
HAL Id: hal-00412099
https://hal.science/hal-00412099v1

Submitted on 31 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration de réseaux par un robot
Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, David Peleg

To cite this version:
Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, David Peleg. Exploration de réseaux par
un robot. AlgoTel 2004, May 2004, Batz-sur-mer, France. pp.123-127. �hal-00412099�

https://hal.science/hal-00412099v1
https://hal.archives-ouvertes.fr
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Résuḿe. Cet article traite de l’exploration d’un réseau par un agent mobile, ourobot, modélisé par un automate fini.
Le réseau est anonyme, au sens que les nœuds ne disposent pasnécessairement d’un étiquetage global. Le robot ne
dispose pas de connaissances préalables sur la topologie du réseau, ni même sur sa taille. Sa tâche consiste à traverser
chacun des liens du réseau. Nous montrons que, pour tout robot àK états, et pour toutd � 3, il existe un réseau de
degré maximumd et d’au plusK+1 nœuds que le robot ne réussit pas à explorer. Cette borneK+1 améliore toutes les
bornes connues jusqu’aujourd’hui. Nous montrons également que, pour explorer tous les graphes de diamètreD et de
degré maximumd, un robot doit disposer deΩ(D logd) bits de mémoire, et ce même si l’on restreint l’exploration aux
réseaux planaires. Enfin, nous montrons que cette borne estasymptotiquement optimale, en décrivant un algorithme
qui permet à un robot possédant une mémoire deO(D logd) bits d’explorer tous les réseaux de diamètreD et de degré
maximumd. Ceci nous permet donc de conclure que la complexité mémoire du problème de l’exploration de réseaux
estΘ(D logd) bits.

Abstract. A finite automaton, simply referred to as arobot, has to explore a graph whose nodes are unlabeled and
whose edge ports are locally labeled at each node. The robot has no a priori knowledge of the topology of the graph
or of its size. Its task is to traverse all the edges of the graph. We first show that, for anyK-state robot and anyd� 3,
there exists a planar graph of maximum degreed with at mostK +1 nodes that the robot cannot explore. This bound
improves all previous bounds in the literature. Moreover, we show that in order to explore all graphs of diameterD and
maximum degreed, a robot needsΩ(D logd) memory bits, even if we restrict the exploration to planar graphs. Finally,
we describe an algorithm that meets this latter bound, i.e.,an algorithm that allows a robot to explore any graph of
diameterD and maximum degreed using a memory of sizeO(D logd) bits. We thus prove that the worst case space
complexity of graph exploration isΘ(D logd) bits.

Keywords: exploration, labyrinthe, automate fini, agent mobile, robot.

1 Background and motivation
A mobile entity, e.g., a software agent or a robot, has toexplorean undirected graph by visiting all its nodes
and traversing all its edges, without any a priori knowledgeof the topology of the graph or of its size (see,
e.g., [1, 2, 3, 7, 8, 9, 10, 14]). The task of visiting all nodesis fundamental in searching for data stored at
unknown nodes of a network, and traversing all edges is oftenrequired in network maintenance and when
looking for defective components. More precisely, we consider the task of “perpetual” exploration in which
the robot has to traverse all edges of the graph but is not required to stop. That is, the robot moves from
node to node, traversing edges, so that eventually all edgeshave been traversed. Perpetual exploration is of
practical interest, e.g., if regular control of a network for the presence of faults is required, and all edges
must be periodically traversed over long periods of time.

If nodes and edges have unique labels, exploration can be easily achieved (e.g., by depth-first search).
However, in some navigation problems in unknown environments, such unique labeling may not be avail-
able, or limited sensory capabilities of the robot may prevent it from perceiving such labels. Hence it is
important to be able to program the robot to exploreanonymousgraphs, i.e., graphs without unique labeling
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of nodes or edges. Clearly, the robot has to be able to locallydistinguish ports at a node: otherwise it is
impossible to explore even the star with 3 leaves (after visiting the second leaf, the robot cannot distinguish
the port leading to the first visited leaf from that leading tothe unvisited one). Hence we make a natu-
ral assumption that all ports at a node are locally labeled 1; : : : ;d, whered is the degree of the node. No
consistency between those local labelings is assumed.

