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Abstract

We show how to adapt the Monotone Coupling from the Past exact sampling algorithm
to sample from some symmetric subsets of finite distributive lattices. The method is
applied to generate uniform random elements of all symmetry classes of alternating-sign
matrices.

1 Introduction

Coupling from the Past (CFTP) is an algorithm due to Propp and Wilson [6] to sam-
ple from the exact stationary distribution (rather than from an approximation, like the
classical MCMC method) of an ergodic Markov chain. In its arguably most practical
version of MONOTONE-CFTP, the Markov chain’s state space is a partially ordered set
with unique minimum and maximum elements, and the chain is run through a monotone
update mechanism: at each time step, an appropriately-distributed increasing function
mapping the state space to itself is randomly chosen, and arbitrarily many copies of the
Markov chain can be coupled using the same function by defining the new state of each of
them to be the image of their previous state. The key element in the CF'TP algorithm lies
in being able to (backward) compose a number of such random update functions until the
resulting function is found to be a constant. Using only increasing functions makes it pos-
sible to detect this coalescence by computing the successive images of only the minimum
and maximum elements of the state space.

Thus, CFTP is particularly well suited to sampling from distributive lattices, either
uniformly or according to some well-behaved distribution. In favorable cases, this makes
it possible to completely eliminate initiation bias from the corresponding MCMC simula-
tions, in time comparable to what a well-tuned (for small enough bias) MCMC algorithm
would require. It is also worth mentioning that tight bounds on the mixing time of Markov
chains are often tricky to obtain, so that MCMC simulations typically either have to be run
for an empirically determined time, or for a sometimes widely overestimated guaranteed
mixing time.

Many combinatorially interesting families of objects fall in the “monotone CFTP on
a distributive lattice” framework, but in some cases this fails because of some imposed
symmetry condition. As an example, consider alternating-sign matrices (ASM for short;
see Section 3 for definitions). These are in bijection with another set of matrices which
form a distributive lattice, and CFTP is an efficient way to generate random ASMs.

The group of symmetries of the unit square acts naturally on alternating-sign matrices,
and for each of its subgroups, one can consider the class of matrices which are invariant
under its action. Enumerative formulae for many symmetry classes were conjectured by
Robbins [9], and proved by Kuperberg and others [4, 7, 8].



Random generation of non-symmetric ASMs can be considered a textbook exercise in
MONOTONE-CFTP. For some symmetry classes, however, the defining symmetries corre-
spond to a decreasing automorphism on the lattice of ASMs, and as a result the set of
symmetric ASMs no longer has a natural ordering.

In this paper, we show how to adapt the monotone-CFTP algorithm in a systematic
way to this kind of situation. The new variant, which we call SYMMETRIC-CFTP, uses
the fact that the set we are trying to sample from can be seen as the set of symmetric
ideals of some partially ordered set.

The paper is organized as follows. In Section 2, we review the usual MONOTONE-
CFTP and describe the general idea of SYMMETRIC-CFTP. In Section 3, we apply it to
random sampling from arbitrary symmetry classes of alternating-sign matrices, and give
some experimental results.

2 Monotone and symmetric coupling from the past

Let (P, <) denote a finite partially ordered set (poset). Recall that a subset F C P is an
ideal of P if it is closed under taking smaller elements (z < y and y € E imply z € E),
and that y is said to cover z if © < y but no z exists satisfying = < z < y. The set J(P)
of lower ideals of P forms a finite distributive lattice, and it is a standard result (see, e.g.,
[11]) that any finite distributive lattice is isomorphic to the set of lower ideals of some
finite poset. We consider the problem of sampling uniformly at random from J(P), or
from a specific subset.

2.1 Monotone CFTP

The standard application of MONOTONE-CFTP in this context is as follows. For any
x € P, let T;F and T, denote the applications J(P) — J(P) defined by

= {20 BRI - { 2 A e

Thus, T;f (resp. T, ) acts on any ideal by trying to add (resp. remove) z, leaving it
unchanged if this violates the ideal condition. Note that each such application is monotone
increasing for the order inclusion, i.e. E C F' = T(E) CT(F).

