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Résurre. Nous étudions la quantité de connaissance nécessaite seéseau pour résoudre efficacement une tache
sur celui-ci. Limpact de I'information disponible sur fiicacité de la résolution des problémes, comme la commun
cation ou I'exploration, a déja été étudié auparavaais les hypothéses concernaient la disponibilitéfdfimations
particuliéressur le réseau, comme sa taille, son diametre ou une cadguieci. Au contraire, notre approche egtan-
titative : nous étudions le nombre minimum de bits d’informatiornill¢iad’oracle minimum) qui doivent &tre fournis a
I'algorithme pour effectuer une tache avec une certaifieszitée.

Nous illustrons cette approche quantitative de l'inforimiisponible par le probleme de I'exploration d’arbrelaie
entité mobile (robot) doit traverser toutes les arétemdirbre inconnu, en utilisant aussi peu de traverséestdague
possible. La qualité d'un algorithme d’exploratichest mesuré par sampport compétitifi.e., par comparaison de
son colt (nombre de traversées d'arétes) a la longuepius court chemin contenant toutes les arétes de I'atlare.
parcours en profondeur d’abord a un rapport compétitif éeeéh I'absence d'information sur I'arbre aucun algorithme
ne peut faire mieux.

Nous déterminons le nombre minimal de bits d’informatian doit &étre donné & un algorithme d’exploration afin
d’obtenir un rapport compétitif strictement plus petiteq2. Notre résultat principal établit un seuil exact sutdidle

de l'oracle, qui est approximativement log Bgbits, ouD est le diamétre de I'arbre. Plus précisément, pour toute
constantec, nous construisons un algorithme d’exploration de rapponpétitif plus petit que 2, utilisant un oracle
de taille au plus loglo® — c, et nous montrons que tout algorithme utilisant un oracleadie loglogD — g(D), pour
toute fonctiong non bornée supérieurement, a un rapport compétitif aimsnegal a 2.

Keywords: algorithme, exploration, oracle, arbre, robot.

1 Introduction

For many network problems (such as leader election, minirepamning tree, rendezvous, wakeup, broad-
casting, etc.), the quality of the algorithmic solutionteofdepends on the amount of knowledge given to
nodes of the network, or given to mobile entities moving ie tietwork, about its topology.ocal knowl-
edge given to every node and/or to every mobile entity istiémtity and, for a node, its degree (or the list
of neighbor identities). Any other knowledge (e.g., thatatumber of nodes, network diameter, the total
number of mobile entities, partial maps of the network,)eie global knowledge. Many results illustrate
the impact of global knowledge on the ability and efficienéysolving network problems. For instance,
it is proved in [BFR+98] that, if an upper boumdoh the numben of nodes of a graph is known, then
a robot can explore this graph in time polynomialninusing one pebble, while without this knowledge,
O(loglogn) pebbles are necessary and sufficient. Broadcasting in reeorks is another subject where
global information significantly influences efficiency. IBIPX05] it is shown that if nodes have complete
knowledge of the network then deterministic broadcastiag lse done in tim@®(D + log®n), for n-node
radio networks with diametdd. (This result has been recently improvedd + log? n) in [KP]). On the
other hand, in [CMSO01] a lower bound 6f(nlogD) is proved on deterministic broadcasting time in radio
networks in which nodes know only their own identity. In fatie impact of global knowledge is significant
in many areas of distributed computing, as witnessed by §RPn89] where hundreds of impossibility
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results and lower bounds for distributed computing are eyswd, many of them depending on whether or
not the nodes are given exact or approximate values of glmdr@meters providing partial knowledge of
the topology of the network.

We model global knowledge, given to the nodes or to the meaitities, by aroracle Given a problen®
with the set of instances, an oracle is a functiow : I — {0,1}* that maps any instandeto a binary
string O(1). Solving problem? using oracleO consists in designing an algorithm that, given the binary
string O(1), but unaware of, returns aP-scheméor |, i.e., a sequence of instructions executed by the nodes
or the mobiles entities, solving for I. In this setting, the amount of global knowledge is measbsethe
sizeof the oracle on every instantegi.e., the length of the binary string(l). Typical questions of interest
are then: "What is the minimum size of an oracle for solvinglgem??” or "What is the minimum size
of an oracle for solvingP within some amount of time?”. The novelty and significance@wf modeling
of global knowledge is that it enables asking suglantitativequestions about the required knowledge,
regardless of whadtind of knowledge is supplied. This should be contrasted withttaditional approach
that assumes availability of particular items of globabimhation.

