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Abstract

Let K be a connected compact Lie group. The triples (O1, Oa, O3)
of adjoint K-orbits such that 014+ O3+ O3 contains 0 are parametrized
by a closed convex polyhedral cone. This cone is denoted I'(K) and
called the eigencone of K. For K simple of type A, B or C' we give
an inductive cohomology free description of the minimal set of linear
inequalities which characterizes I'(K).

1 Introduction

1.1 — Consider the following Horn problem: What can be said about the
eigenvalues of a sum of two Hermitian matrices, in terms of the eigenvalues
of the summands?

If A is a Hermitian n by n matrix, we will denote by AM(A) = (A > -+ >
Arn) its spectrum. Consider the following set:

A, B,C are 3 Hermitian matrices

Horng(n) = {(A(4),A\(B),\(C)) : st. A+ B+C =0}

It turns out that Horng(n) is a closed convex polyhedral cone in R3". We
now want to explain the Horn conjecture which describes inductively a list
of inequalities which characterizes this cone. Let P(r,n) denote the set of
parts of {1,---,n} with r elements. Let I = {i; < --- < i,} € P(r,n). We
set: A\ = (ip —7yip—1 — (r—1), -+ ,i9 — 2,43 — 1). We will denote by 1" the
vector (1,---,1) in R".

Theorem 1 Let (A, u,v) be a triple of non increasing sequences of n real
numbers. Then, (A, u,v) € Horng(n) if and only if

Z)\i+ZNj+ZVk:0 (1)
i j &



and for any r =1,---,n—1, for any (I,J, K) € P(r,n) such that
(A1, A, Ak — (n = 1)1") € Horng(r), (2)

we have:

SN+ i+ > me=0. (3)

iel jeJ keK

Note that if starting with a point in Horng(r), one adds 1" to one factor
add —1" to another one, one stays in Horng(r). This remark implies that
Condition [ is symmetric in I, J and K.

In 1962, Horn [Hor63] conjectured Theorem [l This conjecture was
proved by combining works by Klyachko | g and Knutson-Tao [KT99]
(see also [Ful0Q] for a survey). Despite the proof, the statement of The-
orem [[ is as elementary as the Horn problem is. Note that I, J and K
are sets of indexes in Inequality [ whereas A\;, A\; and Mg are eigenvalues
of Hermitian matrices in Condition fJ. This very curious remark certainly
contributed to the success of the Horn conjecture.

As pointed out by C. Woodward, Theorem [l| has a weakness. Indeed, it
gives redundant inequalities. To describe a minimal set of inequalities, we
need to introduce some notation. Let G(r,n) be the Grassmann variety of 7-
dimensional subspaces of a C". Consider its cohomology ring H*(G(r,n),Z).
To any I € P(r,n) is associated a Schubert class oy € H*(G(r,n),Z). Let
[pt] € H(=")(G(r,n),Z) denote the Poincaré dual class of the point. Bel-
kale proved in [Bel01)] the following:

Theorem 2 Let (A, u,v) be a triple of non increasing sequences of n real
numbers. Then, (A, u,v) € Horng(n) if and only if

S Y Y =0 (4)
7 7 k

and for any r =1,---,n—1, for any (I,J, K) € P(r,n) such that
01.0J.0K = [pt] € H* (G(?", n)7 Z)7 (5)

we have:

SN+ pwi+ > wm =0 (6)

iel jeJ keK



The statement of Theorem }is not elementary, but as proved by Knutson-
Tao-Woodward in [KTWO04] it is optimal:

Theorem 3 In Theorem [3, no inequality can be omitted.

1.2 — In this work, we give an elementary (that is cohomology free)
inductive algorithm to decide if a given Littlewood-Richardson
coefficient equals to one or not (see Section B.1]). In other words, our
algorithm decides if Condition f] is fulfilled. The combination of this algo-
rithm and Theorems B and | gives an inductive description of the minimal
set of inequalities of Horng(n). Note that our algorithm uses the Derksen-
Weyman one (see [DW0J)) like a black box.

1.3 — We now want to explain a generalization of the Horn problem.
Let G be a reductive complex group and K be a maximal compact subgroup.
Let ¥ denote its Lie algebra. We are interested in the following problem:
what are the triples (O1, 09, O3) of adjoint orbits such that O; + Oz + O3
contains 0.

Let T be a maximal torus of G such that T'N K is a Cartan subgroup
of K. Let t denote its Lie algebras and t* be a fixed Weyl chamber of t. It
turns out that the triples of orbits as above are parametrized by a closed
convex polyhedral cone contained in (tF)3 (see Section [p.9 for details). We
will denote by I'(K) this cone.

Using the Cartan-Killing form one can identify I'(U(n)) with Horng(n).

We now introduce notation to describe a minimal set of inequalities for
I'(K).

Let o be a root of G and a denote the corresponding coroot. We
will consider the standard maximal parabolic subgroup P, associated to «.
Consider the fundamental one parameter subgroup w,v of T'. Let W denote
the Weyl group of GG. The Weyl group W, of P, is also the stabilizer of wqv.
We will denote by (;) the natural paring between one parameter subgroups
and characters of T'.

Consider now the cohomology group H*(G/P,,Z): it is freely generated
by the Schubert classes o, parametrized by the cosets w € W/W,. In
[BKO04], Belkale-Kumar defined a new product denoted ®g on H*(G/P,,Z).
We can now state the main result of [BK0G] which generalizes Theorem :



Theorem 4 We assume that K is semisimple. Let (\,u,v) € (t7)3. Then,

(A, p,v) belongs to T'(K) if and only if for any simple root « and any triple
of Schubert classes oy, 0, and oy, in H*(G/P,,Z) such that

oy 0 0y @g 0w = [pt], (7)
we have:
(uwav, \) + (vwav, ) + (wwav, v) < 0. (8)
In [Res07], the following generalization of Theorem [ is obtained:

Theorem 5 In Theorem [, no inequality can be omitted.

1.4 — For K simple of type B or C, in Theorems [[4 and [[§ below,
we prove that each Condition [] is equivalent to the fact that two (ordinary
) Littlewood-Richardson coefficients are equal to one. The combination
of Algorithm B.J] and these results give a cohomology free description
of the minimal set of inequalities for I'(K). Note that in [BKO7],
Belkale-Kumar gives a redundant cohomology free description of I'(K).

1.5 — The paper is organized as follows. In Section f, we introduce
basic material about the Littlewood-Richardson coefficients and the Horn
cone. In Section [, we state and prove our inductive algorithm to decide if a
given Littlewood-Richardson coefficient equals to one or not. In Section [,
we introduce a parametrization of the Schubert classes of any complete ra-
tional homogeneous space and give some examples. In Section [j, we recall
from [BKO(] the notion of Levi-movability. In Section [§, we recall some
results about the generalization of the Horn cone to any connected compact
Lie group. In Sections [] and §, we prove our results about the cohomology
of isotropic and odd orthogonal Grassmannians. In Section [, we recall some
useful results about quiver representations.

Acknowledgments. I thank N. Perrin and M. Brion for useful discussions.

2 The Horn cone

2.1 The Littlewood-Richardson coeflicients

2.1.1 — Schubert Calculus. Let G(r,n) be the Grassmann variety of
r-dimensional subspaces L of a fixed n-dimensional vector space V. Let Fy:
{0} =FyCF, CF,C---CF,=YV bea complete flag of V.



If a < b, we will denote by [a;b] the set of integers between a and b.
Let P(r,n) denote the set of subsets of [1;n] with r elements. For any
I ={ii <--- <} € P(r,n), we define the Schubert variety Q;(F,) in
G(r,n) by

Qi(Fs) ={L € G(r,n) : dim(LNF;;) > jfor 1 <j <r}.

