
HAL Id: hal-00412086
https://hal.science/hal-00412086

Submitted on 31 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration d’arbres avec oracle
Pierre Fraigniaud, David Ilcinkas, Andrzej Pelc

To cite this version:
Pierre Fraigniaud, David Ilcinkas, Andrzej Pelc. Exploration d’arbres avec oracle. AlgoTel 2006, May
2006, Trégastel, France. pp.25-28. �hal-00412086�

https://hal.science/hal-00412086
https://hal.archives-ouvertes.fr


Exploration d’arbres avec oracle

Pierre Fraigniaud1†, David Ilcinkas2† et Andrzej Pelc3

1 CNRS, LRI, Université Paris-Sud, France. E-mail :pierre@lri.fr
2 LRI, Université Paris-Sud, France. E-mail :ilcinkas@lri.fr
3 Dép. d’informatique, Univ. du Québec en Outaouais, Canada. E-mail :pelc@uqo.ca

Résuḿe. Nous étudions la quantité de connaissance nécessaire sur le réseau pour résoudre efficacement une tâche
sur celui-ci. L’impact de l’information disponible sur l’efficacité de la résolution des problèmes, comme la communi-
cation ou l’exploration, a déjà été étudié auparavant mais les hypothèses concernaient la disponibilité d’informations
particulièressur le réseau, comme sa taille, son diamètre ou une carte decelui-ci. Au contraire, notre approche estquan-
titative : nous étudions le nombre minimum de bits d’information (taille d’oracle minimum) qui doivent être fournis à
l’algorithme pour effectuer une tâche avec une certaine efficacité.

Nous illustrons cette approche quantitative de l’information disponible par le problème de l’exploration d’arbres.Une
entité mobile (robot) doit traverser toutes les arêtes d’un arbre inconnu, en utilisant aussi peu de traversées d’arêtes que
possible. La qualité d’un algorithme d’explorationA est mesuré par sonrapport compétitif, i.e., par comparaison de
son coût (nombre de traversées d’arêtes) à la longueur du plus court chemin contenant toutes les arêtes de l’arbre.Le
parcours en profondeur d’abord a un rapport compétitif de 2et en l’absence d’information sur l’arbre aucun algorithme
ne peut faire mieux.
Nous déterminons le nombre minimal de bits d’information qui doit être donné à un algorithme d’exploration afin
d’obtenir un rapport compétitif strictement plus petit que 2. Notre résultat principal établit un seuil exact sur lataille
de l’oracle, qui est approximativement log logD bits, oùD est le diamètre de l’arbre. Plus précisément, pour toute
constantec, nous construisons un algorithme d’exploration de rapportcompétitif plus petit que 2, utilisant un oracle
de taille au plus log logD�c, et nous montrons que tout algorithme utilisant un oracle detaille log logD�g(D), pour
toute fonctiong non bornée supérieurement, a un rapport compétitif au moins égal à 2.

Keywords: algorithme, exploration, oracle, arbre, robot.

1 Introduction
For many network problems (such as leader election, minimumspanning tree, rendezvous, wakeup, broad-
casting, etc.), the quality of the algorithmic solutions often depends on the amount of knowledge given to
nodes of the network, or given to mobile entities moving in the network, about its topology.Local knowl-
edge given to every node and/or to every mobile entity is its identity and, for a node, its degree (or the list
of neighbor identities). Any other knowledge (e.g., the total number of nodes, network diameter, the total
number of mobile entities, partial maps of the network, etc.) is global knowledge. Many results illustrate
the impact of global knowledge on the ability and efficiency of solving network problems. For instance,
it is proved in [BFR+98] that, if an upper bound ˆn on the numbern of nodes of a graph is known, then
a robot can explore this graph in time polynomial in ˆn, using one pebble, while without this knowledge,
Θ(loglogn) pebbles are necessary and sufficient. Broadcasting in radionetworks is another subject where
global information significantly influences efficiency. In [GPX05] it is shown that if nodes have complete
knowledge of the network then deterministic broadcasting can be done in timeO(D+ log3n), for n-node
radio networks with diameterD. (This result has been recently improved toO(D+ log2 n) in [KP]). On the
other hand, in [CMS01] a lower bound ofΩ(nlogD) is proved on deterministic broadcasting time in radio
networks in which nodes know only their own identity. In fact, the impact of global knowledge is significant
in many areas of distributed computing, as witnessed by [FR03, Lyn89] where hundreds of impossibility

†Supported by the projects PairAPair of the ACI Masses de Données, and FRAGILE of the ACI Sécurité Informatique. Additional
support from the INRIA project ”Grand Large”.



