] and

around 60� for reverse faults [Sibson and Xie, 1998] that are

both consistent with Byerlee’s [1978] standard 31� friction
angle [Sibson, 1994; Jackson, 2002].

[93] Thus modal or ‘‘lock up’’ values lead to different

friction estimates. This cannot be explained only by the fact

that the former are derived from both nodal planes whereas

the latter are derived from identified fault planes because, as

discussed in sections 6.2 and 6.4, both types of compilations

yield comparable dip modal values. Fault rotation, however,

affects the signification of the modal values. As deformation

accumulates, active fault can rotate from their initial orien-

tation until they reach an attitude beyond the lock up angle

that inhibits slip [Nur et al., 1986; Buck, 1988, 1993;

Jackson, 1987; Jackson and White, 1989; Scotti et al.,

1991; Thatcher and Hill, 1991; Sibson, 1994; Sibson and

Xie, 1998; Hatzfeld et al., 2000; Collettini and Sibson,

2001]. In the above data sets, such rotations would have

to keep a horizontal intermediate principal stress axis within

the fault plane because in other cases, maintaining dip-slip

mechanisms would become very unlikely, even though not

impossible. In these conditions, standard frictional values

imply a 60� optimal dip and a 30–90� dip range for active

normal faults and a 30� optimal dip and a 0–60� dip range for

active reverse faults. Thus, in a given region, the modal dip

values may result from the combination of the amount of

rotation and of the initial fault orientation, which could be

optimal if newly created or nonoptimal if reactivated. How

this is compounded in global distributions involving different

amounts of finite deformations and various initial orientations

is not clear, and the assumption that near-optimal orientation

would be statistically favored may not be satisfied.

[94] Yet the asymmetry of the dip modes between normal

and reverse events as well as wider dip range in the R2P

than N2P distribution still indicate a different behavior

between these two type of faulting. Interestingly, these

two characteristics can be seen in the distributions provided

by studies that identified the actual fault planes [Jackson,

1987, 2002; Jackson and White, 1989; Sibson, 1994; Sibson

and Xie, 1998; Collettini and Sibson, 2001]. This may be

related to different fault and stress conditions or to a

different rotational organization of the deformation. With

a vertical principal stress, the 45� preferred dip cannot help

evoking fault zone plasticity [Byerlee and Savage, 1992;

Sleep and Blanpied, 1992; Rice, 1992; Gueydan et al.,

2004], but stress rotation away from the vertical may

provide an alternate explanation [Yin, 1989; Bradshaw

and Zoback, 1988; Melosh, 1990; Wills and Buck, 1997;

Westaway, 1999].

8. CONCLUSIONS

[95] Dip-slip and strike-slip mechanisms are the modes of

shallow (0–30 km) seismic faulting, and events with

oblique slip at 45� from these modes are the least frequent.

Events with rakes within 10� of pure dip slip or strike

slip represent at least 32% and at most 70% of all well-

constrained data shallower than 30 km. This suggests, but

does not require, that Andersonian faulting is the mode of

shallow seismic faulting and thus appears as a modern

vindication of a century old theory. This also supports the

idea that the state of stress in the crust is limited by the

frictional reactivation of near-optimal preexisting faults, thus

extending in scope and depth the validation provided by

borehole measurements. Predominating Andersonian condi-

tions explain whyP,B, and Taxes are often good indicators of

stress directions despite sound theoretical objections.

[96] This does not deny the importance of reactivation of

nonoptimally oriented planes that is evidenced both by the

significant nonmodal values of the rake distributions and by

the range of nodal plane dip of pure strike-slip or dip-slip

events. In particular, odd events with inclined B axes may

correspond to the strike-slip reactivation of moderately

dipping faults.

[97] Deformation is thus accommodated not only on

nearly optimally oriented Andersonian fault planes that

produce pure dip slip or pure strike slip but also on

nonoptimally oriented planes that result in oblique slip.

This can be viewed both as a complication and as an

opportunity. The complication is that Anderson’s theory

obviously does not explain all faulting, as even its author

was aware. The opportunity is that if a sufficient number of
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events are available, Andersonian and non-Andersonian

mechanisms can be separated. The former can then be used

to tightly constrain stress orientations, while the latter,

together with the just obtained stress orientations, can be

used to infer the mechanical properties of the misoriented

fault they are associated with.