Now consider any probability distribution 7 on P (suject to the condition that 7(z) > 0
for all x € P). We can define a Markov chain with state space J(P) where one step
of the chain consists in choosing a random x € P according to m and an independent
sign e uniformly in {4, —}, and replacing the current state E by E' = T<(E). Such a
Markov chain is clearly irreducible (one can move from any state E to the empty ideal
() by applying the transforms T, , € E, in decreasing order, and back by applying the
transforms 7,7, x € E, in increasing order) and aperiodic (T, (F) = E whenever z is not
a maximal element of F and T, (E) = FE whenever z is not a minimal element of P — E,
which implies that the transition matrix has nonzero diagonal elements), with a symmetric
transition matrix; thus, its unique stationary distribution is the uniform distribution on
the whole lattice J(P). In fact, the above description actually defines a grand coupling
of an arbitrary number of copies of the Markov chains: one can start one copy of the
chain from each state and run them in parallel using the same update functions T7; if at
any time two copies are in the same state, they will be in the same state forever. With
probability 1, all copies will ultimately be in the same state; this is equivalent to the fact
that since one can obtain a constant function by composing the update functions T (for
instance, for any linear extension ;1 < x2 < ... < x, of the order < on P, the compose

T, 0T,,0...0T
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is the constant function which maps each ideal to the empty ideal), composing random
functions will ultimately yield a constant function.

The idea of CFTP is to compose such update functions in reverse order until the
compose is constant, i.e. generate a sequence of independent pairs (z;,¢;) until T , =
Tyt o...oTgk is constant, and then output the single value of this function, which is
uniformly distributed on J(P). The monotonicity of the update functions is what makes
the method practically useful: since each T} ,, is an increasing mapping of J(P) to itself,
one can decide whether it is constant by computing the images of the minimum and
maximum ideals () and P; T4, is constant if and only if 71, (0) = T1,,(P).

2.2 Automorphisms of finite posets

Now consider the group of increasing or decreasing automorphisms of P. Increasing
automorphisms are the “true” automorphisms of the poset, that is, bijections o of P to
itself such that o(z) < o(y) < =z < y; decreasing automorphisms are isomorphisms of
P to its dual poset, that is, bijections o of P to itself such that o(z) < o(y) < z > y.

For any automorphism o, we say that a lower ideal E € J(P) is o-symmetric if
o(F) = E when o is increasing, or if 0 (F) = P—FE when o is decreasing. For any subgroup
G of the group of automorphisms, we say that £ is G-symmetric if it is o-symmetric for
all o € G. Generally speaking, given P and G we are interested in sampling from the set
of G-symmetric lower ideals of P.

When G contains only increasing automorphisms, G-symmetric ideals are in natural
bijection with the ideals of the quotient poset P/G, so that one can naturally apply
the CFTP algorithm to the quotient poset. The situation is different, however, when
G contains decreasing automorphisms. In this case, the quotient set P/G no longer
has a naturally defined partial order. Note, however, that quotienting by the subgroup
G™ of increasing automorphisms reduces all increasing automorphisms to the identity,
and all decreasing automorphisms to a single decreasing involution. As a result, we can,
without loss of generality, assume that the group G only contains the identity and a single
decreasing involution ¢ on P.

Note that if o has any fixed points, the set of o-symmetric ideals is empty. In such a
case, fixed points are necessarily pairwise incomparable (since o is decreasing). To obtain
the “next best thing” to truly o-symmetric ideals, we can change the definition of a (quasi)
o-symmetric ideal to o(E) = P — E — F,, where F, denotes the set of fixed points of o.
Equivalently, we could replace (P, <) by the induced order on P — F,, and sample from
the set of “truly” symmetric lower ideals on this smaller set. In the rest of this section, we
assume that o has no fixed points; we will see in Section 3 that this extended definition
of symmetric ideals makes sense from a combinatorial point of view when dealing with
symmetric ASMs.

2.3 Symmetric CFTP

We now turn to a description of SYMMETRIC-CFTP. In view of the discussion in the
previous paragraph, we assume that we are given a finite poset P and a decreasing in-
volution on P, and we are interested in random sampling from the set J,(P) of (quasi)
o-symmetric lower ideals of P.

A simple observation is the following;:

Lemma 1. Let x and y be two distincts elements of a finite poset P, and let TS : J(P) —
J(P) be defined as in Subsection 2.1.

e if x andy do not cover each other, then Ty and Ty, commute;

e if y does not cover x, then T;r and T commute.



As a consequence, when z and o(z) are incomparable in the poset P, S =T o TU_(?
maps symmetric ideals to symmetric ideals in a similar way that 7)S maps ideals to ideals;
and, as a compose of increasing mappings of J(P) to itself, it is also increasing.