The Poincaré dual of the homology class of Q;(F,) does not depend on Fy;
it is denoted by o;. The o;’s form a Z-basis for the cohomology ring of
G(r,n). The class associated to [1;7] is the class of the point; it will be
denoted by [pt]. It follows that for any subsets I, J € P(r,n), there is a
unique expression

or.oj = Z CﬁO'K,
KeP(rn)
for integers cX;. We define KV by: i € K" if and only if n+1—1i € K.
Then, o and ogv are Poincaré dual. So, if the sum of the codimensions of
Qr(Fe), Qs(F,) and Qg (F,) equals the dimension of G(r,n), we have

K\/
o1.05.0x = cry [pt].
We set
KV
CIJK ‘= C1j -

Note that cjjx = cjik = crxg = ...

2.1.2 — Recall that the irreducible representations of G = Gl,(C) are
indexed by sequences A = (A\; > -+ > \,) € Z". Let us denote A the
set of such sequences. We set |A\| = A1 + -+ + A,. Denote the representa-
tion corresponding to A by V). For example, the representation Vi- is the
determinant representation of Gl,.(C). Define the Littlewood-Richardson
coefficients c§ € N by:

aVi= > &V
veAt

Forv= (v > - >1,), weset: v¥ = (-1, >--- > —uq). Then, V,v is the
dual of V. Finally, we set c} = cK; Note that ¢} v 18 the dimension of the
subspace (VA ®V, ® V)¢ of G-invariant vectors in Vy ® V, ®V,. Consider:

Horn(r) := {(\, i, v) € (AF)? + enu # 0.

Note that ¢"A\uv depends on r, since vV does.



2.1.3 — We will use the standard correspondence between elements
I ={iy <---<i.} of P(r,n) and partitions \; € A;\ such that \y <n —r
and A, > 0. This correspondence is obtained by defining

)\[: (’L'T—T‘,Z'r_l —(T‘—l),"',ig—Z,’il —1).

For I, J and K in P(r,n), Lesieur showed in 1947 (see [[Les47]) that:

K _ Ak
CIJ = C>\I)\J'

Note that A;v = A} + (n — r)1" and so, that

o
CIJK = CA])\J)\K—(TL—T):LT'

The type of I is defined by:

type(l) ={j=1,---,r =1 : @41 #1i;}.

2.1.4— We set:

Ur.m) = {(I.].K) € P(r.n) = Sicpi+ Yjesd + Sper b = "2,
T(n”) = {(Iv J)K) € P(T’,TL) P CIJK 7£ 0}7 and
I(r,n) ={(,J,K) € P(r,n) : cijx = 1}.

A triple (I, J, K) belongs to U(r,n) if and only if codimor + codimo; +
codimog = dim G(r,n). A triple (I, J, K) belongs to T'(r,n) (resp. I(r,n))
if and only if 07.07.0x is a non zero multiple of (resp. equal to) [pt]. In
particular, we have I(r,n) C T(r,n) C U(r,n).

The set of (A, u1,v) € (A})? such that ¢y, = 1 is denoted by I(r). The
image of I(r,n) in (A;})3 by the map (I, J, K) — (A1, A, Ai) will be denoted
by I(r,n). Obviously, I(r) = Ups,.I(r,n).

2.2 The Horn cone
Let I ={iy <--- <ip} € P(k,r) and A € AT. We set
M= > >N,)

In particular, || = Yicr i Let I,J, K € P(k,r). We define the “linear
form” on (A;)? by:

prax(\ pv) = N+ | + .

Combining [Bel01] and [KT99], we obtain the following description of
Horn(r):




Theorem 6 Let (\, pu,v) € (AF)3. The point (X, u,v) belongs to Horn(r) if
and only if
Al lpl + v = 0,

and for any k € [1;r — 1], for any (I, J,K) € I(k,r — k) we have:

erig (A p,v) > 0.

3 An algorithm

3.1 Description of the algorithm

Let {d; < --- < ds} be a part of [1;7 — 1]. We will consider the following
flag variety:

Flo(dy, -+, ds) = {(Vi C - CVi)} C G(dy,7) x -+ x G(ds, 7).

For I € P(r,n), we will denote by I°¢ the complementary of I in [1;n].

Let (I, J,K) € U(r,n). We now present an inductive algorithm to decide
if c;yx = 1 (without computing cryx !). We assume that we know I(k, m)
forall1 <k <rand m<n.

(i) For k=1,---,r—1 and (I', J', K') € I(k,r — k) do

(a) Compute ¢ = gDIIJ/K/()\L ATy AK — (n —7)1").
(b) If ¢ <0 then answer ([,J,K) ¢ I(r,n).
(c) If ¢ >0 then drop Item [(i)d.
@ 1f M NN — (n—r)1%) € I(k,n — (r — k)) and
NN — (n—m) 1Ry e I(r — by — k)
then answer (I,J,K) € I(r,n)
else answer ([, J,K) ¢ I(r,n).

(ii) Check if Fl,(type(l)) x Fly(type(J)) x Fl,(type(K)) is
quasihomogeneous (using the algorithm shortly presented
in Section [ below).

If it is then answer ([,J,K) € I(r,n)
else answer (I,J,K) ¢ I(r,n).

The proof of the algorithm need some preparation.



3.2 Modularity and GIT

3.2.1 — Non-standard GIT. Let G be a reductive group acting on an ir-
reducible projective variety X. Let Pic®(X) denote the group of G-linearized
line bundles on X. For £ € Pic%(X), we denote by H’(X, £) the G-module
of regular sections of £ and by H°(X, £)¢ the subspace of G-invariant sec-
tions. For any £ € Pic%(X), we set

X®(L)={ze X :In>0and o € H'(X, L) s.t. o(z) # 0}.

Note that this definition of X®(L) is like in [MFK94] if £ is ample but not
in general. We consider the following projective variety:

X®(L)//G = Proj @ H(X, L&),

n>0
and the natural G-invariant morphism
m o X¥(L) — X¥(L)//G.
If £ is ample 7 is a good quotient.

3.2.2— Let Y be an irreducible G-variety not necessarily projective.
We denote by mod(Y, G) the minimal codimension of G-orbits in Y. Let us
recall that X is projective.

Proposition 1 We assume that X is smooth. The mazximal of the dimen-
sions of the varieties X*(L)//G for L € Pic%(X) is equal to mod(Y,G).

Proof. Let £ € Pic%(X). We use notation of Paragraph B.2.1. Since 7 is
G-invariant, we have:

dim(X*(£)//GQ) < mod(X*(£), ) = mod(X, G).

Conversely, set m = mod(X,G). It remains to construct £ such that
dim(X*(L)//G) > m. It is well known that m is the transcendence degree
of the field C(X)¢ of G-invariant rational functions on X. Let fi,---, f,, be
algebraically independent elements of C(X )G. For each i = 1,---,m, con-
sider the two effective divisors D? and D$° such that div(f;) = DY — Dge.
Consider the line bundle £; = O(DY) = O(D$°). Let 0¥ be a regular section
of £; such that div(c?) = D?. Since D? is G-stable, there exists a unique
G-linearization of £; such that O'Z(-] is G-invariant; we now consider £; en-
dowed with this linearization. There exists a unique section o3° of £; such
that f; = 0¥/0%°; since f; and o) are G-invariant, so is o9°.



Set L=L1® - & Ly,. Consider the following sections of L:

=0 R Q0 QR0 Q- Qo Vi=1,---,m,

Consider now the rational map

0:X%(L) — Pm
x — Jro(x) e T(2)].

Since f1,- -, fm are algebraically independent, § is dominant. Moreover, 6
factors by m : X*5(L£) — X*(L)//G. Tt follows that dim(X**(L)//G) > m.
O

3.2.3— We assume here that Pic®(X) has finite rank and consider
the rational vector space Pic®(X)g := Pic®(X) ®z Q. Since X*(L) =
X55(L%™) for any positive integer n, one can define X®(L) for any ele-
ment in Pic®(X)g. The set of ample line bundles in Pic®(X) generated an
open convex cone PicG(X)a in Pic%(X)g. The following cone was defined
in [DH9Y| and will be called the ample GIT-cone:

ACY(X) :={L € PicS(X){ = X*™(L) # 0}

Indeed, since the product of two non zero G-invariant sections of two line
bundles is a non zero G-invariant section of the tensor product of the two
line bundles, ACY(X) is convex. The following result is certainly well-known
and can be deduced from [Res08d, Proposition 1.1]:

Proposition 2 The dimension of X*(L)//G does not depend on L in the
relative interior of ACY(X).