[98] The asymmetry between normal and reverse faulting

suggests different mechanical processes despite similar

rocks. This could reflect different properties either of the

individual faults or of the fault systems. This questions using

the same mechanical considerations to infer the limiting state

of stress in extensional and compressional regimes and, in the

first case, also questions relying on the same laboratory-

derived mechanical properties to explain both types of faults.

[99] This analysis is a testimony of how much global

complete and unbiased seismic source parameter catalogs

contribute to our understanding of the state of stress and of

faulting mechanics. It also underlines how much more could

be learned from global catalogs with lower magnitude

threshold, better depth constraints, and, above all, more

frequent determination of fault versus auxiliary plane.

APPENDIX A: ORIENTATION DENSITY
CORRECTION

[100] A uniform density orientation in space yields a

cosine frequency distribution on the plunge histograms

because of a geometrical bias. Density-corrected histograms

are therefore built by correcting the values by a factor that

compensates for the variation of the area on a unit sphere

covered by each histogram interval.

[101] Taking as reference interval that between plunge p1
and p2, the correction, c, to apply to the interval between

plunges p3 and p4 is given by

c ¼ sin p2 � sin p1

sin p4 � sin p3
: ðA1Þ

In this paper the reference is taken as the 0–5� plunge

interval, and the resulting correction is given in Table A1.

The same correction is applied to the complement of dip,

i.e., to the plunge of the normal, for plane orientations.

APPENDIX B: TRIANGULAR DIAGRAMS

[102] The three goals of this appendix are (1) to recall

Frohlich’s [1992] triangular diagrams definition, (2) to

demonstrate that they can be interpreted as a representation

of the orientation of the vertical with respect to the P, B, and

T axis frame, and (3) to use them to discuss the relationship

between the orientations of the P, B, and T axes on one hand

and nodal plane dip and slip rake on the other hand.

B1. Frames of Orientation

[103] Let us consider the geographical frame

G ¼ g1; g2; g3ð Þ; ðB1Þ

where g1, g2, and g3 are unit vectors pointing north, east,

and down, respectively, and the P, B, and T axis frame

defined as

A ¼ a1; a2; a3ð Þ; ðB2Þ

where a1, a2, and a3 are unit vectors chosen along the P, B,

and T axes, respectively, so that the frame is direct. Because

each vector can be changed into its opposite, there are four

frames satisfying these requirements for any given P, B, and

T directions. The transformation matrix between A and G is

defined as

AG ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

6664
7775; ðB3Þ

where aij is the ith coordinate of aj in the frame G. Because

both A and G are orthogonal frames of unit vectors, AG is a

unitary matrix, and because both A and G are direct frames,

AG represents a rotation.

B2. Original Definition

[104] The original definition of the triangular diagrams

[Frohlich and Apperson, 1992; Frohlich, 1992] uses the

vector v made of the third coordinates of each of the P, B,

and T axes in the geographical frame:

v ¼
sin dP
sin dB
sin dT

2
4

3
5; ðB4Þ

where dP, dB, and dT are the plunge angles of the P, B, and T

axes, respectively. Because this vector is unitary it can be

represented by its endpoint on the unit sphere. Taking

TABLE A1. Plunge Interval Weighting

Interval Bounds

WeightInitial Final

0 5 1.000
5 10 1.008
10 15 1.023
15 20 1.048
20 25 1.081
25 30 1.126
30 35 1.185
35 40 1.259
40 45 1.355
45 50 1.479
50 55 1.641
55 60 1.859
60 65 2.164
65 70 2.611
70 75 3.322
75 80 4.616
80 85 7.654
85 90 22.904
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advantage of the fact that each direction can be exchanged

with its opposite allows the restriction of all plunge angles

to the [0, 90�] interval and thus the vector to the unit sphere

octant with positive coordinates. Projecting this octant into

the plane with a gnomonic projection then yields the

triangular diagram. The information on the three plunges is

thus concentrated in a single diagram by taking into account

the fact that they are not independent but constrained to

yield orthogonal directions. However, the gnomonic projec-

tion does not conserve area so that density computations

require either switching to an equal area projection, such as

the Lambert azimuthal equal area used in Schmidt stereo-

grams [Kaverina et al., 1996], or using weighting factors

[Frohlich, 2001].