In many applications, robots and mobile agents are meant to be simple, often small and inexpensive de-
vices. This limits the amount of memory with which they can beequipped. As opposed to numerous papers
that imposed no restrictions on the memory of the robot and sought exploration algorithms minimizing
time, i.e., the number of edge traversals, we investigate the minimum memory size of the robot that allows
exploration of graphs of given (unknown) size, regardless of the time of exploration. That is, we want to
find an algorithm for a robot performing exploration, using as little memory as possible.

A robot with ak-bit memory is modeled as a finite automaton. The first known finite automaton algorithm
designed for graph exploration was introduced by Shannon [17] in 1951. Since then several papers have
been dedicated to the graph exploration problem (cf. [11] and the references therein). In particular, in 1967,
during his talk at Berkeley, Rabin [15] presented a proof that no finite automaton with a finite number of
pebbles can explore all graphs (a pebble is a marker that can be dropped at and removed from nodes).
In 1971, Müller [13] gave some formal arguments to support Rabin’s claim, in the restricted case of a
robot without pebble. In 1977, Coy [6] presented another proof, but some parts of it are fuzzy. The first
formal proof of Rabin’s claim is generally attributed to Budach [5], in 1978, for a robot without pebble.
Actually, the long and technical paper by Budach is concerned with labyrinths. A labyrinth is a two-
dimensional obstructed chess-board (i.e.,Z2 with forbidden cells). The forbidden cells inZ2 are described
by a setL. If L (resp.,Z2n L) is finite, then the labyrinth is called finite (resp., co-finite). Exploring
a finite labyrinth means that the automaton is able to go arbitrarily far away from its starting position,
for any starting position. The edges of the labyrinth are consistently labeled North, South, East, West.
(Budach’s result applies also to graphs because a co-finite labyrinth is a finite graph.) The same year, Blum
and Kozen [4] improved Budach’s result by proving that threefinite automata cannot cooperatively perform
exploration of all graphs. In 1979, Kozen [12] proved that four cooperative robots cannot explore all graphs.
Finally, in 1980, Rollik [16] gave a complete proof of Rabin’s claim. More precisely, Rollik proved that no
finite set of finite automata can cooperatively perform exploration of all cubic planar graphs. Since a finite
automaton is more powerful than a pebble, Rabin’s claim is a corollary of Rollik’s theorem.

In all proofs, including the one by Budach and the one by Rollik, the size of the smallesttrap for an
automaton with no pebble (i.e., the smallest graph that an automaton with no pebble cannot explore) is
large. One of the objectives of the current paper is to revisit Rabin’s claim in the case of a robot with
no pebble, specifically for improving the size of traps, and for designing traps with specific topological
properties.

2 Terminology and model
An anonymous undirected graph with locally labeled ports isa graph whose nodes are unlabeled and where
the edges incident to a nodev have distinct labels 1; : : : ;dv, wheredv is the degree ofv. Thus every undi-
rected edgefu;vg has two labels which are called itsport numbersat u and atv. Port numbering islocal,
i.e., there is no relation between port numbers atu and atv. Unless specified otherwise, all considered
graphs are supposed to be connected.

We are given a mobile entity traveling in an anonymous graph with locally labeled ports. The graph and
its size are a priori unknown to the entity. The mobile entityis referred to as arobot. More precisely, a
K-state robot is a finite Moore automatonR = (X;Y;S ;δ;λ;S0) whereX � N2, Y� N, S is a set ofK states
among which is a specified stateS0 called theinitial state,δ : S �X ! S , andλ : S !Y. Initially the robot
is at some nodeu0 in the initial stateS0 2 S . S0 determines a local port numberp= λ(S0) 2 Y, by which
the robot leavesu0. When incoming to a nodev, the behavior of the robot is as follows. It reads the number
i of the port through which it enteredv and the degreedv of v. The pair(i;dv) 2 X is an input symbol that
causes the transition from stateS to stateS0 = δ(S;(i;dv)). S0 determines a local port numberp= λ(S0), by
which the robot leavesv. The robot continues moving in this way, possibly infinitely.
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As mentioned before, we consider the task of “perpetual” exploration in which the robot has to traverse
all edges of the graph but is not required to stop. That is, it is not required that a final state be inS . A robot
is said to perform anexplorationof a graphG, if starting atanynode ofG in the initial stateS0, it completes
traversing all edges ofG in finitely many steps.