3.2.4 — We now consider the case when X is a product of flag manifolds:

Lemma 1 We assume that X is a product of flag manifolds for G such that
ACY(X) is non empty. For any L in the relative interior of ACY(X), the
dimension of X(L)//G equals mod(X, Q).

Proof. Let M € Pic%(X) such that X(M) is not empty. By [Res07,
Proposition |, M belongs to the closure of AC%(X). By [Res07, Proposi-
tion |, there exists £ in the relative interior of ACY(X) such that X*(L) C



X*(M). Corresponding to this inclusion we have a dominant (and so sur-
jective) morphism X*(L)//G — X*(M)//G. In particular, we have:

dim(X*(£)//G) > dim(X*(M)//G).

With Proposition [, this implies that for any £ in the relative interior of
ACY(X), the dimension of X*(L)//G equals the maximal dimension of the
varieties X%(M)//G for M € Pic%(X). With Proposition [l, this implies
the lemma. (]

3.3 Properties of the LR-coefficients

3.3.1— Saturation. Let (\,u,v) € A and n be a positive integer.
Knutson-Tao proved in [KT99] that:

C;)\ ny ny 7& 0= cguu 7& 0.

A geometric proof is given in [Bel0¢]]. Note that this statement is a corollary
(or a part) of Theorem f.

3.3.2— The Fulton conjecture. Let (A, u,v) € A;f and n be a posi-
tive integer. Knutson-Tao proved in [KT99] the following Fulton conjecture:

ro_ r —
C)\uu =1= Cn)\num/ =1

Geometric proofs of this result are given in [Bel07] or [Res08(].

3.3.3 — LR-coefficients on the boundary of Horn(r). The following
theorem has been proved independently in [KTT09] and [DWO0{].

Theorem 7 Let (A, pu,v) € (AF)3. Let (I,J,K) € I(k,r). We assume that
orig (A p,v) =0. Then,

CSMV = CI;\I pd UK C;?ckch yEC<*
3.4 Proof of the algorithm
Theorem 8 The algorithm described in Section [3.1 decides if cjjx = 1.

Proof. If ¢ > 0 then Theorem [] implies that ¢;jx = 0. In Step [)d} ¢ is
equal to 0. Then Theorem [] express ¢y like a product. Since a product
of two non negative integers equals 1 if and only if each one equals 1; the
algorithm works in this case.

10



We now consider Step [ii]. If the algorithm enters in this step then for
any k=1,---,r— 1, for any (I', J', K') € I(k,r — k) we have:

(pI/J/Kr()\[,)\J,)\K — (n — 7,)17“) > 0.

Let T and B be the usual maximal torus and Borel subgroup of GL,.. Then,
A1 corresponds to a character of T" or B. The group B fixes a unique point
in Fl,(type(I) whose the stabilizer in G will be denoted by Pr. Moreover,
A1 extends to un ique character of P;. Similarly, we can think about Ay and
Aic — (n—7)1" like characters of P; and Pg. Consider the GL3-variety X =
Fl,(type(I)) x Fl,(type(J)) x Fl,(type(K)). Let £ be the GL3-linearized
line bundle on X associated to (A7, Aj, Ax — (n —1r)1") (see Paragraph
below for details). It is well known that £ is ample and that H°(X,£L®") =
Vi, ® V;/\J ® V;(AK_(n_T)l,.), for any positive integer n.

Let £ be the GL,-linearized line bundle on X obtained by restriction
the action of GL? to the diagonal. Since each gy g/ (A, A, A\ — (n—7)17)
is negative, Theorem | implies that £ belongs to the relative interior of
ACC! (X). Now, Lemma [] implies that the dimension of X5(£)//GL, is
mod(X, GL,).

On the other hand, saturation and Fulton conjecture imply that: c;jx =
1 if and only if X*(£)//GL,(C) is a point. It follows that (I, J, K) € I(r,n)
if and only if mod(X, GL,) = 0. O

4 A parametrization of Schubert varieties

In this section, we introduce a parametrization of the Schubert varieties in
G/P, and give some examples.

4.1 The general case

4.1.1 — Let G be a complex reductive group. Let T' C B be a maximal
torus and a Borel subgroup of G.

Let @ (resp. @) denote the set of roots (resp. positive roots) of G. Set
&~ = —®T. Let A denote the set of simple roots. Let us consider the set
X(T)" of dominant characters of T. Let W denote its Weyl group.

4.1.2 — Let P be a standard (ie which contains B) parabolic subgroup
of G and L denote its Levi subgroup containing 7. Let Wy denote the
Weyl group of L and ®; denote the set of roots of L. We consider the
homogeneous space G/P. Its point base is denoted by P.

11



For w € W/Wp,, we consider the associated Schubert variety €(w) which
is the closure of BwP/P.

If G/ P is a Grassmannian, the Schubert varieties are classically parametrized
by partitions (see Paragraphs R.1.] and R.1.3)). We are going to generalize
this parametrization. The set of weights of T acting on the tangent space
TPG/P is —((I)+\(I)L). Set

A(G/P) = —(@M\&y).

Let W¥ denote the set of minimal length representatives of elements in
W/Wp,. Let w € WF. Consider w™1Q(w): it is a closed T-stable subvariety
of G/P containing P and smooth at P. The tangent space Tpw~'Q(w) is
called the centered tangent space of Q(w). We set:

Ay = {a € A(G/P) : « is not a weight of T in Tpw ™ Q(w)}.

Let P(A(G/P)) denote the set of parts of A(G/P). We have the following
easy lemma

Lemma 2 We have A, = {a € A(G/P) : —wa € ®T}, and the map
WP — P(A(G/P)), w — A, is injective. Moreover, the codimension of
Q(w) is the cardinality of Ay .

Proof. Since (w=!Bw).P/P is open Q(w), the weights of T in Tpw~*Q(w)
are w—1.®T N A(G/P). So,

Ay ={a € A(G/P) : wa € ®— 0T =3}

In particular, w™'®TNA(G/P) = A(G/P)\A,. Since w has minimal length
in its class in W/Wy, w™'®T N &, = &}. Since, ® = (—A(G/P)) U ® U
A(G/P), this implies that w™1®7 is determined by A,. This implies the
injectivity.

The last assertion is obvious, since T acts on TpG/P without multiplic-
ity. O

4.1.3 — We write a < 0 if § — a is a non negative combination of
positive roots.

If \ is a one parameter subgroup of G, we denote by P(\) the set of
g € G such that limy_o A\(t)gA(t™!) exists in G. Then, P()) is a parabolic
subgroup of G and any parabolic subgroup of G can be obtained in such
a way. Let us fix a one parameter subgroup A of T such that P = P(\).
Let (-, -) denote the natural paring between one parameter subgroups and
characters of T'.

12



Lemma 3 Let o € Ay, and 3 € A(G/P). We assume that (\,a) = (X, 3)
and 8 < a.
Then, 8 € Ay,.

Proof. We have to prove that w3 € ®~. But wf = wa + w(f — «). Since
(\, —a) =0, B — «a belongs to the root lattice of L. But, f < «; so,
f — a is a non negative combination of negative roots of L. Since w € W7,
w®, C ®~. Finally, w(# — ) is a non negative combination of negative
roots. If follows that w3 < wa and wi € . O

Lemma [J means that A, is an order ideal on each strata given by .