B3. Relationship With the P, B, and T Frame

[105] The P, B, and T axes and a1, a2, and a3 as defined in

section B1 are identical but for a sign indetermination;

hence

v ¼
sin dP
sin dB
sin dT

2
4

3
5 ¼

�a31
�a32
�a33

2
4

3
5: ðB5Þ

It is always possible to choose among the four equivalent

direct a1, a2, and a3 frames one for which the three

components a31, a32, and a33 have the same sign. This

allows the reduction of the indetermination to

v ¼
sin dP
sin dB
sin dT

2
4

3
5 ¼ e

a31
a32
a33

2
4

3
5; ðB6Þ

where

e ¼ �1: ðB7Þ

Further reduction is not possible because of the conflicting

requirements that P, B, and T are constrained to have

positive third coordinates whereas a1, a2, and a3 are con-

strained to be a direct frame.

B4. Alternate Interpretation

[106] The vector v is thus obtained by the third line of the

AG matrix. However, because AG is unitary, its transposed

matrix is also its inverse matrix:

GA ¼ AG
� ��1¼ tAG; ðB8Þ

where

GA ¼
g11 g12 g13
g21 g22 g23
g31 g32 g33

2
4

3
5 ðB9Þ

and gij is the ith coordinate of gj in the A frame. Hence

g3 ¼
g13
g23
g33

2
4

3
5 ¼

a31
a32
a33

2
4

3
5 ðB10Þ

and

v ¼ e g3: ðB11Þ

[107] The triangular diagrams can then be interpreted as

the representation of the orientation of the upgoing (e = �1)

or downgoing vertical (e = +1) within the P, B, and T frame.

In this paper the vertices are therefore labeled as P, B, and T

and chosen along a direct frame (Figure B1).

B5. Relationship Between the P, B, and T Axis
Orientations and Nodal Plane Dip and Slip Rake

[108] This triangular representation also provides a rele-

vant framework to consider a few aspects of the geometrical

relationship between the orientations of the P, B, and T axes

on one hand and nodal plane dip and slip rake on the other

hand that are useful for the comprehension of the paper.

[109] Let us first consider the three trivial cases that

correspond to the vertices of the triangle (Figure B1). If P

is vertical, both nodal planes have 45� dip and pure normal

dip slip. If T is vertical, the dip of the planes is also 45� but
with pure reverse dip slip. If B is vertical, the nodal planes

are vertical with pure strike slip.

[110] If we consider next Andersonian faulting (detailed

in Figure 3), strike-slip faulting is expected to plot at the B

vertex, whereas normal and reverse faulting are expected to

plot at positions called AN and AT [Frohlich, 2001] located
80/2 � 15� away from the P and T vertices (Figure B1).

Figure B1. Triangular representation of the orientation of
the vertical with respect to the P, B, and T axes. The P, B,
and T frame is chosen to be direct. Andersonian faulting in
compressional, extensional, and wrench regime plots in AT,
AN, and AS, respectively. A0 is the midpoint between P and
T. Events with one nodal plane with pure strike, pure
reverse, and pure normal slip plot in the BA0, TA0, and PA0

segments, respectively. Angular distances every 10� from
the vertices are indicated by thin lines.
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[111] Let us now consider the general case of events with

one pure dip-slip nodal plane. A necessary and sufficient

condition is that B be horizontal. The second nodal plane is

thus necessarily also pure dip slip, and the events plot on the

TP side of the triangle (Figure B1). Calling A0 the middle of

this side, pure normal events are located on A0P, and pure

reverse events are located on TA0. The plunges of the P and

T axes are obtained by adding ±45� to the nodal plane dips.

[112] Let us further consider the general case of events

with one pure strike-slip nodal plane. The second nodal

plane is thus vertical (its pole is horizontal), and the B axis

is along the first nodal plane dip direction. The resulting

symmetry implies that P and T have identical plunges. This

condition is sufficient to ensure one strike-slip nodal plane.

The corresponding events thus plot along the BA0 line

(Figure B1). This leads to two nontrivial conclusions:

(1) low B plunge is a better proxy for pure dip slip than

high P or T plunge and (2) high B plunge is not a good

proxy for pure strike slip.
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cassante et simulations de déformations plastiques (approche
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