Pierre Fraigniaud, David Ilcinkas et Andrzej Pelc

results and lower bounds for distributed computing are surveyed, many of them depending on whether or
not the nodes are given exact or approximate values of globalparameters providing partial knowledge of
the topology of the network.

We model global knowledge, given to the nodes or to the mobileentities, by anoracle. Given a problemP
with the set of instancesI , an oracle is a functionO : I 7! f0;1g� that maps any instanceI to a binary
stringO(I). Solving problemP using oracleO consists in designing an algorithm that, given the binary
stringO(I), but unaware ofI , returns aP -schemefor I , i.e., a sequence of instructions executed by the nodes
or the mobiles entities, solvingP for I . In this setting, the amount of global knowledge is measuredby the
sizeof the oracle on every instanceI , i.e., the length of the binary stringO(I). Typical questions of interest
are then: ”What is the minimum size of an oracle for solving problemP?” or ”What is the minimum size
of an oracle for solvingP within some amount of time?”. The novelty and significance ofour modeling
of global knowledge is that it enables asking suchquantitativequestions about the required knowledge,
regardless of whatkind of knowledge is supplied. This should be contrasted with thetraditional approach
that assumes availability of particular items of global information.

In this paper, we address the above quantitative questions about knowledge required for the exploration
problem, and prove a tight bound of roughly loglogD on the size of an oracle enabling the design of an
exploration algorithm with competitive ratio strictly less than 2, on trees of diameterD.

1.1 The background of tree exploration
A robot (with unbounded memory) has to traverse all edges of an undirected connected graph, using as few
edge traversals as possible. Graph exploration is most often performed when the robot lacks some essential
information on the explored graph. In such case, the qualityof an exploration algorithmA is measured by
comparing its cost (number of edge traversals) to the lengthof the shortestcovering walk(i.e., the shortest
path containing all edges of the graph). This ratio, maximized over all graphs and all starting nodes, is
called thecompetitive ratioR (A) of algorithmA .

Depth-First-Search has competitive ratio 2 and it was shownin [DP04] that no exploration algorithm
can beat this value for arbitrary graphs, even when providedwith an unlabeled isomorphic copy of the
explored graph with the starting node marked. It turns out that merely the absence of labels of ports and
nodes in the map is sufficient to confuse any algorithm on somegraphs, making it not better than DFS.
On the other hand, in the absence of any global information whatsoever, beating competitive ratio 2 was
shown impossible even for the family of trees. This leads to the question if competitive ratio smaller than
2 is possible to achieve for tree exploration, if the algorithm is provided with some partial information
concerning the explored environment. In [DP04] a positive answer to this question was given in the case
of very large additional information: the robot was provided with an unlabeled map of the tree. However,
this assumption is not very realistic. Indeed, explorationis often used as a tool to construct a map of an
unknown network, and usually a priori information about theexplored network is much more restricted.

1.2 The problem
We consider the problem of theamount of informationneeded to achieve tree exploration with competitive
ratio smaller than 2. The problem is formalized as follows. In the framework of tree exploration, we define
anoracle to be a functionO from the class of all trees to the class of binary strings. Specifically, for every
treeT, an exploration algorithm is provided with the stringO(T) and returns anexploration schemefor T.
Such a scheme, starting at any nodeu, traverses all edges ofT. The size of the oracle for treeT is the length
of the stringO(T). We ask what is the minimum size of an oracle for which there exists an exploration
algorithm achieving competitive ratio smaller than 2, for all trees.