3 Summary of our results
Our first result is the design of a trap with at mostK+1 vertices for anyK-state automaton. More precisely,
we prove that, for anyd � 3 and for anyK-state automaton, there exists a planar graph ofK+1 nodes and
maximum degreed that the automaton cannot explore. (We assumed � 3 since, obviously, all connected
graphs of maximum degreed� 2 can be explored by a robot with a constant memory size.) Thisconstruc-
tion improves –in terms of size– the ones by Budach and Rollik, as well as all other previous constructions
in the literature.

Theorem 1 For every K-state robot and every d� 3, there exists a planar graph of maximum degree d with
at most K+1 nodes that the robot cannot explore.

Due to lack of space, most of the proofs are omitted. They can be found in the complete version of
the paper [11]. Roughly speaking, the proof of Theorem 1 places the robot in the infinited-ary tree, and
considers the first time the robot returns in a state experienced before. Then, the proof “cuts” and “folds”
the infinite tree to obtain a finite planar graphG in which the behavior of the robot is the same as in the
infinite tree. The way the folding is done insures that at least one edge ofG is not traversed. See [11] for
more details.

We can rephrase Theorem 1 as follows:

Corollary 1 A robot that explores all n-node planar graphs requires at leastdlogne memory bits.

Our construction methodology is quite generic and can be adapted for the minimization of other graph
parameters. In particular, we prove that, for anyd � 3 and for anyK-state automaton, there exists a planar
graph ofO(K) nodes, maximum degreed, and diameterO( logK

logd ) that the automaton cannot explore.

Theorem 2 For every K-state robot and every d� 3, there exists a planar graph of maximum degree d and
diameter at most4dlogd�1Ke+2 that the robot cannot explore.

The proof of Theorem 2 uses the construction in the proof of Theorem 1. The graph is “completed” by a
binary tree, insuring that all nodes become close to each other thanks to the binary tree. The difficulty is to
show that this completion is indeed possible. See [11] for more details.

Theorem 2 has an important corollary, namely:

Corollary 2 A robot that explores all graphs of diameter D and maximum degree d requires at least
Ω(D logd) memory bits.

This latter lower bound is tight. Indeed, we design an algorithm for a robot withO(D logd) memory
bits enabling the robot to explore all graphs of maximum degreed and diameterD. More specifically, we
present an algorithm calledIncreasing-DFS, that enables a robot to explore all graphs of sufficiently
small diameter and maximum degree. Roughly speaking, exploration is achieved by using a sequence of
depth-first search (DFS)operations at increasing depths from the initial positionu0 of the robot. The robot
keeps in memory the current sequence of port numbers leadingback tou0 in the DFS tree. At Phasei, i � 1,
the robot performs a DFS of depth bounded byi. In the case where one is given a robotR with k memory
bits, we use the variantk-Increasing-DFS, that isIncreasing-DFS in which the robot perpetually
checks the size of the currently allocated memory. If this size exceedsk bits, then the robot stops. See [11]
for a complete description of AlgorithmIncreasing-DFS.