4.2 The case SL,

4.2.1 — Let V be a n-dimensional vector space and set G = SL(V). Let
B = (e1,---,e,) be abasis of V. Let T be the maximal torus of G consisting
of diagonal matrices in B and B the Borel subgroup of G consisting of
upper triangular matrices. Let ¢; denote the character of T which maps
diag(ti,---,tn) to t;; we have X(T') = @;Z¢e;/Z )", €;. Here, we have:

Ot ={e; —¢; : i <j}
A={a,=¢,—€p41 :7=1,---,n—1}

The Weyl group W of G is the symmetric group S,, acting on n letters. We
will denote by F(r) the span of ey, -, e,.

4.2.2 — Let o, be a simple root, P, be the corresponding maximal stan-
dard parabolic subgroup of G and L, be its Levi subgroup containing 7". The
homogeneous space G/P, with base point P, is the Grassmannian G(r,n)
of r-dimensional subspaces of V' with base point F'(r). The tangent space
Tr)G(r,n) identifies with Hom(F(r), V/F(r)). The natural action of L,
which is isomorphic to S(GL(F(r)) x GL(V/F(r))) makes this identification
equivariant.

Consider A(G(r,n)) = ®~\®y, as in Paragraph [L.1.9:

AG(r,n)) ={ei—¢j : 1 <j<r<i<n}

We now represent A(G(r,n)) by a rectangle with r x (n —r) boxes: the box
at line ¢ and the row j represents the root ,; — ¢;.

Note that Lemma [] asserts in this case that the A,,’s are Young diagrams
(oriented as Figure ] shown).
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Figure 1: A(G(r,n))
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© O W N

Figure 2: An example of A

4.2.3—1If I € P(r,n), we set F(I) = Span(e; : i € I). Let I = {i; <
.-+ < ip} and Q(I) the corresponding Schubert variety, that is the closure of
B.F(I). Set {i,41 < -+ <in} =1 Set wy = (i1, ,in) € S, = W; then,
wr € W and represents Q(I). Set A = Ay, ; we have:

Ar={ei—¢; : wi(j) <wr(i) and j <r < i}.

To obtain A; on Figure[l], one can proceeds as follows. Index the columns
(resp. lines) of Figure [I] by I (resp. I¢). Now, a given box belongs to Ay if
and only if the index of its column is less that those of its line. For example,
if I ={1, 4,5, 7,8, 10} € P(6,10), Ay is the set of black boxes on Figure .

Note that Ay is the complementary of the transpose of \; as defined

in Paragraph p.1.3.

4.2.4 — We now consider the case of a two step flag manifold Fl,,(r1,72).
Here, A(Fl,,(r1,r2)) is the union of three rectangles of size r1 x (n — ra),
(rg —71) X (n —1g) and ry x (ry —71) (see Figure fj).

The Schubert varieties are naturally parametrized by the set S(Fly,(r1,72))
of the pairs (I1, I2) € P(r1,n)xP(ra,n) such that Iy C Is. Let p = (I1,12) €
S(Flp(r1,m2)). To obtain A, on Figure fj, one can proceed as follows. Index
the r; first columns (resp. 79 — 71 first lines) of Figure [ by I (vesp. Io —1I7).
Index the following ry — 71 columns (resp. n —r9 lines) of Figure E by Io— 11
(resp. [1,n] — I2). Now, a given box belongs to A, if and only if the index

14
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Figure 3: A(Fl,(r1,72))
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Ay Ay

Figure 4: An example of A, for p € S(Fln(r1,72))
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of its column is less that those of its line. For example, if n =9, I} = {3, 7}
and I = I U {1, 5, 6, 8}, one obtains A, on Figure [f.

4.2.5 — We now consider the following characteristic function:

Xp o [in] — {0,1,2}

1 if i€l
7 [— 2 if i€ Iy — Iy,
0 if idD.

We think about x,, like a word of length n with letters in {0,1,2}. If one
cancels the letters 2 of this word, one obtains the characteristic function of
a part pg of [1;n — (ro —ry)] with 1 elements. If one cancels the letters 1 of
this word and then replaces 2 by 1, one obtains the characteristic function
of a part p; of [1;n —7rq] with 7o — 7 elements. If one cancels the letters 0 of
this word and then replaces 2 by 0, one obtains the characteristic function
of a part pg of [1;79] with r; elements. We just defined a map:

S(Flp(ri,r2)) — P(ri,n+ry —r2) x P(rg —ri,n—ry) x P(ry,ra)
P —  (p2,p1,P0).

Proposition 3 With above notation, A; is the partition associated to the
part p;, fori=1,2 and 0.

Proof. The proof is direct with the description of A, made in Para-

graph [£.2.4. O

Remark. Lemma [J means that A, is the union of three Young diagrams
like on Figure []. It should be interesting to have a description of the triples
of such Young diagrams which appear.

4.2.6 — We now consider the particular case when n —ry = r1. So
consider Fl,(r,n—r). In this case A(G/P) is symmetric under the diagonal
dashed line on Figure ff below. Let 7 denote this symmetry.

For i € [1;n], we set 1 = n + 1 —i. The symmetry 7 corresponds to the

involution [J. More precisely, we have:

Lemma 4 Let p = (I1, 1) € S(Flp(r,n—1)). Set Jy =11, Jo = I, —
and J3 = J3.

Consider (J|, J5, J}) = (J3, J2, JJ1); and p' = (J|, J| U JS) € S(Fln(r,n—
T)).
Then, T(Ap) = Ay

Proof. The proof is direct with the description of A, made in Para-

graph [£2.4 0
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4.3 The case Sp,,

4.3.1 — Root system.
Let V be a 2n-dimensional vector space and B = (eq,- - -, ea,) be a basis
of V. Let us consider the bilinear symplectic form with matrix

-1

Let G be the associated symplectic group. Set T' = {diag(ty, -, tn,t; 1, ,tl_l) :
t; € C*}. Let B be the Borel subgroup of G consisting of upper triangular
matrices of G. For i € [1,n], let ¢; denote the character of 7" which maps
diag(t1, - tn,t; L, - ,tl_l) to t;; we have X (T') = @®,;Ze;. Here, we have:

Pt ={e;te; 1 1<i<j<n}U{2g :1<i<n},
A={ay =€ —€3,ap =62 —€3, "+, Qp_1 = En_1 — Ep, Qp = 26p}.

If i € [1;2n], we set i = 2n + 1 —i. The Weyl group W of G is a subgroup
of the Weyl group Sa,, of SL(V):

W ={w € Sy, : w(t) =w(i) Vie [l;2n]}.

We will denote by F(r) (resp. F(r)) the span of e1, -, e, (resp. e, -, er).
We will denote by V(r) the span of e,41,---, €577

4.3.2 — Tangent space of isotropic Grassmanians. Let a, be
a simple root, P. be the corresponding maximal parabolic subgroup of G
and L, be its Levi subgroup containing 7'. The homogeneous space G/ P,
with base point P, is the isotropic Grassmannian G,,(r, 2n) of r-dimensional
subspaces M of V such that w(M, M) = 0 with base point F'(r).
Note that V = F(r)®V (r)®F(r). Moreover, F(r)*~ = F(r)@V(r), and
w identifies F(r) with the dual of F(r). The tangent space Tp(Gy (7, 2n)
identifies with Hom(F(r), V(r)) @ S?F(r)*. The natural action of L, which
is isomorphic to GL(F (7)) x Sp(V (r)) makes this identification equivariant.
For convenience we set for i = 1,---,n, e; :== —¢g;. Then,

P ={g—¢; : 1<y <i<j<2n}, and
ANGy(r,2n))={e;—¢; : 1 <j<r<i<j<2n}

17
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Figure 5: Roots of TGy (7, 2n)

We now represent each element of A(G,(r,2n)) by a box on Figure f|. The
box at line ¢ and column j corresponds to &,4; — €;.

The boxes corresponding to roots of S?2F(r)* (resp. Hom(F(r),V(r)))
are in the triangular (resp. rectangular) part of Figure .

