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. We give some new examples of numerical schemes for which our results apply.

Introduction

The aim of this article is to study the stability of finite difference approximations for hyperbolic initial-boundary value problems. This problem was addressed in the fundamental contributions [START_REF] Kreiss | Stability theory for difference approximations of mixed initial boundary value problems[END_REF][START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF] for one-dimensional problems, and in [START_REF] Michelson | Stability theory of difference approximations for multidimensional initial-boundary value problems[END_REF] for multidimensional problems. The main results of these articles characterize stability in terms of a spectral condition, the so-called uniform Kreiss-Lopatinskii condition. It is not so hard to see that the latter is a necessary condition for stability of the finite difference approximation. The difficult part of the theory is to show that it is also a sufficient condition. The approach of [START_REF] Kreiss | Stability theory for difference approximations of mixed initial boundary value problems[END_REF][START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF][START_REF] Michelson | Stability theory of difference approximations for multidimensional initial-boundary value problems[END_REF] is similar to the works [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF][START_REF] Sakamoto | Mixed problems for hyperbolic equations. I. Energy inequalities[END_REF] which were devoted to the analogous characterization for hyperbolic partial differential equations. We also refer to [START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF][START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF] for a detailed description of the theory.

In the works [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF][START_REF] Michelson | Stability theory of difference approximations for multidimensional initial-boundary value problems[END_REF] some dissipation assumptions are made on the finite difference schemes, which restricts the class of numerical schemes to which the theory applies. Moreover the underlying partial differential equation that we approximate is not dissipative. Therefore the result we aim at is to prove that the uniform Kreiss-Lopatinskii condition is sufficient for stability while considering the widest possible class of numerical schemes. In particular we wish the theory to cover the case of numerical schemes with a very low dissipation. This is of particular relevance in several space dimensions where some problems are only weakly well-posed and numerical approximations should reproduce this feature: dissipation should not damp weak stability.

In one space dimension, the generalization of the results of [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF] was initiated in our former work [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF]. However, the main result of [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] could not cover all possible situations due to some technical restrictions which we did not fully understand at that time. In this article we give some examples of numerical schemes that do not enter the framework of [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF], nor do they enter the framework of [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF]. This makes a generalization of [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] necessary in order to cover all possible cases. The present article generalizes the results of [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] and gives an optimal characterization of stability. Our result is optimal in the following sense. For finite difference schemes, the characterization of stability by means of the uniform Kreiss-Lopatinskii condition relies on a suitable discrete block structure. The only assumption that we make here is that the discrete block structure is satisfied. On the opposite, the technical assumptions of [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF][START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] restricted either the size or the form of the blocks. The present article considers all possible blocks, including some for which new symmetrizers are required. Our main contribution is the construction of symmetrizers in all possible cases, which, in our opinion, shows the full power of Kreiss' approach. We thus complete the stability theory for one-dimensional finite difference approximations. We postpone the extension of our results in several space dimensions to a future work. Since the stability theory for numerical schemes is closely linked to the stability theory for partial differential equations, we hope that our new construction of symmetrizers may be useful in other contexts.

No previous knowledge of our work [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] is required since the results are recalled -though without proof -when needed. We let I d denote the identity matrix of size d, without mentioning the dimension when no confusion is possible. If H 1 , H 2 ∈ H d , the notation H 1 ≥ H 2 is used when the inequality x * (H 1 -H 2 ) x ≥ 0 holds for all x ∈ C d . The norm of a vector x ∈ C d is |x| := (x * x) 1/2 . The corresponding norm on M d (C) is denoted • . Eventually, we let 2 denote the set of square integrable sequences, without mentioning the indeces of the sequences. Sequences may be valued in C k for some integer k.

