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Exploration de réseaux par un robot
(Network exploration with a robot)
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Résune. Cet article traite de I'exploration d’un réseau par un dgeabile, ourobot, modélisé par un automate fini.
Le réseau est anonyme, au sens que les nceuds ne disposeatessairement d'un étiquetage global. Le robot ne
dispose pas de connaissances préalables sur la topologésehu, ni méme sur sa taille. Sa tache consiste asmve
chacun des liens du réseau. Nous montrons que, pour toolt #db états, et pour toud > 3, il existe un réseau de
degré maximund et d’au plusk + 1 nceuds que le robot ne réussit pas a explorer. Cette Bofnteaméliore toutes les
bornes connues jusqu’aujourd’hui. Nous montrons égatémee, pour explorer tous les graphes de diametet de
degré maximund, un robot doit disposer d@(Dlogd) bits de mémoire, et ce méme si I'on restreint I'explorataux
réeseaux planaires. Enfin, nous montrons que cette bormesgsiptotiquement optimale, en décrivant un algorithme
qui permet & un robot possédant une mémoir®¢2logd) bits d’explorer tous les réseaux de diaméret de degré
maximumd. Ceci nous permet donc de conclure que la complexité nrendloi probleme de I'exploration de réseaux
est©(Dlogd) bits.

Abstract. A finite automaton, simply referred to asr@bot, has to explore a graph whose nodes are unlabeled and
whose edge ports are locally labeled at each node. The raisotdr a priori knowledge of the topology of the graph
or of its size. Its task is to traverse all the edges of the lyr&jde first show that, for ani(-state robot and angt > 3,
there exists a planar graph of maximum degiegith at mostK + 1 nodes that the robot cannot explore. This bound
improves all previous bounds in the literature. Moreoves,skiow that in order to explore all graphs of diamé&eand
maximum degred, a robot need€(Dlogd) memory bits, even if we restrict the exploration to planamirs. Finally,

we describe an algorithm that meets this latter bound, are.algorithm that allows a robot to explore any graph of
diameterD and maximum degree using a memory of siz&(Dlogd) bits. We thus prove that the worst case space
complexity of graph exploration i®(Dlogd) bits.
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1 Background and motivation

A mobile entity, e.g., a software agent or a robot, hasdalorean undirected graph by visiting all its nodes
and traversing all its edges, without any a priori knowled§the topology of the graph or of its size (see,
e.g.[1,2,3,7,8,9, 10, 14]). The task of visiting all noieefundamental in searching for data stored at
unknown nodes of a network, and traversing all edges is oéquired in network maintenance and when
looking for defective components. More precisely, we cdasthe task of “perpetual” exploration in which
the robot has to traverse all edges of the graph but is notrejto stop. That is, the robot moves from
node to node, traversing edges, so that eventually all dumesbeen traversed. Perpetual exploration is of
practical interest, e.qg., if regular control of a network fbe presence of faults is required, and all edges
must be periodically traversed over long periods of time.

If nodes and edges have unique labels, exploration can lig eekieved (e.g., by depth-first search).
However, in some navigation problems in unknown environtisiesuch unique labeling may not be avail-
able, or limited sensory capabilities of the robot may prévefrom perceiving such labels. Hence it is
important to be able to program the robot to explan®@nymougraphs, i.e., graphs without unique labeling
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of nodes or edges. Clearly, the robot has to be able to lodi&lnguish ports at a node: otherwise it is
impossible to explore even the star with 3 leaves (aftetingsthe second leaf, the robot cannot distinguish
the port leading to the first visited leaf from that leadingthie unvisited one). Hence we make a natu-
ral assumption that all ports at a node are locally labeled 1d, whered is the degree of the node. No
consistency between those local labelings is assumed.

In many applications, robots and mobile agents are mear# girhple, often small and inexpensive de-
vices. This limits the amount of memory with which they carelgglipped. As opposed to numerous papers
that imposed no restrictions on the memory of the robot angylsbexploration algorithms minimizing
time, i.e., the number of edge traversals, we investigaarttnimum memory size of the robot that allows
exploration of graphs of given (unknown) size, regardlgshe time of exploration. That is, we want to
find an algorithm for a robot performing exploration, usirglitle memory as possible.