4.3.3 — Schubert varieties of isotropic Grassmanians. If [ €
P(r,2n) then we set I = {i : i € I'} and
S(Gy(r,2n)) :={I € P(r,2n) : INIT = 0}.

The subspace F'(I) belongs to G, (r,2n) if and only if I € S(Gy(r,2n)); so,
the Schubert varieties W(I) of G (r,2n) are indexed by I € S(Gy(r,2n)).
If I ={ih < <i} € S8(r2n), weset iz = iy and write (I UT)¢ =
{ir41 < -+ < 777} Then, the element of W’ which corresponds to W([)
is wy = (il, s ,’ign).

4.3.4 — We now want to describe A; = A,,,. Consider p = (I C Tc) €
S(Flon(r,2n —r)). We draw A, on Figure [] including the dotted part.

Proposition 4 (i) The part A, is symmetric relatively to the dashed line.
(11) The part A is the intersection of A(Gy(r,2n)) and A,.

Proof. The first assertion is a direct consequence of Lemma [l Consider
W as a subgroup of Sy, like in Paragraph [£.3.1. Then, w; is the element
of Sy, corresponding to the Schubert class p in S(Floy,(r,2n — 7)) like in
Paragraph [L.1.3. The second assertion follows. O
4.4 The case SO,

4.4.1 — Root system.

18



Let V be a 2n + 1-dimensional vector space and B = (e, -, ea,41) be
a basis of V. We denote by (x1,- -, zon41) the dual basis. If ¢ € [1;2n + 1],
we set i = 2n + 2 — i. Let G be the special orthogonal group associated to
the quadratic form

n
2 §
Q =Tyt + XTiZy.
i=1

Set T = {diag(tl,---,tn,l,t,jl,---,tl_l) : t; € C*}. Let B the Borel
subgroup of G consisting of upper triangular matrices of G. Let ¢; denote
the character of T which maps diag(t1,---,tn, 1, ¢, 1, - - ,tl_l) to t;; we have

syt
X(T) = @} ,Ze;. Here, we have:

Pt ={e; te; : 1<i<j<n}U{g : 1<i<n},
A={ag =61 —¢c3, ap =62 —€3,"", An1 = Ep_1 — En, Oy = En}.

The Weyl group W of G is a subgroup of the Weyl group S, 11 of SL(V):

W ={w € Sopt1 : w(i) =w(i) Vie[l;2n+ 1]}

We will denote by F(r) (resp. F(r)) the span of e1,- -, e, (resp. e, -, exr).
We will denote by V' (r) the span of e, 1, -+, €;17.

4.4.2 — Tangent space of orthogonal Grassmanians. Let o, be a
simple root, P, be the corresponding maximal parabolic subgroup of G and
L, be its Levi subgroup containing 7". For r < n, we denote by Gg(r,2n+1)
the orthogonal Grassmannian of r-dimensional subspaces M of V' such that
Q|a = 0. The homogeneous space G /P, with base point P, is Gg(r,2n+1)
with base point F'(r).

Note that V = F(r)®V (r)&F(r). Moreover, F(r)*@ = F(r)@V(r), and
Q identifies F'(r) with the dual of F'(r). The tangent space Tp()Gq(r, 2n +
1) identifies with Hom(F(r),V(r)) @ A? F(r)*. The natural action of L,
which is isomorphic to S(GL(F(r)) x O(V(r))) makes this identification
equivariant.

We set for i € [1,n], e; := —&;, and €,41 = 0. Then, we have:

" ={e;—¢;:J <i<j}, and
AGo(r,2n+1)={e;—¢; : j<r<i<j}

We now represent each element of A(Gg(r,2n + 1)) by a box on Figure fi.
The boxes corresponding to roots of A% F(r)* (resp. Hom(F(r),V (r)))
are in the triangular (resp. rectangular) part of Figure .
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Figure 6: Roots of Tr()Gg(r,2n + 1)

4.4.3 — Schubert varieties of orthogonal Grassmanians. If I €
P(r,2n + 1) then we set I = {7 : i € I} and

S(Go(r,2n+1)):={IeP(r,2n+1) : INT = 0}.

The subspace F(I) belongs to Gg(r,2n+ 1) if and only if I € S(Gg(r,2n +
1)); so, the Schubert varieties W(I) of Gg(r,2n + 1) are indexed by I €
S(Go(r,2n+1)). If I ={iy < - < iy} € S(r,2n+ 1), we set iz = iy
and write (I UT)¢ = {ir41 < -+ < i777}. Then, the element of W which
corresponds to W(I) is wy = (i1, ,92n+1)-

4.4.4— We now want to describe A; = A,,,. Consider p = (I C T°) €
S(Flant1(r,2n+1—7)). We draw A, on Figure fj including the dotted part.
Then, we obtain easily:

Proposition 5 (i) The part A, is symmetric relatively to the dashed line.

(11) The part Ay is the intersection of A(Gg(r,2n + 1)) and A,.

5 Levi-movability

In this section, we introduce the Belkale-Kumar notion of Levi-movability
(see [BKOG]).

5.1 Cohomology of G/P

5.1.1 — Let oy, denote the Poincaré dual of the homology class of Q(w).
We have:
H*(G/P,Z) = ®yewrLoy.
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The dual of the class o, is denoted by o,,. Note that o, is the class of the
point. Let o1, 02, 03 be three Schubert classes. If there exists an integer d
such that o1.09.03 = do., we set cia3 = d and we set cjo3 = 0 otherwise.

These coefficients are the (symmetrized) structure coefficients of the product
of H*(G/P,Z) in the Schubert basis in the following sense:

— E V.
le -sz - Cw1 wzwo-w)
weWP

and c23 = €213 = c132.

5.1.2 — Let wq, we and ws in WF. Let us consider the three tangent
spaces 11, T and T3 of the w; leiP/ P’s at the point P. Using the transver-

sality theorem of Kleiman, Belkale-Kumar showed in [BKO0@, Proposition 2]
the following important lemma:

Lemma 5 The coefficient Cy,wows @5 non zero if and only if there exist
p1,P2,p3 € P such that the natural map
Tp(G/P) Tp(G/P) Tp(G/P
_ TelG/P)  TP(G/P)  Tr(G/P)
J2¥A P21 p3T3

Tp(G/P)
s an isomorphism.

Then, Belkale-Kumar defined Levi-movability:

Definition. The triple (04, Ow,, Ow,) is said to be Levi-movable if there
exist l1,ls,l3 € L such that the natural map

_Te(G/P) _ Te(G/P) _ Tr(G/P)

Tp(G/P
P(G/P) LTy loTh lsT5
is an isomorphism.
We set:
®o _ | cvrwsws i (Gwys Ows, Owy) is Levi — movable;
w1w2ws 0 otherwise.

Note that in [RR0Y], an equivalent characterization of Levi-movability
is given. We define on the group H*(G/P,Z) a bilinear product ®¢ by the
formula:

_ (o)) Vv
Oy O00wy = E Cwrwoww+
weWwr

By [BKO06, Definition 18], we have:
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Theorem 9 The product ®g is commutative, associative and satisfies Poincaré
duality.

6 Cones associated to groups

6.1 The tensor product cone

In this section, we will define the generalization of the Horn cone for any
semisimple group G. We will also recall some results about these cones.

6.1.1 — The Borel-Weil theorem. Let P be a parabolic subgroup of
G. Let v be a character of B. Let C, denote the field C endowed with the
action of B defined by b.7 = v(b~1)7 for all 7 € C, and b € B. The fiber
product G xp C, is a G-linearized line bundle on G/B, denoted by £,. In
fact, the map X(B) = X(T) — Pic®(G/B), v — L, is an isomorphism.
Moreover, L, is generated by its sections if and only if it has non zero
sections if and only if v is dominant; and, H°(G/B, £,)) is isomorphic to the
dual V¥ of the irreducible G-module V,, of highest weight v.