Main result

We consider a hyperbolic initial boundary value problem in one space dimension     

∂ t u + A ∂ x u = F (t, x) , (t, x) ∈ R + × R + , B u(t, 0) = g(t) , t ∈ R + , u(0, x) = f (x) , x ∈ R + , (1) 
where A ∈ M N (R) is diagonalizable with real eigenvalues, and B ∈ M N+,N (R) with N + the number of positive eigenvalues of A counted with their multiplicity. We introduce a finite difference discretization of [START_REF] Baumgärtel | Analytic perturbation theory for matrices and operators[END_REF]. Let ∆x, ∆t > 0 denote a space and a time step where the ratio λ := ∆t/∆x is a fixed positive constant, and let p, q, r, s be some integers. The solution to [START_REF] Baumgärtel | Analytic perturbation theory for matrices and operators[END_REF] is approximated by a sequence (U n j ) defined for n ∈ N, and j ∈ 1 -r + N. For j = 1 -r, . . . , 0, U n j approximates the trace u(n ∆t, 0) on the boundary {x = 0}, and possibly the trace of normal derivatives. The boundary meshes [j ∆x, (j + 1) ∆x[, j = 1 -r, . . . , 0, shrink to {0} as ∆x tends to 0, so the formal continuous limit problem as ∆x tends to 0 is set on the half-line R + as for [START_REF] Baumgärtel | Analytic perturbation theory for matrices and operators[END_REF].

We consider finite difference approximations of (1) that read 1

               U n+1 j = s σ=0 Q σ U n-σ j + ∆t F n j , j ≥ 1 , n ≥ s , U n+1 j = s σ=-1 B j,σ U n-σ 1 + g n+1 j , j = 1 -r, . . . , 0 , n ≥ s , U n j = f n j , j ≥ 1 -r , n = 0, . . . , s , (2) 
where the shift operators Q σ and B j,σ are given by

Q σ := p =-r A ,σ T , B j,σ := q =0 B ,j,σ T , T U m k := U m k+ . (3) 
In [START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF], all matrices A ,σ , B ,j,σ belong to M N (R). They may depend on λ but are independent of ∆t. We keep ∆t as a free small parameter while ∆x is given by the relation ∆x = ∆t/λ. We recall the following definition:

Definition 1 (Strong stability [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF]). The finite difference approximation (2) is said to be strongly stable if there exists a constant C 0 such that for all γ > 0 and all ∆t ∈ ]0, 1], the solution (U n j ) to (2) with vanishing initial data (f 0 = • • • = f s = 0) satisfies the estimate γ γ ∆t + 1 (4) The uniform power boundedness of A (κ) for κ ∈ S 1 is a necessary and sufficient condition for the 2 -stability of the discretized Cauchy problem, see [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]chapter III.1] or [6, chapter 5]. The aim of this article is to give necessary and/or sufficient conditions on the symbol (4) and on the boundary conditions in (2) so that the scheme ( 2) is strongly stable in the sense of Definition 1.

The resolvent equation is formally obtained from (2) by applying a Laplace transform in time, see [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF]. It reads

           w j - s σ=0 z -σ-1 Q σ w j = F j , j ≥ 1 , w j - s σ=-1
z -σ-1 B j,σ w 1 = g j , j = 1 -r, . . . , 0 ,

where z ∈ U , (F j ) ∈ 2 , and g 1-r , . . . , g 0 ∈ C N . It is convenient to rewrite the resolvent equation [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF] as an evolution equation for the sequence (w j ). Assumption 1 below is crucial in order to achieve this transformation. For = -r, . . . , p, let us therefore define the matrices

∀ z ∈ C \ {0} , A (z) := δ ,0 I - s σ=0 z -σ-1 A ,σ , (6) 
where δ 1, 2 is the Kronecker symbol. Then as in [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF], we make the following assumption:

Assumption 1. The matrices A -r (z) and A p (z) are invertible for all z ∈ U , or equivalently for all z in some open neighborhood V of U .

We first consider the case q < p. In that case, all the w j 's involved in the boundary conditions for the resolvent equation ( 5) are coordinates of the augmented vector 2 W 1 := (w p , . . . , w 1-r ). Using Assumption 1, we can define a matrix M(z) that is holomorphic on some open neighborhood

V of U ∀ z ∈ V , M(z) :=      -A p (z) -1 A p-1 (z) . . . . . . -A p (z) -1 A -r (z) I 0 . . . 0 0 . . . . . . . . . 0 0 I 0      ∈ M N (p+r) (C) . (7) 
Using ( 3) and ( 6), we can rewrite the resolvent equation ( 5) as an induction relation for the augmented vector W j := (w j+p-1 , . . . , w j-r ). This induction relation reads

W j+1 = M(z) W j + F j , j ≥ 1 , B(z) W 1 = g , (8) 
2 Vectors are written indifferently in rows or columns to simplify the redaction.

with some suitable source terms ( F j ), g. It is easy to check that the matrix B(z) ∈ M N r,N (p+r) that encodes the boundary conditions in (8) depends holomorphically on z ∈ C \ {0} and has maximal rank N r for all z. The exact expression of the matrix B(z) can be easily obtained from ( 5) and (3) but is not very relevant here so we omit it.