Now if, say, x > o(x), every symmetric ideal contains o(z) but not . In this situation,
St is still defined as a commutative compose, and leaves each symmetric ideal unchanged.
It may not be true that T, and T;r(m) commute when z covers o(z), and in this case we
define S = S;.

With these definitions, we have, for any two symmetric ideals F and E’, S5(F) =
E <— S;&) (E') = E. Thus, provided we can check that the resulting Markov chain on
Jo(P) is irreducible (we will see that this is always true), we obtain a CFTP algorithm
on J,(P) by taking the previous MONOTONE-CFTP algorithm on J(P) and simply using
“symmetric” update functions S instead of the original T7.

One possible problem lies in making this algorithm practical. J,(P) does not have a
naturally ordered structure — any symmetric ideal must contain exactly half the elements
of P, so no two symmetric ideals can be compared by inclusion. This makes it potentially
difficult to detect coalescence of the process.

Fortunately, we still have a naturally ordered space on which the Markov coupling
using the S¢ update functions is monotone, namely, J(P). When run with J(P) as a
state space, the Markov chain is no longer irreducible since no transitions lead out of
Jo(P) (no non-symmetric state is accessible from any symmetric state), but it is still a
monotone grand coupling, and coalescence of the whole state space can still be detected
by the condition that the copies started from states ) and P have met.

One can save some time by precomputing a lower and upper bound (in J(P)) for
J»(P), and using these two ideals as starting states instead of (} and P. If we define

Elow = {reP:x<o(x)}
Epigh = {xeP:z#o(x)}

then any symmetric ideal contains F) . and is included in Ehigh’ so that checking coa-
lescence for the coupled chains started at Ej . and Ehigh is sufficient. Alternately, one
can note that J,(P) is isomorphic to JG(Ehigh — B o) (any symmetric ideal of P is the
disjoint union of E),, and some symmetric ideal of the induced order on Ehigh - Blow)

and work on the smaller induced order, where no comparable pairs (z,o(z)) remain.
The whole SYMMETRIC-CFTP method can be summed up in the following theorem:

Theorem 1. Let (P, <) be some finite poset, and assume there exists a decreasing invo-
lution o on P with no fized points. Let P’ denote the set of elements of P such that x
does not cover, and is not covered by, o(x).

Then the set J,(P) of o-symmetric ideals of P is nonempty. Furthermore, for any
probability distribution m on P’ such that w(z) = w(o(x)) > 0 for all x € P’, if (xx)r>1 is
a sequence of independent random elements of P’ with common distribution m, (ex)g>1 18

an independent sequence of independent, uniform random signs, and Sy = Sg! o ... S5k,
then

o the random variable N = inf{k : Sy (0) = Si(P)} is almost surely finite, with finite
expectation;

o Sn(0) is uniformly distributed on J(P).
Proof. We construct a symmetric ideal I explicitly by examining each pair (z,o(z)) in an

arbitrary order, each time selecting exactly one of the two to be included in I. The rules
are as follows:

e if x < o(x), or if T already contains an element y with y > x, then add = to I;



e if o(x) < z, or if I already contains an element y with y > o(z), then add o(z) to
I
e otherwise, arbitrarily select one of x or o(x) to be added to I.

The first and second rules ensure that the set I obtained is indeed a lower ideal of
P (which will be o-symmetric by construction), provided one never runs into a situation
where they are in contradiction. Assume that one has x < y and o(x) < y’ with both y
and ¢ in I, then one has o(y’) < x < y and o(y) < ¢’, so that whichever of y and y" was
added last was not added according to the rules; a similar argument holds for situations
where z and o(z) are comparable.

The proof that N is almost surely finite and that Sy () does have the required dis-
tribution is very similar to the classical proofs for CFTP, and is omitted due to space
constraints.

O

2.4 A note on coalescence detection

The stopping criterion for the SYMMETRIC-CFTP algorithm, as suggested by Theorem 1,
is that the coupled chains started at the minimum and maximum states (or at the lower
and higher bounds Fj,, and Ehigh as defined earlier) have coalesced to the same state,
which, by monotonicity, implies that the composed update function is constant on the
whole of J(P).