A robot with ak-bit memory is modeled as a finite automaton. The first knowtefemutomaton algorithm
designed for graph exploration was introduced by Shann@hifit1951. Since then several papers have
been dedicated to the graph exploration problem (cf. [1dl]the references therein). In particular, in 1967,
during his talk at Berkeley, Rabin [15] presented a proof timfinite automaton with a finite number of
pebbles can explore all graphs (a pebble is a marker that eairdpped at and removed from nodes).
In 1971, Muller [13] gave some formal arguments to suppa@biR’s claim, in the restricted case of a
robot without pebble. In 1977, Coy [6] presented anothepfyrbut some parts of it are fuzzy. The first
formal proof of Rabin’s claim is generally attributed to Bagh [5], in 1978, for a robot without pebble.
Actually, the long and technical paper by Budach is conagmith labyrinths. Alabyrinth is a two-
dimensional obstructed chess-board (. with forbidden cells). The forbidden cells #? are described
by a setL. If L (resp.,Z?\L) is finite, then the labyrinth is called finite (resp., co@)i Exploring
a finite labyrinth means that the automaton is able to go raridit far away from its starting position,
for any starting position. The edges of the labyrinth areststently labeled North, South, East, West.
(Budach's result applies also to graphs because a co-fatitgihth is a finite graph.) The same year, Blum
and Kozen [4] improved Budach’s result by proving that tHieie automata cannot cooperatively perform
exploration of all graphs. In 1979, Kozen [12] proved thatrfoooperative robots cannot explore all graphs.
Finally, in 1980, Rollik [16] gave a complete proof of Ralsitlaim. More precisely, Rollik proved that no
finite set of finite automata can cooperatively perform erqtion of all cubic planar graphs. Since a finite
automaton is more powerful than a pebble, Rabin’s claim igrallary of Rollik’'s theorem.

In all proofs, including the one by Budach and the one by Rptlie size of the smallestap for an
automaton with no pebble (i.e., the smallest graph that aonaaton with no pebble cannot explore) is
large. One of the objectives of the current paper is to reWsibin’s claim in the case of a robot with
no pebble, specifically for improving the size of traps, anddesigning traps with specific topological
properties.

2 Terminology and model

An anonymous undirected graph with locally labeled portsggaph whose nodes are unlabeled and where
the edges incident to a nodérave distinct labels,1..,d,, whered, is the degree o¥. Thus every undi-
rected edgdu,v} has two labels which are called p®rt numbersatu and atv. Port numbering igocal,

i.e., there is no relation between port numbersi @nd atv. Unless specified otherwise, all considered
graphs are supposed to be connected.

We are given a mobile entity traveling in an anonymous grajth lwcally labeled ports. The graph and
its size are a priori unknown to the entity. The mobile enistyeferred to as @aobot More precisely, a
K-state robot is a finite Moore automat@n= (X,Y,S,8,A,S) whereX C N2, Y C N, S is a set oK states
among which is a specified steffg called theinitial state,d: S x X — §, andA : § — Y. Initially the robot
is at some nodep in the initial stateS € §. S determines a local port numbpr= A(S) € Y, by which
the robot leavesy. When incoming to a node the behavior of the robot is as follows. It reads the number
i of the port through which it enteradand the degred, of v. The pair(i,dy) € X is an input symbol that
causes the transition from stedo stateS = (S, (i,dy)). S determines a local port numbpr= A(S), by
which the robot leaveg. The robot continues moving in this way, possibly infinitely
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As mentioned before, we consider the task of “perpetual’lagpion in which the robot has to traverse
all edges of the graph but is not required to stop. That is, it required that a final state be$nA robot
is said to perform aexplorationof a graphG, if starting atanynode ofG in the initial stateS, it completes
traversing all edges d@& in finitely many steps.

3 Summary of our results

Ouir first result is the design of a trap with at m&st 1 vertices for anK-state automaton. More precisely,
we prove that, for ang > 3 and for anyK-state automaton, there exists a planar grapk #f1 nodes and
maximum degreé that the automaton cannot explore. (We assdme3 since, obviously, all connected
graphs of maximum degrek< 2 can be explored by a robot with a constant memory size.) ddnstruc-
tion improves —in terms of size— the ones by Budach and Raskwvell as all other previous constructions
in the literature.

Theorem 1 For every K-state robot and everyx3, there exists a planar graph of maximum degree d with
at most K+ 1 nodes that the robot cannot explore.

Due to lack of space, most of the proofs are omitted. They @fobnd in the complete version of
the paper [11]. Roughly speaking, the proof of Theorem 1esabe robot in the infinite-ary tree, and
considers the first time the robot returns in a state expeeiétefore. Then, the proof “cuts” and “folds”
the infinite tree to obtain a finite planar gra@hin which the behavior of the robot is the same as in the
infinite tree. The way the folding is done insures that attleas edge ofs is not traversed. See [11] for
more details.