In this paper, we address the above quantitative questlomst &nowledge required for the exploration
problem, and prove a tight bound of roughly log@gn the size of an oracle enabling the design of an
exploration algorithm with competitive ratio strictly le¢han 2, on trees of diameter

1.1 The background of tree exploration

A robot (with unbounded memory) has to traverse all edges afralirected connected graph, using as few
edge traversals as possible. Graph exploration is most pgformed when the robot lacks some essential
information on the explored graph. In such case, the quafign exploration algorithnf is measured by
comparing its cost (number of edge traversals) to the leafjthe shortestovering walk(i.e., the shortest
path containing all edges of the graph). This ratio, max@dinver all graphs and all starting nodes, is
called thecompetitive ratia® () of algorithm 4.

Depth-First-Search has competitive ratio 2 and it was shmwiDP04] that no exploration algorithm
can beat this value for arbitrary graphs, even when provigditd an unlabeled isomorphic copy of the
explored graph with the starting node marked. It turns oat therely the absence of labels of ports and
nodes in the map is sufficient to confuse any algorithm on sgraphs, making it not better than DFS.
On the other hand, in the absence of any global informatioatsdever, beating competitive ratio 2 was
shown impossible even for the family of trees. This leadfhiduestion if competitive ratio smaller than
2 is possible to achieve for tree exploration, if the aldoritis provided with some partial information
concerning the explored environment. In [DP04] a positimsveer to this question was given in the case
of very large additional information: the robot was provddsith an unlabeled map of the tree. However,
this assumption is not very realistic. Indeed, exploratfonften used as a tool to construct a map of an
unknown network, and usually a priori information about éxglored network is much more restricted.

1.2 The problem

We consider the problem of treanount of informatiomeeded to achieve tree exploration with competitive
ratio smaller than 2. The problem is formalized as followstHe framework of tree exploration, we define
anoracleto be a functiorO from the class of all trees to the class of binary strings.c8jpally, for every
treeT, an exploration algorithm is provided with the striggT) and returns aexploration schemfor T.
Such a scheme, starting at any nogleaverses all edges of. The size of the oracle for tréeis the length

of the stringO(T). We ask what is the minimum size of an oracle for which theristexan exploration
algorithm achieving competitive ratio smaller than 2, fbtees.

2 Terminology and preliminaries

For any treeT we denote by T| the number of nodes dof, and call it thesizeof this tree. For a given
treeT and starting node, we denote bypt(T,u) the length of the shortest covering walk Bfstarting
from u, i.e., the length of the shortest pathinstarting fromu and containing all edges af. Clearly,
opt(T,u) = 2(n—1) — ecdu), wheren is the size off andecqu) is the eccentricity of the starting node
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i.e., the distance froma to the farthest leaf. Depth-First-Search ending in the fa@ahest from the starting
nodeu uses fewest edge traversals.

We assume that all ports at a nodare numbered 1,...,deg( Hence the robot can recognize already
visited nodes and traversed edges. However, it cannothieltlifference between yet unexplored edges
incident to its current position. The robot executes a gegploration schemthat, at every node, makes
one of the following decisions: take a specific already esqalcedge, or take an unexplored edge. If the
scheme decides to take an unexplored edge, the actual didimeedge belongs to an adversary, as we are
interested in worst-case performance.

We want an oracle to provide information on the topology @& #xplored tree, independently of any
labeling, hence we define it as a functionfrom the class of alunlabeledtrees to the class of binary
strings. For any string, a treeT such thatO(T) = s is calledcompatiblewith s. If a tree exploration
algorithm 4 takes the string(T) as input for any tre@, we say that? usesO.

Consider an exploration algorithrd using oracleO. For any strings in the range ofO, algorithm 4
produces an exploration scheme that explores all trees atingwith s. For any such tre& and starting
nodeu, thecost4(T,u) of this scheme, run on tréefrom the starting noda, is the worst-case number of
edge traversals taken over all of the above mentioned choican adversary. The competitive ratiodfis
defined a® (4) = sup, Oﬂég(TT’fﬂ) , where the supremum is taken over all trdeand all starting nodes
of T.

The following property will be useful for proving lower boda on the competitive ratio of exploration
algorithms. By using some technical results in [DP04], cere show that in our setting the best competitive
ratio for the class of lines is achieved by an exploratiomethm that, for any string, produces a scheme
of the following type. This type consists of simple expliwatschemes that ge steps in one direction
(unless an endpoint is met), then return and go to an endploént return and go to the other endpoint. For
any scheme of this type, this integewill be called theprobing distancef the scheme.