2 Terminology and preliminaries
For any treeT we denote byjTj the number of nodes ofT, and call it thesizeof this tree. For a given
treeT and starting nodeu, we denote byopt(T;u) the length of the shortest covering walk ofT starting
from u, i.e., the length of the shortest path inT starting fromu and containing all edges ofT. Clearly,
opt(T;u) = 2(n�1)�ecc(u), wheren is the size ofT andecc(u) is the eccentricity of the starting nodeu,



Exploration d’arbres avec oracle

i.e., the distance fromu to the farthest leaf. Depth-First-Search ending in the leaffarthest from the starting
nodeu uses fewest edge traversals.

We assume that all ports at a nodev are numbered 1,...,deg(v). Hence the robot can recognize already
visited nodes and traversed edges. However, it cannot tell the difference between yet unexplored edges
incident to its current position. The robot executes a givenexploration schemethat, at every nodev, makes
one of the following decisions: take a specific already explored edge, or take an unexplored edge. If the
scheme decides to take an unexplored edge, the actual choiceof the edge belongs to an adversary, as we are
interested in worst-case performance.

We want an oracle to provide information on the topology of the explored tree, independently of any
labeling, hence we define it as a functionO from the class of allunlabeledtrees to the class of binary
strings. For any strings, a treeT such thatO(T) = s is calledcompatiblewith s. If a tree exploration
algorithmA takes the stringO(T) as input for any treeT, we say thatA usesO.

Consider an exploration algorithmA using oracleO. For any strings in the range ofO, algorithmA
produces an exploration scheme that explores all trees compatible withs. For any such treeT and starting
nodeu, thecostA(T;u) of this scheme, run on treeT from the starting nodeu, is the worst-case number of
edge traversals taken over all of the above mentioned choices of an adversary. The competitive ratio ofA is
defined asR (A) = supT;u A(T;u)

opt(T;u) ; where the supremum is taken over all treesT and all starting nodesu
of T.

The following property will be useful for proving lower bounds on the competitive ratio of exploration
algorithms. By using some technical results in [DP04], one can show that in our setting the best competitive
ratio for the class of lines is achieved by an exploration algorithm that, for any strings, produces a scheme
of the following type. This type consists of simple exploration schemes that gox steps in one direction
(unless an endpoint is met), then return and go to an endpoint, then return and go to the other endpoint. For
any scheme of this type, this integerx will be called theprobing distanceof the scheme.

It turns out that an algorithm using such an exploration scheme with probing distancebαn
 for the line

Ln of lengthn, has competitive ratio strictly less than 2 ifα satisifies 0< α � p
3�1
2 .

3 The upper bound
In this section, we establish the upper bound, by constructing exploration algorithmSKE(c) (for SMALL -
KNOWLEDGE-EXPLORATION(c)), for an arbitrary positive integer constantc. This algorithm has com-
petitive ratio smaller than 2, and uses an oracleOc of size at most max(1; log logD� c), for any tree of
diameterD. We first describe the oracleOc. Fix c> 0. Given a treeT of diameterD, the oracleOc outputs
a bit calledchoice and, ifchoice= 1, an integerk usingdlogdlogDee� (c+3) bits. The bitchoice
is used by the algorithm to make a decision concerning two alternative ways of exploration, and the integer
k is used to obtain an approximationD0 of the diameter. LetT be any tree and letn andD be, respectively,
its number of nodes and its diameter. Takeε such thatD = (1� ε)n. The oracle computes three constants
ε�, D� andN�, that depend only onc. Then the oracle setschoice to 1 if (ε < ε�)^ (D �D�)^ (n� N�);
and setschoice to 0 otherwise. Ifchoice= 1, the oracle computesk= b dlogDe

2c+3 
.
Given choice and k, Algorithm SKE(c) returns an exploration scheme. Ifchoice = 0, then this

scheme is an arbitrary DFS. Note thatchoice is set to 0 when the diameter of the tree is significantly
smaller than its size, or when the diameter is bounded, or when the tree itself is small. In these particular
cases, the competitive ratio of DFS is less than 2.