6.1.2 — We set: X(T')g = X(T') ® Q. The set of triples (v1, 1o, 13) €
(X(T)™)3 such that V,, ® V,, ® V,, contains non zero G-invariant vectors
is a finitely generated semigroup. We will denote by LR(G) the convex hull
in X (T)g:’2 of this semigroup: it is a closed convex rational polyhedral cone.

Set X = (G/B)3. Identifying X (T3) with X(T)3, for any (v1, va, v3) €
X (T)3, we obtain a G3-linearized line bundle £,, ,,, ,, on X. Applying the
Borel-Weil theorem, we obtain

LR(G) ={(v1 ,v2,13) e X(T)?*®Q : In >0 HO(X,LZ", ¥ £ {0}}.

V1,V2,V3

Since G is assumed to be semisimple, we have isomorphisms X (73)g ~
PicG’ (X)g =~ Pic%(X)g. With these identifications, LR(G) is the closure of
ACY((G/B)?) (see for example [Res07, Proposition ]).

6.1.3 — Let « be a simple root of G, P, denote the associated maximal
standard parabolic subgroup and L, denote its Levi subgroup containing
T. Set W, = Wp,. Consider the one parameter subgroup w,v (with usual
notation) of the center of L,. We now state the main result of [BKO4]:
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Theorem 10 Here G is assumed to be semisimple. Let (v1,v2,v3) € X(T)g:’2
dominant. Then, (v1,v9,v3) € LR(G) if and only if

<’w1wav, I/1> + <ZU2wav, I/2> + <’w3wav, I/3> <0, (9)

for all simple root o and all triple (w1, ws,w3) € W/W with ¢S50 =1.

w1 Waw3

Let a and (wi, w2, w3) € W/W, be as in the theorem. The set of
(v1,v2,13) € LR(G) for which Inequality (f) becomes an equality is a face
of LR(G) denoted by F(a,wy,ws,ws). The following statement is proved

in [Res0q):

Theorem 11 Let o and (wy, wa, w3) € W/W,, be as in Theorem [10. Then,
F(a,wy, we,ws) is a codimension one face of LR(G) intersecting the strictly
dominant chamber.

6.1.4 — We now want to understand better the faces F(a, wy, wa, ws).
Consider the fixed point set X“«" of w,v acting on X. Then,

C(wy,wa, w3) = Low; ' B x Lowy "B x Lyw; ' B

is an irreducible component of X“«v. Note that By, = BN L, is a Borel
subgroup of L. If each w; belongs to W, we fix the following isomorphism
between (L, /Bg)? and C(wy,ws, ws3) by

llBL,lgBL,lgBL — llw_lBL X lg’w_lBL X lg’w_lBL.
1 2 3

In particular, the group Picla (C(w1, wa, ws)) is isomorphic to Picla ((La/BL)3);
that is, to X(T)3. With these identifications the restriction morphism
Pic’ (X) — Picla (C(w1, wa, ws)) is

Pwiwows * X(T)3 - X(T)3
(v1,v2,v3) (wflw,wz_lug,wglug).

The following statement is [Res09, Lemma 1]:

Theorem 12 Let a and (wy,wa, w3) € W/Wy, be such that oy, .Ow,.Ows 7
0. Then, for any (v1,v9,v3) € LR(G),

(Wiwgev, v1) + (Wawav , v2) + (wswqv,v3) <0,

holds. Let F(c,wy,we,ws) denote the corresponding face. If (v1,v2,v3) €
X(T)? ® Q is dominant then (v1,ve,v3) € F(a,wi,we,w3) if and only if
Pwywaws (V15 V2,v3) belongs to LR(L,,).
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Corollary 1 Let a and (w1, wa, ws) € W/W,, be as in Theorem [[3. Then,
0wy = 1 if and only if F(a,wi,wa, ws) intersects the interior of the

dominant chamber of X(T3)gq.

Proof. The direct implication is a consequence of Theorem [[1]. Conversely,
the cone LR(L,) (see for example [Res07, ]) has codimension one (the
rank of the center of L,) in X(T)%. So, since F(a, wy,ws,ws3) intersects
the interior of the dominant chamber of X (73)g, Theorem [[J implies that
F (o, wr,we,ws) has codimension one. So, the corresponding inequality has
to appear in Theorem [[(. This implies that ¢{° = 1. O

wiwa2ws3

6.2 The eigencone

Let us fix a maximal compact subgroup K of GG in such a way that TN K
is a Cartan subgroup of K. Let £ and t denote the Lie algebras of K and T.
Let tT be the Weyl chamber of t corresponding to B. Let v/—1 denote the
usual complex number. It is well known that /—1t" is contained in £ and
that the map:

tt — t/K

¢ — K.(/-I¢)

is an homeomorphism. Consider the set
F(K) = {(fl,fg,fg) € (f)+)3 : K(\/—_lfl)—i-K(\/—_lfg)—i-K(\/—_lfg) > O}.

Let € (resp. t*) denote the dual (resp. complex dual) of £ (resp. t).
Let t** denote the dominant chamber of t* corresponding to B. By taking
the tangent map at the identity, one can embed X (T')" in t**. Note that,
this embedding induces a rational structure on the complex vector space
t*. In particular, we can embed LR(G) in (£+)3: let LR(G) denote the so
obtained part of t*T.

Now, using the Cartan-Killing form, we identify t* and t**. In par-
ticular, we can embed I'(K) in (t1)3; the so obtained cone is denoted by
I'(K).

Theorem 13 The set I'(K) is a closed convex polyhedral cone. Moreover,
LR(G) is the set of the rational points of I'(K).

7 About the cohomology of G, (r,2n)

This section is concerned by coefficient structures of the cohomology of ordi-
nary and isotropic Grassmannians. To avoid any confusion, those concerning
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ordinary and isotropic Grassmanians will be denoted with ¢ and d respec-
tively. Note that, since ordinary Grassmannian is cominuscule, ¢®° = c.

7.1 — The following result is due to Belkale-Kumar:

Proposition 6 Let I, I', I” € S(G,(r,2n)) such that |Ar|+ |Ap|+|Ap| =
dim G, (r,2n). Let p, p’ and p" € S(Flan(r,2n — 1)) associated respectively
to I, I' and I" as in Paragraph [.3.]. The following are equivalent:

(7’) d?IO’I’/ 75 07'
(it) |Apo| + |Apy | + |Apy| = 2r(n — 1) and dipyr # 0;
(’l"l"i) dp2p/2p/2/ 75 0 and Cpop(’)p(’)’ 75 0.

Proof. This is essentially [BK07, Theorem 30]. We include a brief discussion
for completeness.

The equivalence between the two first assertions is [RR0Y, ]. We use
notation of Paragraph for Spy,,. Let P be the standard parabolic
subgroup of Spy, such that G, (r,2n) = Sp,,,/P and L be the usual Levi
subgroup of P. Consider the decomposition of TpG,(r,2n) as sum of ir-
reducible L-modules. The centered tangent space of Q7(Gy(r,2n)) decom-
poses as the sum of those of €, (G(r,2n — r)) and those of Q,, (G, (r,2r)).
Since (I,1I',1") is Levi-movable, one immediately deduces that (p2, p,ph)
and (po,pj,py) are. In particular, Lemma [ implies that Apopypy # 0 and
Cpo pypy 7 O-

The fact that the last assertion implies the second one is the difficult

part of [BKO07, Theorem 30]. O

7.2 — Here comes our main result about cohomology of G, (r,2n); it
allows to characterize the condition d?f, y» = 1 in terms of the Littlewood-
Richardson coefficients.