This is not necessary, and is not optimal. We only need a stopping criterion which
ensures that the composed update function is constant on J,(P). Since J,(P) is an
antichain in J(P) (no two symmetric ideals are comparable), a sufficient condition for
coalescence on J,(P) is that Sy (0) € J,(P) (or, symmetrically, Sy (P) € J,(P)). Using
this condition in the algorithm will always save time (provided checking symmetry in an
ideal is not significantly longer than checking for equality of two ideals), not only because
one only has to run one copy of the Markov chain instead of two, but also because this
corresponds to running the coupling until the chain started at @) reaches J,(P), and not
until the two chains started at () and P reach J,(P).

3 Random sampling from symmetry classes of alter-
nating-sign matrices

In this section, we demonstrate the usefulness of our SYMMETRIC-CFTP framework by
applying it to the random generation of alternating-sign matrices with arbitrary symmetry
conditions. Though all but one symmetry classes can be tackled using only the classical
MONOTONE-CFTP algorithm, our approach has the added benefit of providing a unified
treatment of all symmetry classes.

An alternating-sign matriz (ASM for short) of size N is an N x N square matrix
whose entries are all 0, 1 or —1, and such that nonzero entries in each line and column
alternate in sign, starting and ending with a 1. These matrices have many fascinating
combinatorial properties; see [5] for a survey, or [1] for the story of their enumeration.

There is a simple bijection between ASMs of size N and a set of height matrices of
size N, which are defined as those (N + 1) x (N + 1) matrices with integer entries h; ;
(0 <i,7 < N) satisfying the conditions

e forall 0 S 7 S N, hi’() = hO,i = thi,N = hNJ\f,i = i;
e forall 0 < 1,7 < N, ‘h@j — hi’j+1| = |hi’j — hi+1’j| =1.



A simple way of expressing the bijection is as follows: if the entries of an ASM A are

hi,j =i+j—222ai,j

k<i £<j

(aij)i<ij<n, set

to obtain the corresponding height matrix.

Height matrices of a given size are naturally ordered by entry-wise comparison, and
one easily checks that the resulting poset is a distributive lattice where the meet and
join operations are defined by taking entry-wise maximums and minimums. The minium
(respectively, maximum) matrices have their entries defined by h; ; = |i — j| (respectively,
hij = N —|N —i—j|). One easily checks that the set of height matrices of size N is
isomorphic to the set of ideals of the set

Py ={(i,5,k):1<i,j<N,k=i+j (mod?2),|li—jl<k<N-—|N—i—j|},
with a partial order defined by
(i,5,k) < (0", 5", k) & K 2k +|i =i + |j = §'].
Given a lower ideal E of Py, the corresponding height matrix has its entries defined by
hij = max (|i — j|,sup{k : (i, 5, k) € E}),
and the inverse bijection defines the lower ideal corresponding to a height matrix as
E={(,jk): k<h;}

All these bijections make it easy to apply the MONOTONE-CFTP algorithm to the
random generation of ASMs. The most basic application of the algorithm would be
to select some arbitrary probability distribution on Py (typically, uniform) and use the
update functions 75 as we defined them in Section 2; a very simple variant, which is easier
to implement in practlce would only ask for a probability distribution on coordinates (i, j)
(again, the uniform distribution is an obvious and easy choice) and using update functions

of the form
R )
k

(In the above formula, the product denotes composition; note that all involved T,
update functions commute, so that the notation is not ambiguous.)

In their matrix formulation, the update functions T +J (respectively, _j) correspond
to the instructions “increase (respectively, decrease) entry h; ; by 2 if this is compatible
with the height matrix conditions, otherwise do nothing”, and seem more natural than
the 77, ., which correspond to “increase (decrease) entry h; ; to k if possible, otherwise
do nothlng

The 8-element dihedral group of symmetries of the square acts naturally on ASMs
by permuting entries, so that, for each of its subgroups, one may consider the set of
ASMs that are invariant under its action. It turns out that each of these symmetries
corresponds, through the standard isomorphism we described above, to an (increasing or
decreasing) automorphism of the poset Py, so that either classical MONOTONE-CFTP or
SYMMETRIC-CFTP can be used to sample from each symmetry class. In some cases, no
truly symmetric ASMs exist for some sizes, due to the existence of fixed points for the
decreasing automorphisms; in such cases, we instead turn to quasi-symmetric ASMs.

zjk



3.1 Diagonal symmetry

Height matrices can be symmetric around their main diagonal (h;; = h;; for all i, j),
which corresponds exactly to symmetric ideals for the (increasing) automorphism

op : (ivja k) = (j,Z,k)
Symmetry around the other diagonal corresponds to the automorphism
gA: (7';.77k) = (N _ij - ka)

Diagonally and doubly-diagonally symmetric ASMs of all sizes exist, though no for-
mula for their enumeration is known (and no simple formula is likely to exist, since the
enumerating sequence does not seem to factor into small primes).