We can rephrase Theorem 1 as follows:
Corollary 1 A robot that explores all n-node planar graphs requires aiseglogn] memory bits.

Our construction methodology is quite generic and can betadaor the minimization of other graph
parameters. In particular, we prove that, for ahy 3 and for anyK-state automaton, there exists a planar

graph ofO(K) nodes, maximum degrek and diameteO('lg%'é) that the automaton cannot explore.

Theorem 2 For every K-state robot and everyd 3, there exists a planar graph of maximum degree d and
diameter at most[log,_; K] + 2 that the robot cannot explore.

The proof of Theorem 2 uses the construction in the proof @dfam 1. The graph is “completed” by a
binary tree, insuring that all nodes become close to eaddr titlanks to the binary tree. The difficulty is to
show that this completion is indeed possible. See [11] forengietails.

Theorem 2 has an important corollary, namely:

Corollary 2 A robot that explores all graphs of diameter D and maximumrelegl requires at least
Q(Dlogd) memory bits.

This latter lower bound is tight. Indeed, we design an atharifor a robot withO(Dlogd) memory
bits enabling the robot to explore all graphs of maximum degdrand diameteD. More specifically, we
present an algorithm callddncr easi ng- DFS, that enables a robot to explore all graphs of sufficiently
small diameter and maximum degree. Roughly speaking, eagide is achieved by using a sequence of
depth-first search (DFS)perations at increasing depths from the initial positigrof the robot. The robot
keeps in memory the current sequence of port numbers leaédicigtoug in the DFS tree. At Phasei > 1,
the robot performs a DFS of depth bounded bin the case where one is given a rolptwith k memory
bits, we use the variatt| ncr easi ng- DFS, that isl ncr easi ng- DFS in which the robot perpetually
checks the size of the currently allocated memory. If thie gixceedk bits, then the robot stops. See [11]
for a complete description of Algorithinncr easi ng- DFS.

Theorem 3 Algorithm| ncr easi ng- DFS allows a robot to explore every graph. Moreover, Algorithm
k-l ncr easi ng- DFS explores all graphs of diameter D and maximum degree d, wheere> aDlogd,
for some positive constant
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Proof. Let the robot® start from nodayp in graphG. After ® has performed a DFS of depthit has
visited all nodes at distance at madtom ug. Leti = D + 1 whereD is the diameter ofs. Thus, after
theith phase of Algorithm ncr easi ng- DFS, all edges have been traversed, and thus exploration has
been completed. Ik > aDlogd, then a stack oD + 1 elements on lod bits, and a constant number of
scalar variables, can be stored in the robot's memony ferO(1) large enough. Thus, whers= D+ 1, the
exploration is completed using no more tHahits. Hence any graph of diametérand maximum degree

d can be explored. |

A direct consequence of Theorem 3 is the following:

Corollary 3 All graphs of diameter D and maximum degree d can be exployedrbbot using @D logd)
memory bits.

To summarize, we prove that the worst case space complexifsaph exploration i©(Dlogd) bits.

As a final remark, observe that algoritHmcr easi ng- DFS uses an infinite memory to explore some
graphs of bounded size. Nevertheless, this phenomenonthamvercome by any exploration algorithm.
Indeed, surprisingly, any infinite automaton that explakgraphs is required to use an infinite amount
of memory to explore some finite graphs. In particular, dor 0, let G4 be the set of all edge-colored
d-regular graphs@y # 0 as witnessed by, e.g., the hyperc@g or two nodes linked by parallel edges).
We have the following:

Theorem 4 For any (infinite deterministic) automataR that explores all graphs, and for any &Gg, R
uses infinitely many memory states when exploring G.

Proof. Let R be a (deterministic) automaton that explores all graphg,leirG € Gy4. As a consequence
of Theorem 1% is aninfinite automator(X,Y,$,0,A, ), i.e.,|S| is unbounded. Assume, for the purpose
of contradiction, that® usesK states ofS when executed iG, starting from some node, say. Let R’

be the automaton obtained by restrictiRgto the diagram induced by thekestates ofS. More precisely,
R' = (X,Y,5,0,N,S) whereS' is the set of thK states visited by® when exploringG starting from
Uo, A is A restricted tas’, andd' is & restricted tas’ x X. Let G4(R') be the set of pairéH,vp) where

H = (V,E) is an edge-labeled graph awmgl€ V, such that, starting afp in H, R’ visits only nodes of
degreed and traverses only edges that have identical labels atttheiextremities. Le{H,vp) be the trap
for ®' constructed in the proof of Theorem 1. By our constructioa,have(H,vp) € G4(R'). Moreover,
sinceG € Gg, we also havéG, ug) € G4(R'). Let (S)i>o0 be the sequence of states®f when exploring