Theorem 14 Let I, I', I” € §(Gy(r,2n)) such that |Ar] + [Ap| + [Ap| =
dim Gy, (r,2n). Let p, p’ and p" € S(Flan(r,2n — 1)) associated respectively
to I, I' and I" as in Paragraph [.3.]. The following are equivalent:

(i) difn =1;

(it) dpyprpy =1 and cpypy oy =1
(it8) Cpoprpy =1 and cpypp pr = 1.
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Proof. We first prove that Assertion [(1) implies Assertion ((ii). Proposi-
tion f] implies that dpoptpy 7 0 and ¢y, A # 0. Now, by Corollary [I, it is
sufficient to prove that the two faces F> and Fo of LR(Sps,) and LR(Glay,—r)
corresponding to these coefficients intersect the strictly dominant chambers.

We first make more explicit the description of the face F(r,I,I',I") of
LR(Sp,,,) associated to d?f, ;» = 1 as in Theorem [ Let us use notation of
Section [I.g for the data associated to the group Sps,,. The elements of L,

have the following form:

Ao o
A= 04| 0 , (10)
0] 0 [tA]T

where Ay € GL, and Az € Spy,_,). Moreover, the central one parameter
subgroup w,y of L, is obtain for Ay = t.I, and Ay = Iz, . Let v = > €
X(T). Let us recall that i = 2n + 1 — i and set v; = —y; for i € [1,n]. A
direct computation shows that

(wrway , V) ZI/Z (11)

el

Let A € L.NUy, like in [[(J. By juxtaposition of the spectrums of /=147, /=145
and v/—1A3 (each one in non increasing order), we obtain a point £(A) in
R?". We now assume that v = w;lg (A) and v is dominant. This means
that when one applies wy to £(A), one obtains an ordered point in R?". This
implies that the eigenvalues of /—1A4; and \/—1A, are respectively the v;
with i € I and i € (I UT)®. In particular, we have

ZVZ V—1tr(Ap). (12)

el

Let us consider the isomorphism prrv of X(T)3. Let (X, p,v) be a regular
point in F(r,I,I', I"). By Theorem [[J, p;r (A, p,v) belongs to LR(L). By
Theorem [, there exist six matrices Ay, B1,C1 € u,(C) and Ag, By, Cy €
Ug(n—r)(C) N Lie(Spy(,—yy) such that if

Al O 0 Bi| 0 0 Ci] 0 0
A= 0 | Ay 0 ,B=1 0 | By 0 ,C=101]Cy 0 ,

0] 0 |—tA4; 0|0 |-tB 010 |-tC;
we have

A+ B+ C =0, and
(f(A),f(B),f(C)) = PII’I”(/\,MV)'
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Now, consider the three following matrices of Spy, N Us,:

(A 0 ~ (B 0 (] o
A_<0 _tA1>7B—<O _tBl>7aHdC—<T’TC,1>.

Let a, 3 and 7 be the spectrums of v/—1A4, v—l_B and v/—1C. Since the
eigenvalues of /—1As are the v;’s with i € (I UI)¢, we have: Y .. «a; =
> icr Vi- We deduce that

0= (Al)—i-tr(Bl +tr Cl ZO@—FZ@-FZ%

1€pPo

We deduce that («, 3,7) is a regular point in the face Fo.
In a similar way,

A | 0 Bi| 0 Ci| 0\
(5 A2)+(O‘Bz)+(o\@)—0=

provides a regular point in Fg.

We now prove that Assertion implies Assertion . This implication
is only concerned about G(r,2r) and G(r,2r): we may assume that r = n.
Let us assume that drpp» = dfp,, = 1. By [BKO7, Corollary 11], the
following product in H*(G(n,2n)) is non zero:

01(G(n,2n)).0r (G(n,2n)).cr(G(n,2n)) # 0.

Now, by Corollary [[ it is sufficient to prove that the face F4 of LR(SLay,)
corresponding to (I,I’,I") contains regular points. Let F¢ be the face of
LR(Sps,) corresponding to drpr» = 1. By Theorems [[T] and [[3, there exist
A, B,C € u,(C) such that

Al 0 B| 0 clo \_,
0| —4 )" 0]-'B * o|-tc ) 7

and the spectrum (v, 3,7) of these three matrices give a regular point in
FC. Since

tr(A) + tr(B) + tr(C Za,—kZﬂl—FZ%,

I//

we just obtained a regular point in F4.
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Still assuming that r = n, we now want to prove that Assertion (1iii)

implies Assertion [(ii]. Consider the inclusion of G (n,2n) in G(n,2n). Let
Q7(G(n,2n)), Qp(G(n,2n)) and Qv (G(n,2n)) be the three Schubert va-
rieties of G(n,2n) corresponding to I, I’ and I” and the standard flag in
the basis of Paragraph [£3.1 Since ¢;pp» = 1, [Botl(, Theorem 2] im-
plies that for general g, ¢’ and ¢g” in Sps,, the intersection gQ2;(G(n,2n))N
dQr(G(n,2n)) N ¢"Q(G(n,2n)) is transverse and reduced to one point
F. Let us consider the orthogonal Ft« of F for w. Since g € Sp,,,
F belongs to gQ;(G(n,2n)); and finally to the intersection. We deduce
that F' = [+« belongs to G, (n,2n). So, the intersection gQ;(G,(n,2n)) N
9 (G (n,2n)) N ¢"Q (G (n,2n)) is reduced to one point F for general
g, ¢ and ¢” in Sp,,,. We deduce that dj; v = 1.

It remains to prove that Assertion implies Assertion [i). By the
preceding argue, Assertion holds. Since G, (r, 2r) is cominuscule, we may
assume that r < n. Now, Proposition f| implies that d;j ;v # 0. It remains
to prove that the corresponding face F(r,I1,I',I") of LR(Spy,) contains
regular points. Let us consider the three Schubert classes o, (Flap(r,2n —
), op(Flon(r,2n — 1)) and opr (Floy(r,2n — 1)) of H*(Flap(r,2n — 1))
corresponding to p, p’ and p”. Since ¢, # 0 and c,, ooy 7 0, (p, o', ")

P2PoP2
is Levi-movable. Let d be the positive integer such that

op(Flon(r,2n — 1)) ooy (Flon(r, 2n — 1)) Ooopr (Flon(r,2n — 1)) = d[pt].

By [Ric09 (see also [Ric0g] or [ResO8H]), d is the product of ¢, ol

and another Littlewood-Richardson coefficient c. The fact that c,, popl = 1
allows to apply Theorem [fj to ¢: ¢ =¢

parpt) -Cpo ph L We deduce that d = 1.

By [Res084], by saturating the two inequalities ¢ » and Py e e, one
obtains a face F of LR(SLa,) intersecting the strictly dominant chamber
and of codimension two.

Let T4 be the diagonal maximal torus of SLa,. Let 6 be the Z-linear invo-
lution of X (T) mapping &; on —&2,,+1—;, With notation of Paragraph 2.1
Since 6 corresponds to duality for representations, LR(SLay,) is stable by the
automorphism (6,6, 0) of X(T4)? @ Q. Note that the character group of the
maximal torus of Sp,,, defined in Paragraph identifies by restriction
with the set of f-fixed points in X (7). Moreover, by [BK07, Theorem 1],
LR(Sp,,,) is precisely the set of points in LR(Sly,) fixed by (6,0, 0).

Since @y 00 = prepee, F is stable by (0,6,6). By convexity F
contains regular 6-fixed points. We deduce using [BK07, Theorem 1], that
F(r,I,I',I") contains regular points. O
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7.1 Examples

We now give some examples performed with the Anders Buch’s quantum

calculator [Bud.

7.1.1 — Whereas multiplicative formulas exist for structure coefficients
of the Belkale-Kumar product (see [Ric0§, [Ric09, [ResO8H]), no such formula
seems to explain Theorem [4:

Set r =3 andn =5 If [ =I' = I" = {3, 7,10} then d}3,, = 2,

dpzpép’g’ =2 and ¢, phpl = 2-

7.1.2 — We now consider G, (n, 2n) and observe relations between dy ;g
and ¢y for I,J,K € S(Gy(n,2n)) C P(n,2n) = S(G(n,2n)). Since
Gy (n,2n) and G(n, 2n) are cominuscule, the Belkale-Kumar product and the
ordinary one coincide here. Let §; denote the number of diagonal elements
in A7(G,(n,2n)). Theorem [[4 shows that

dijk =1 < crjg = 1.