We now describe the much more subtle schemeXc produced by the algorithm whenchoice= 1. The
condition onε in this case intuitively means that the tree is a main path with very small trees attached
to it. At a nodev, the schemeXc uses ProcedureDPDFS(v) (for DOUBLING-PARTIAL -DEPTH-FIRST-
SEARCH(v)) to find the edges of the main path and to explore the small trees pending fromv. The scheme
Xc usesk to compute an approximationD0 on the path’s length. Finally, the robot applies on the main path

the previously seen scheme for lines: go at probing distancebλD0=2
, whereλ= p
3�1
2 , return and go to the

endpoint of the path, return and go to the other endpoint of the path. The approximationD0 of the diameter
is tight enough to guarantee good performance of the scheme on this path. On the other hand, the part of the



Pierre Fraigniaud, David Ilcinkas et Andrzej Pelc

tree disjoint from this path is negligible (this is implied by the conditions of settingchoice to 1). These
two facts imply that the competitive ratio of schemeXc is smaller than 2.

Theorem 1 Let c be an arbitrary positive integer constant. AlgorithmSKE(c) uses an oracle of size at
mostmax(1; log logD�c), for any tree of diameter D, is correct and has competitive ratio smaller than 2.

4 The lower bound
This section is devoted to establishing a lower bound on the size of an oracle for which there exists an
algorithm with competitive ratio smaller than 2. This lowerbound exactly matches the upper bound shown
previously, and it holds even for the class of lines.

Theorem 2 LetO be an oracle and let f(n) denote the maximum of sizes ofO(Lk), for k� n. Let g: IN 7! IR
be defined by the formula f(n) = loglogn� g(n). If g is a function unbounded from above, then every
exploration algorithm using oracleO has competitive ratio at least 2.

The proof is based on the existence of two arbitrarily large lengthsn1 andn2, whose ratio is also arbitrarily
large, and such that the oracle outputs the same string for the two linesLn1 andLn2. Depending on the
strategy of the exploration algorithmA , there is a setting of the starting nodeu in one of the two lines such

that the ratio
A(Lni ;u)

opt(Lni ;u) is arbitrarily close to 2. Thus any algorithm using oracleO must have competitive

ratio at least 2.

5 Exploration knowing the diameter
We have shown in Section 3 that very little information (lessthan loglogD bits) is needed to beat competi-
tive ratio 2, and in fact, most of this information (all bits except one) concerns the value of the diameterD
itself, and is used to establish a lower bound on it. This extra bit, however, cannot be deduced fromD alone,
and turns out to be crucial. In this section we prove a surprising result that even an algorithm that knowsD
exactly(i.e., is provided with alldlogDe bits of it), but does not have any additional knowledge, cannot
beat competitive ratio 2. Notice that a similar argument proves that the exact knowledge of the numbern of
nodes, with no extra information, is not enough for this purpose either.

Theorem 3 LetA be any tree exploration algorithm that, for every tree T, is given the diameter of T as
input. ThenA has competitive ratio at least 2.

References
[BFR+98] M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of a pebble: Exploring

and mapping directed graphs, Proc. 30th Ann. Symp. on Theoryof Computing (STOC 1998), 269-278.

[CMS01] A.E.F. Clementi, A. Monti and R. Silvestri, Selective families, superimposed codes, and broad-
casting on unknown radio networks, Proc. 12th Ann. ACM-SIAMSymposium on Discrete Algorithms
(SODA 2001), 709-718.

[DP04] A. Dessmark and A. Pelc, Optimal graph exploration without good maps, Theoretical Computer
Science 326 (2004), 343-362.

[FR03] F. Fich and E. Ruppert. Hundreds of impossibility results for distributed computing, Distributed
Computing, 16 (2003), 121–163.

[GPX05] L. Gasieniec, D. Peleg and Q. Xin, Faster communication in known topology radio networks,
Proc. 24th Annual ACM Symposium on Principles of Distributed Computing (PODC 2005), 129-137.

[KP] D. Kowalski and A. Pelc, Optimal deterministic broadcasting in known topology radio networks,
manuscript.

[Lyn89] N. Lynch. A hundred impossibility proofs for distributed computing. Proc. 8th Ann. ACM Sym-
posium on Principles of Distributed Computing (PODC 1989),1-28.