3.2 Vertical or horizontal symmetry

ASMs invariant under symmetry around a vertical axis correspond to height matrices
satisfying h; n—; = N — h; ; for all ¢, j. The corresponding involution on Py is

oy (Zaj7k)H(ZaN_ij+2_k)

which is a decreasing automorphism. Note that, when N is even, oy has fixed points of
the form (¢, N/2, N/2 + 1) with odd i, so that truly vertically symmetric ASMs of even
sizes do not exist (this is, of course, very easy to see directly in the ASM formulation: since
every ASM has a single nonzero entry in its first line, this entry must be in the middle
column for vertical symmetry, and even sized matrices do not have a middle column).

If we turn to quasi-vertically symmetric ASMs of even sizes, these correspond to oy -
symmetric ideals of Py with the fixed points removed. The corresponding height matrices
have entries in their middle column alternate between N/2 and N/2 — 1. These were
counted by Kuperberg [4] under the guise of UASMs (U-turn ASMs), with a slight change
of size; there is an easy bijection between quasi-vertically symmetric ASMs of size 2N and
Kuperberg’s UASMs of size 2N — 2.

Horizontal symmetry is of course similar, corresponding to the decreasing automor-
phism

o :(1,5,k) — (N —14,5, N — k).

For the random generation of vertically symmetric ASMs, SYMMETRIC-CFTP can
be used. Note, however, that the set of fixed entries in height matrices (the two middle
columns for odd size; the middle column and one entry in every two in adjoining columns
for even sizes) separates nonfixed entries in the left and right halves of the matrix. This
makes it possible to define a distributive lattice structure on the set of (quasi-)symmetric
ASMs by using only the left half of the height matrix columns for entry-wise comparison;
with this ad hoc partial ordering, classical MONOTONE-CFTP can also be used (and is
actually the same algorithm) in this case.

ASMs that are both horizontally and vertically symmetric can be treated in a similar
way, using both oy and oy. Again, one can use MONOTONE-CFTP by using only
the top left quarter of the height matrices for comparisons. Generating functions for
quasi-symmetric ASMs of even size 4n were described by Kuperberg under the name of
UUASMs (double U-turn ASMs) of size 4n — 4. Quasi-symmetric ASMs of size 4n + 2
seem to be missing from current literature; their enumeration sequence, starting with
1,2,28, 3146, 2855320, does not appear in [10].



3.3 Rotational symmetry

Half-turn symmetric ASMs were enumerated by Kuperberg [4] for even size, and by
Razumov and Stroganov [7] for odd size. The symmetry condition on height matrices
(hn—i,N—;j = h; ;) corresponds to oc-symmetry for the increasing automorphism

oc: (lv]ak) = (N_ivN_jvk)7

and again classical MONOTONE-CFTP can be used to sample from this symmetry class.
Quarter-turn symmetry corresponds to the condition h; y—; = N — h;; for height
matrices, or to og-symmetry for the decreasing automorphism

og :(i,5,k)— (jyN —i,N+2—k).

This automorphism has a single fixed point (N/2, N/2,N/2 + 1) if N is of the form
4n+ 2, and none in other cases. Truly quarter-turn-symmetric ASMs of size divisible by 4
were enumerated by Kuperberg [4], and those with odd size by Razumov and Stroganov [8];
a similar enumeration formula for quasi-quarter-turn-symmetric ASMs with size 4n + 2 is
conjectured in [3].

For all sizes of quarter-turn (quasi-)symmetric ASMs, classical MONOTONE-CFTP
does not seem to be adapted to random sampling, as there is no natural way to define a
partial ordering on such ASMs. In this case, SYMMETRIC-CFTP is a natural and efficient
choice.

3.4 Full symmetry

The maximum amount of symmetry one can ask for in ASMs is invariance under the
action of the whole group of symmetries of the unit square. In the Py formulation, this
corresponds to (quasi-)symmetry under op, oy, and their composes. As was the case for
vertical symmetry, despite the fact that a decreasing automorphism is used, the whole
symmetry class can be turned into a distributive lattice by using only a triangular-shaped
region of the matrix (e.g., entries h; ; with ¢ < j < N/2) to define the partial ordering, so
that an ad hoc version of MONOTONE-CFTP can be used instead of SYMMETRIC-CFTP.