Assume that d;jx = 1. The fact that cyjx is non zero implies that the
sum of the codimensions of the three corresponding Schubert varieties of
G(n,2n) equals the dimension of G(n,2n). One can easily check that this
means that é; + §; + dx = n. The following example shows that this is not
true if dyjx is only assumed to be non zero:

Set n =4, 1 ={1,2,4,6} and J = K = {4, 6,7, 8}. Then djjx = 2
and 0y + 65 + 9 =3+ 1+ 1 =>5. In particular, ¢;jx = 0.

7.1.3— For I, J, K in §(G,(n,2n)) such that c;jx = 1, we obviously
have 67 + 07 + dx = n. The following example shows that this is not true if
crjk is only assumed to be non zero.

Set n=4,1=J=1{2,4,6,8} and K = {3, 4, 7,8}. Then cjjx = 2
and d; + 65 + g = 6. In particular, d;jx = 0.

7.1.4— We now assume that d; + d; + dx = n and |A;(Gy(n,2n))| +
A7 (Gy(n,2n))| + |Ak(Gy(n,2n))| = w The Belkale-Kumar-Sottile
theorem (see [Sot1(], Theorem 2]) implies that

crjk > drjix and
cryk — drji is even.

We already noticed that cyjx and djjx can be different for dimension rea-
sons. The following example shows that they can be different for other
reasons.
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Setn=>51=J=1{2,4,6,8,10} and K = {3, 6, 7,9, 10}. Then

d]JK:4 and C[JK:6.

8 About the cohomology of Gg(r,2n + 1)

This section is concerned by coefficient structures of the cohomology of or-
dinary and orthogonal Grassmanians. To avoid any confusion, those con-
cerning ordinary and isotropic Grassmanians will be denoted with ¢ and e
respectively.

8.1 — The following is [B , Theorem 41] :

Proposition 7 Let I, I', I" € S(Gg(r,2n + 1)) such that |Af| + |Ap| +
|Ap7| = dimGq(r,2n + 1). Let p, p' and p” € S(Flopt1(r,2n + 1 — 1))
associated respectively to I, I' and I" as in Paragraph [[.4.4. The following
are equivalent:

(i) €S0y #0;
(M’) |Apo| + |Ap6| + |Ap(’)’| = 7"(271 + 1-— 27") and err ?é 0"

(iti) epyppy 7 0 and cpypr pr # 0.

8.2 — Here comes our main result about cohomology of Gg(r, 2n + 1);
it allows to characterize the condition e%o, = 1in terms of the Littlewood-
Richardson coefficients.

Theorem 15 Let I, I', I" € S(Gg(r,2n + 1)) such that |Ar| + |[Ap| +
|Apr| = dimGq(r,2n + 1). Let p, p’ and p” € S(Flopt1(r,2n + 1 — 1))
associated respectively to I, I' and I" as in Paragraph [[.4.4. The following
are equivalent:

(i) e =1;

(it) €pypppy =1 and cpgpr pr = 1;
(iii) Cooptpy = 1 and Cpophpll = 1.

Proof. The proof which is similar to those of Theorem [[4 is left to the
reader. O
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9 Quivers

9.1 Definitions

Let @ be a quiver (that is, a finite oriented graph) with vertexes Qo and
arrows (J1. We assume that () has no oriented cycle. An arrow a € )1 has
initial vertex ia and terminal one ta. A representation R of @) is a family
(V(s))seq, of finite dimensional vector spaces and a family of linear maps
u(a) € Hom(V (ia), V (ta)) indexed by a € Q1. The dimension vector of R is
the family (dim(V (s)))seq, € N@°.

Let us fix o € N?0 and a vector space V(s) of dimension a(s) for each
s € Qq. Set

Rep(Q, a) = @ Hom(V (ia), V (ta)).

a€Q1
The group GL(a) = [[,cq, GL(V(s)) acts naturally on Rep(Q, @).

For a, 3 € N¥°0 two vector dimensions, the Ringle form is defined by:

(a, B) = Z a(s)f(s) — Z a(ia)f(ta).

$€Qo a1

If there exists R € Rep(Q, «) whose the stabilizer in GL(«) has dimen-
sion one, « is said to be a Schur root. If a is a Schur root then (o, a) < 1;
a is said to be real if (a, ) = 1.

We call & = a1 + - - - + a5 the canonical decomposition of « if a general
representation of dimension « decomposes into indecomposable represen-
tations of dimensions aj, asg, - -,as. A vector dimension « is said to be
quasihomogeneous if Rep(Q, ) contains a dense GL(«)-orbit.

9.2 A Kac theorem

We have the following characterization of quasihomogeneous vector dimen-
sion:

Theorem 16 (see [Kac83, Proposition }]) Let o = oy + -+ + a; be the
canonical decomposition of . Then « is quasihomogeneous if and only if
i, -+, g are real Schur roots.

In [DWO03], Derksen-Weyman describe an efficient algorithm to compute
the canonical decomposition of a vector dimension. With Theorem [[, this
gives an algorithm to decide if a given vector dimension is quasi-
homogeneous.
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9.3 A particular quiver

Consider the following quiver T}, with p+q-+r—2 vertexes and p+q+r—3
arrows:

X ——> Xy ——> L3 == ':Up—l
y1—>y2—>y3 ............................. yq_1—>xp_yq_z,r.
21— Zg e Zr—1

Consider a vector dimension a of T,

ap —> Qg ——> (g = ap—l
Q= b ——> by ———> by e by_1 — n.
Cl —_— 62 ......... Cr—l

We have the following well known

Lemma 6 We assume the « is increasing on each harm. Then, the follow-
g are equivalent:

(i) « is quasihomogeneous;

(i) Flp(ar, -, ap—1) X Flp(br,- -+, bg—1) X Flyp(c1,- -+, ¢r—1) is quasihomo-
geneous under GL,,.

Proof. Let R be a general representation of 7,4, of dimension . If s is a
vertex of Ty, V(s) denotes the vector space of R at s and u(s) the linear
map (if there exists) associated to the arrow a in T4 such that ia = s.
Since « is increasing on each harm, for all a € @, the linear map wu(a) is
injective. In particular, the flag:

o = Vi(wp) O ulzp1)(V(xp-1)) D (w(@p-1) o ulzp-2))(V(zp-2)) -

has dimension n > ap,—1 > ap—2---. So, we obtain a point (&;,&,,&,) in
Flp(ar, - ,ap—1) X Flp(br,---,bg—1) X Flp(c1, -+, ¢cr—1). It is easy to see
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that GL(a).R is dense in Rep(Q, «) if and only if GLy,.(&;,&y, &) is dense
in fln(al, s ,ap_l) X fln(bl, s ,bq_l) X fln(cl, cee ,Cr_l). O

With the paragraph following Theorem [[f, Lemma [] implies the

Proposition 8 The Derksen- Weyman algorithm allows to decide if the GL,,-
variety

Flp(ar, -+ ap—1) X Fly(by, -+, bg—1) X Flp(cr, -+, cr1)
18 quasthomogeneous.

Remark. It would be interesting to have a classification of the triples of
parabolic subgroups (P, @, R) of G = GL, such that G/P x G/Q x G/R
is quasihomogeneous; instead an algorithm to decide if it is. In [MWZ99],
Magyar-Weyman-Zelevinsky gives a classification of such triples such that
G/P x G/Q x G/R contains finitely many orbits. If one of P, @, R is
a Borel subgroup these two conditions are actually equivalent. Indeed, if
G/BxG/QxG/R is quasihomogeneous, G/Q X G/R is a spherical G-variety
and contains by [Bri8(] finitely many B-orbits. The case when P = Q = R
is maximal was obtained in [Pop07)].
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