It turns out that an algorithm using such an exploration sehvith probing distancgan| for the line

L, of lengthn, has competitive ratio strictly less than 2iifsatisifies 0< a < ‘[37‘1

3 The upper bound

In this section, we establish the upper bound, by constrgakploration algorithn8KE(c) (for SMALL -
KNOWLEDGE-EXPLORATION(C)), for an arbitrary positive integer constamt This algorithm has com-
petitive ratio smaller than 2, and uses an ora@feof size at most magx, loglogD — c), for any tree of
diameteD. We first describe the oracle.. Fix ¢ > 0. Given a tred of diameteiD, the oracleO. outputs

a bit calledchoi ce and, ifchoi ce = 1, an integek using[log[logD]| — (c+ 3) bits. The bitchoi ce

is used by the algorithm to make a decision concerning tvesradtive ways of exploration, and the integer
kis used to obtain an approximati@yg of the diameter. LeT be any tree and latandD be, respectively,
its number of nodes and its diameter. Takguch thaD = (1— €)n. The oracle computes three constants
¢*, D* andN*, that depend only on. Then the oracle setshoi ceto 1if (e < €*)A(D > D*) A(n> N*¥),
and setxhoi ce to 0 otherwise. Ithoi ce = 1, the oracle computds= L“gﬂ? |

Given choi ce andk, Algorithm SKE(c) returns an exploration scheme. dhoi ce = 0, then this
scheme is an arbitrary DFS. Note thdtoi ce is set to 0 when the diameter of the tree is significantly
smaller than its size, or when the diameter is bounded, onvithe tree itself is small. In these particular
cases, the competitive ratio of DFS is less than 2.

We now describe the much more subtle schefaeroduced by the algorithm wherhoi ce = 1. The
condition ong in this case intuitively means that the tree is a main patlh wéry small trees attached
to it. At a nodev, the schemeX; uses ProcedurBPDFS(v) (for DOUBLING-PARTIAL -DEPTH-FIRST-
SEARCH(V)) to find the edges of the main path and to explore the smab peading fromv. The scheme
Xc usesk to compute an approximatiddg on the path’s length. Finally, the robot applies on the maithp
the previously seen scheme for lines: go at probing distéhbg/2|, whereA = @ return and go to the
endpoint of the path, return and go to the other endpointeptith. The approximatiddy of the diameter
is tight enough to guarantee good performance of the scharttéopath. On the other hand, the part of the
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tree disjoint from this path is negligible (this is impliegt the conditions of settinghoi ce to 1). These
two facts imply that the competitive ratio of schetkigis smaller than 2.

Theorem 1 Let ¢ be an arbitrary positive integer constant. Algoritt8iE(c) uses an oracle of size at
mostmax(1,loglogD — c), for any tree of diameter D, is correct and has competitiviéoramaller than 2.

4 The lower bound

This section is devoted to establishing a lower bound on ite & an oracle for which there exists an
algorithm with competitive ratio smaller than 2. This lovierund exactly matches the upper bound shown
previously, and it holds even for the class of lines.

Theorem 2 Let O be an oracle and let (h) denote the maximum of sizeslLy), fork<n. Letg:N — R
be defined by the formula(fi) = loglogn—g(n). If g is a function unbounded from above, then every
exploration algorithm using oracl® has competitive ratio at least 2.

The proofis based on the existence of two arbitrarily laeggtha; andn,, whose ratio is also arbitrarily
large, and such that the oracle outputs the same string éotvth linesL,, andL,,. Depending on the
strategy of the exploration algorithi, there is a setting of the starting nod@ one of the two lines such
that the ratio%% is arbitrarily close to 2. Thus any algorithm using oraclenust have competitive
ratio at least 2.

5 Exploration knowing the diameter

We have shown in Section 3 that very little information (l&ssn loglodD bits) is needed to beat competi-
tive ratio 2, and in fact, most of this information (all bitsaept one) concerns the value of the diam&er
itself, and is used to establish a lower bound on it. Thisalir, however, cannot be deduced frénalone,
and turns out to be crucial. In this section we prove a surgyieesult that even an algorithm that knoi@s
exactly(i.e., is provided with all[logD7 bits of it), but does not have any additional knowledge, cann
beat competitive ratio 2. Notice that a similar argumenvpsthat the exact knowledge of the numbef
nodes, with no extra information, is not enough for this msgeither.

Theorem 3 Let 4 be any tree exploration algorithm that, for every tree T, ilgeg the diameter of T as
input. Thenq has competitive ratio at least 2.
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