3.5 Simulation results

We implemented our algorithm to generate random ASMs with prescribed symmetry
conditions, and some results with moderate size are presented in Figure 1. White dots
represent positive entries, black dots represent negative entries, and gray areas cover zones
where the symmetry constraints are not respected due to quasi-symmetry; one sample
from each symmetry class is shown. For large sizes, one observes that nonzero entries are
very rare outside of a roughly circular shape, a phenomenon known as the arctic circle
phenomenon; the exact shape (or even existence) of this frozen region has not yet been
proved for uniform random ASMs, though Colomo and Pronko [2] recently announced a
partial proof that this limit shape exists and is not circular.

We also give experimental results on coalescence times (in number of time steps)
in Table 1. We ran the coupled copies of the chain, starting from the minimum and
maximum states (or from By and Ehigh when appropriate), forward in time until both
met. While the resulting states would not be uniform, the distribution of the coalescence
time is the same as when the chain is run backward, and this takes less simulation time.
This number of steps is a good measure for the running time of the CFTP algorithm,
which will have to perform a number of simulation steps roughly proportional to it, both
in the “binary-backoff” and “read-once” [12] variants.

All simulations were done using symmetric moves of the form Sf ; = I, S; ;i for the
definition of Sf’ j.k appropriate to the considered symmetry class, using the corresponding
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Figure 1: Random ASMs of size 30
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E) oy and Ehigh as starting points. The coordinates (i, j) were taken uniformly at random

inside the height matrix. The averages and standard deviations are over 300 runs for each
class for size 10, 100 runs for sizes 20 and 40, and 20 runs for size 60. The average
coalescence times seem to be close to C.N®, with o ~ 4.4 and C' depending on the

symmetry class.

N =10 N =20 N =40 N =60
No symmetry | 1190844197 | 289741469692 | 5.9 10°4+1.1 10° | 3.4 107+8.1 10°
Diagonal 652842808 | 144917451115 | 2.8 1064+7.1 10° | 1.6 107+4.0 106
Double diag. 3481+1561 | 71557425490 | 1.4 105+3.6 10° | 7.6 105+1.2 106
Vertical 1201+582 34881412312 | 8.2 10°+2.2 10° | 5.2 106+1.4 109
Vert. & horiz. 1594113 6507+2815 | 1.7 10°+5.8 104 | 1.0 105+2.7 10°
Half turn 554642403 | 127685437860 | 2.7 1064+6.5 10° | 1.5 107+3.4 106
Quarter turn 10544545 28938411567 | 7.1 10°4+2.0 10° | 4.3 105+1.1 109
Total symmetry 91469 3385+1810 | 8.1 10*+2.8 10* | 4.7 10°+1.5 10°

Table 1: Observed coalescence times (average and standard deviation)

In cases where the symmetry class is defined through a group with only increasing
automorphisms, the coalescence time seems to be roughly divided by the order of the
group between nonsymmetric and symmetric ASMs of the same size. This relationship
also holds between the vertically and horizontally symmetric and totally symmetric cases.
In cases where the group contains negative automorphisms, no such simple relationship
seems to hold; the situation is made more complex by the change in the starting states.

4 Concluding remarks

In this paper, we have described a new variant of the MONOTONE-CF TP algorithm, which
is well suited to sampling from some symmetric subsets of finite distributed lattices. While
we have mainly studied its application to generating random symmetric alternating-sign
matrices, it can be applied to other similar situations; an example which immediately




comes to mind is that of symmetric plane partitions (the fact that the enumeration se-
quences for symmetry classes of ASMs and plane partitions often derive from each other
is irrelevant here).

Strictly speaking, (quarter-turn) rotational invariance is the only symmetry class for
which one cannot adapt the usual MONOTONE-CFTP algorithm, but even for other
symmetry classes, our setting has the advantage of giving a unified treatment.

On the theoretical side, an unsolved issue is that of the coalescence time. In all
the examples we have experimented with, the coalescence time for sampling from the
symmetric ideals is significantly lower than that for sampling from the whole ambient
lattice. It would be interesting to give a precise and rigorous statement of this observation,
and to know whether this is a general phenomenon or is due to the special structure of
the posets we studied.
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