Let us now treat the case q ≥ p. In that case, we can still write the resolvent equation under the form of a one-step induction relation up to defining W j := (w j+q , . . . , w j-r ), j ≥ 1, and

M(z) :=        -A p (z) -1 A p-1 (z) . . . -A p (z) -1 A -r (z) 0 . . . 0 I 0 . . . 0 0 0 . . . I 0 0 . . . 0 I 0        ∈ M N (q+r+1) (C) .
The definition of B(z) ∈ M N r,N (q+r+1) varies from the previous case but this matrix keeps a maximal rank N r for all z and is still holomorphic on C \ {0}. This equivalent form of the resolvent equation varies from what was done in [7, page 672]. In our approach, we can easily verify that the matrix B(z) has maximal rank for all z ∈ U . This is important in view of the so-called uniform Kreiss-Lopatinskii condition defined below.

For simplicity, we shall deal from now on with the case q < p but our proofs can be easily extended to the case q ≥ p.

Theorem 1. Let Assumption 1 be satisfied. Assume moreover that the symbol A defined by (4) satisfies the two following conditions

• Uniform power boundedness: there exists a constant C 1 > 0 such that for all κ ∈ S 1 and all

n ∈ N, A (κ) n ≤ C 1 , • Geometric regularity of eigenvalues in S 1 : if κ ∈ S 1 and z ∈ S 1 ∩ sp(A (κ)
) has algebraic multiplicity α, then there exist some functions λ 1 (κ), . . . , λ α (κ) that are holomorphic in a neighborhood W of κ in C and that satisfy

λ 1 (κ) = • • • = λ α (κ) = z , det z I -A (κ) = ϑ(κ, z) α j=1 z -λ j (κ) ,
with ϑ a holomorphic function of (κ, z) in some neighborhood of (κ, z) such that ϑ(κ, z) = 0. Furthermore, there exist some vectors E 1 (κ), . . . , E α (κ) ∈ C N (s+1) that depend holomorphically on κ ∈ W , that are linearly independent for all κ ∈ W , and that satisfy

∀ κ ∈ W , ∀ j = 1, . . . , α , A (κ) E j (κ) = λ j (κ) E j (κ) .
For z ∈ U , we let E s (z) denote the generalized eigenspace associated with eigenvalues of M(z) in D. Then E s (z) has constant dimension N r for all z ∈ U and E s defines a holomorphic vector bundle over U . This vector bundle that can be extended continuously in a unique way over U . We let E s (z) denote this continuous extension for z ∈ S 1 (= ∂U ).

In addition to all previous assumptions, assume that for all z ∈ U we have E s (z)∩ KerB(z) = {0}. In what follows this condition is referred to as the uniform Kreiss-Lopatinskii condition. Then the scheme (2) is strongly stable in the sense of Definition 1.

Theorem 1 shows that proving stability for the numerical scheme (2) follows the same path as when one studies multidimensional hyperbolic initial boundary value problems, see for instance [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF][START_REF] Sakamoto | Mixed problems for hyperbolic equations. I. Energy inequalities[END_REF][START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF][START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF] and above all [11, appendix C]. More precisely, we first make the assumption that the boundary is noncharacteristic. This is Assumption 1. Then two assumptions are made on the discretized hyperbolic operator.

• The uniform power boundedness of the matrices A (κ) is a stability assumption for the discretized Cauchy problem. This condition plays the same role as hyperbolicity for the continuous problem. Let us observe that for all κ ∈ S 1 , the eigenvalues of the matrix A (κ) necessarily belong to D ∪ S 1 . Moreover, eigenvalues of A (κ) that belong to S 1 are semi-simple.

• The geometric regularity assumption makes the behavior of eigenvalues and eigenvectors precise near a point κ ∈ S 1 where the spectrum of A (κ) meets S 1 . This assumption is similar to the geometric regularity condition that characterizes the block structure for continuous problems, see [11, appendix C]. Let us observe that the matrix

1 + Υ(κ) Υ(κ) 0 1 + Υ(κ) , Υ(κ) := (κ -κ -1 ) 2 4 ,
is holomorphic with respect to κ ∈ C \ {0}, and is uniformly power bounded for κ ∈ S 1 . However 1 is not a geometrically regular eigenvalue near κ = 1. Geometric regularity does not automatically follow from uniform power boundedness.