G starting fromup. By construction ofR/, (S)i>o is also the sequence of states®fwhen exploringG
starting fromup. In fact, we haveS,i > 0} = §', andS;1 = &(S,N(S,d)) = 8(S,A(S,d)). Therefore,
the sequencéS )i>o is independent of any instanégraph, starting nodes Gq¢(R'), and is independent
of which automator®_or R is exploring that instance. In particular, the sequef®#>o is the same for
R and® in (H,vo). Therefore, the sequences of nodes visitedRpand R’ when exploringH starting
from vo are identical. Sinc€H,vp) is a trap for®/, this latter fact is in contradiction with the fact th&t

is universal, and thus explores all graphs, includihgHenceR® uses an infinite number of states when
exploringG. |

4 Conclusion and future work

We have proved tha®(logn) memory bits are necessary to exploreraiode graphs, and th&(Dlogd)
memory bits are necessary and sufficient to explore all grgbbiameteD and maximum degreg

As mentioned in the introduction, Rollik [16] proved that fioite set of finite automata can separately
(i.e., non-cooperatively) explore all undirected gragha. his proof, Rollik constructed a trap fqrobots
of K states each, that is, a graph that none ofithebots explores completely. This trap is of si2eK9).
Thus, an interesting direction of research is to look for kenaraps. In particular, we raise the question of
whether there exists a trap of polynomial size for any set mbots ofK states each.

Acknowledgments: P. Fraigniaud and D. licinkas are supported by the projeatrAPair” of the ACI
Masses de Données; A. Pelc is supported in part by NSERG @@PR 0008136 and by the Research Chair
in Distributed Computing of the Université du Québec end@uais.



Exploration de &seaux par un robot (Network exploration with a robot)

References

[1] S. Albers and M. R. Henzinger, Exploring unknown enviments, SIAM Journal on Computing
29:1164-1188, 2000.

[2] M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadfi&e, power of a pebble: Exploring and
mapping directed graphs, Proc. 30th Ann. Symp. on Theoryamh@uting (STOC), pages 269-278,
1998.

[3] M.A. Bender and D. Slonim, The power of team exploratidwo robots can learn unlabeled directed
graphs, Proc. 35th Ann. Symp. on Foundations of Compute&r$ei (FOCS), pages 75-85, 1994.

[4] M. Blum and D. Kozen. On the power of the compass (or, why@sare easier to search than graphs).
In 19th Symposium on Foundations of Computer Science (FQO@gjes 132-142, 1978.

[5] L. Budach. Automata and labyrinths. Math. Nachrichteages 195-282, 1978.
[6] W. Coy. Automata in labyrinths. In Fund. Computat. The@CT), LNCS 56, 65-71, 1977.

[7] X. Dengand C. H. Papadimitriou, Exploring an unknowngralournal of Graph Theory 32:265-297,
1999.

[8] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Bxation with Little Memory. In 13th Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 588752002.

[9] C. Duncan, S. Kobourov and V. Kumar, Optimal constraigeaph exploration. In 12th Ann. ACM-
SIAM Symp. on Discrete Algorithms (SODA), pages 807-814)20

[10] P. Fraigniaud and D. licinkas. Exploration with littteemory. In Symp. on Theoretical Aspects of
Computing Science (STACS), LNCS 2996, pages 246-257, 2004.

[11] P. Fraigniaud, D. licinkas, G. Peer, A. Pelc, and D. Bel&raph exploration by a finite automaton.
Submitted for publication. Sefettp.//www.Iri.fr/"pierre/gewfa.pdf

[12] D. Kozen. Automata and planar graphs. In Fund. Compuitagory (FCT), 243-254, 1979.

[13] H. Muller. Endliche Automaten und Labyrinthe. Eledische Informationsverarbeitung und Kyber-
netic, EIK 7/4, 261-264, 1971.

[14] P. Panaite and A. Pelc, Exploring unknown undirecteabbs, Journal of Algorithms 33:281-295,
1999.

[15] M.O. Rabin, Maze threading automata. Seminar talk gmeed at the University of California at
Berkeley, October 1967.

[16] H.A. Rollik. Automaten in planaren Graphen. Acta Infoatica 13:287-298, 1980 (also in LNCS 67,
pages 266-275, 1979).

[17] CL. E. Shannon. Presentation of a maze-solving machim®th Conf. of the Josiah Macy Jr. Found.
(Cybernetics), pages 173-180, 1951.