Theorem 3 AlgorithmIncreasing-DFS allows a robot to explore every graph. Moreover, Algorithm
k-Increasing-DFS explores all graphs of diameter D and maximum degree d, whenever k� αD logd,
for some positive constantα.
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Proof. Let the robotR start from nodeu0 in graphG. After R has performed a DFS of depthi, it has
visited all nodes at distance at mosti from u0. Let i = D+ 1 whereD is the diameter ofG. Thus, after
the ith phase of AlgorithmIncreasing-DFS, all edges have been traversed, and thus exploration has
been completed. Ifk� αD logd, then a stack ofD+ 1 elements on logd bits, and a constant number of
scalar variables, can be stored in the robot’s memory, forα=O(1) large enough. Thus, wheni =D+1, the
exploration is completed using no more thank bits. Hence any graph of diameterD and maximum degree
d can be explored. 2

A direct consequence of Theorem 3 is the following:

Corollary 3 All graphs of diameter D and maximum degree d can be explored by a robot using O(D logd)
memory bits.

To summarize, we prove that the worst case space complexity of graph exploration isΘ(D logd) bits.

As a final remark, observe that algorithmIncreasing-DFS uses an infinite memory to explore some
graphs of bounded size. Nevertheless, this phenomenon cannot be overcome by any exploration algorithm.
Indeed, surprisingly, any infinite automaton that exploresall graphs is required to use an infinite amount
of memory to explore some finite graphs. In particular, ford � 0, letGd be the set of all edge-colored
d-regular graphs (Gd 6= /0 as witnessed by, e.g., the hypercubeQd, or two nodes linked byd parallel edges).
We have the following:

Theorem 4 For any (infinite deterministic) automatonR that explores all graphs, and for any G2 Gd, R
uses infinitely many memory states when exploring G.

Proof. Let R be a (deterministic) automaton that explores all graphs, and let G2 Gd. As a consequence
of Theorem 1,R is aninfiniteautomaton(X;Y;S ;δ;λ;S0), i.e., jS j is unbounded. Assume, for the purpose
of contradiction, thatR usesK states ofS when executed inG, starting from some node, sayu0. Let R 0
be the automaton obtained by restrictingR to the diagram induced by theseK states ofS . More precisely,
R 0 = (X;Y;S 0;δ0;λ0;S0) whereS 0 is the set of theK states visited byR when exploringG starting from
u0, λ0 is λ restricted toS 0, andδ0 is δ restricted toS 0�X. Let Gd(R 0) be the set of pairs(H;v0) where
H = (V;E) is an edge-labeled graph andv0 2 V, such that, starting atv0 in H, R 0 visits only nodes of
degreed and traverses only edges that have identical labels at theirtwo extremities. Let(H;v0) be the trap
for R 0 constructed in the proof of Theorem 1. By our construction, we have(H;v0) 2 Gd(R 0). Moreover,
sinceG2 Gd, we also have(G;u0) 2 Gd(R 0). Let (Si)i�0 be the sequence of states ofR 0 when exploring
G starting fromu0. By construction ofR 0, (Si)i�0 is also the sequence of states ofR when exploringG
starting fromu0. In fact, we havefSi; i � 0g= S 0, andSi+1 = δ0(Si ;λ0(Si ;d)) = δ(Si ;λ(Si ;d)). Therefore,
the sequence(Si)i�0 is independent of any instance(graph, starting node) 2 Gd(R 0), and is independent
of which automatonR or R 0 is exploring that instance. In particular, the sequence(Si)i�0 is the same for
R andR 0 in (H;v0). Therefore, the sequences of nodes visited byR andR 0 when exploringH starting
from v0 are identical. Since(H;v0) is a trap forR 0, this latter fact is in contradiction with the fact thatR
is universal, and thus explores all graphs, includingH. HenceR uses an infinite number of states when
exploringG. 2
4 Conclusion and future work
We have proved thatΩ(logn) memory bits are necessary to explore alln-node graphs, and thatΘ(D logd)
memory bits are necessary and sufficient to explore all graphs of diameterD and maximum degreed.

As mentioned in the introduction, Rollik [16] proved that nofinite set of finite automata can separately
(i.e., non-cooperatively) explore all undirected graphs.For his proof, Rollik constructed a trap forq robots
of K states each, that is, a graph that none of theq robots explores completely. This trap is of sizeO(Kq).
Thus, an interesting direction of research is to look for smaller traps. In particular, we raise the question of
whether there exists a trap of polynomial size for any set ofq robots ofK states each.
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