The assumptions on A enable us to extend the stable bundle of M from U to U in a unique way. As in the theory for multidimensional hyperbolic initial-boundary value problems, this result is independent of the boundary conditions that are considered in the scheme [START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF]. Once this first result is known, then strong stability for (2) is encoded in the so-called uniform Kreiss-Lopatinskii condition. This condition can be equivalently formulated as a determinant condition by choosing a basis of E s (z) and a basis of Ker B(z). Let us observe that this characterization of strong stability makes sense only when B(z) has maximal rank for all z ∈ U , otherwise the dimensions of E s (z) and Ker B(z) do not match.

Compared to the previous works [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF][START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF], Theorem 1 drops the technical assumptions that were made on the symbol A , see [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF]Assumptions 5.2 and 5.4] or the less restrictive conditions (i), (ii), (iii) of [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF]Theorem 2.7]. In particular, Theorem 1 makes precise the structural assumptions that are needed to prove the continuous extension of the stable bundle of M. As a corollary of our analysis, if M satisfies the discrete block structure recalled in Theorem 2 below, then the stable bundle of M extends continuously from U to U .

Eventually, we observe that Theorem 1 is optimal if one wishes to characterize strong stability by the uniform Kreiss-Lopatinskii condition. More precisely, when the energy method is not available, showing strong stability for (2) requires the construction of a so-called Kreiss symmetrizer. Such construction relies on the discrete block structure which is recalled in Theorem 2. As proved in [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF]Theorem 2.4], the discrete block structure is satisfied if and only if the structural assumptions of Theorem 1 hold for A . Consequently, one could rephrase Theorem 1 by assuming only that the discrete block structure holds for M.

The rest of this article is organized as follows: in section 3, we make some preliminary reductions which show that the proof of Theorem 1 reduces to the construction of a so-called K-symmetrizer. The arguments of section 3 use some results of our former work [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] which are recalled for the reader's convenience. Then in sections 4-8, we give a complete construction of the K-symmetrizer. Our results generalize the constructions in [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF][START_REF] Sakamoto | Mixed problems for hyperbolic equations. I. Energy inequalities[END_REF][START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF][START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF] which were devoted either to the hyperbolic case with no dissipation or to scalar blocks. Our new construction depends on the size of the block we consider and on its dissipation index. This notion is the crucial novelty compared to [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] and is introduced in section 4. We are able to construct a K-symmetrizer for any dissipative block, while the construction in [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] was restricted to some specific dissipative 2 × 2 blocks. Eventually, section 9 provides with an example of a numerical scheme that produces a dissipative block of arbitrarily large size. No existing theory was able to prove strong stability for such a scheme. Some results of matrix theory are used throughout the article, some of which are proved in appendix A. Eventually, the reader could reasonably ask whether new symmetrizers are really needed to deal with the dissipative blocks considered in this article. At first glance one might hope that the constructions in [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF] would work even though they had not been designed for this purpose. This question is discussed in appendix B. In particular, appendix B shows that Kreiss' construction does not apply for the dissipative blocks that we consider. This makes our work both new and relevant.

Preliminary reductions

3.1. The discrete block structure. We first recall the following Theorem that was proved in our former work [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF]: [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF]). Let Assumption 1 be satisfied and assume furthermore that the symbol A defined by (4) satisfies the two conditions stated in Theorem 1, that is uniform power boundedness and geometric regularity of eigenvalues in S 1 .

Theorem 2 ([
Then the matrix M defined by [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF] satisfies the so-called discrete block structure condition:

(1) for all z ∈ U , sp(M(z))

∩ S 1 = ∅, (2) 
for all z ∈ U , there exists an open neighborhood O of z in C, there exists a holomorphic function T defined on O with values in Gl N (p+r) (C) such that

∀ z ∈ O , T (z) -1 M(z) T (z) = diag (M 1 (z), . . . , M L (z)) ,
where the number L of diagonal blocks and the size m of each block M do not depend on z ∈ O, and where each block satisfies one of the following properties:

• there exists ε > 0 such that for all z ∈ O, M (z) * M (z) ≥ (1 + ε) I, • there exists ε > 0 such that for all z ∈ O, M (z) * M (z) ≤ (1 -ε) I, • m = 1, z and M (z) belong to S 1 , and z M (z) M (z) ∈ R \ {0}, • m ≥ 2, z ∈ S 1 and M (z) has the form M (z) = κ       1 1 0 0 0 . . . . . . 0 . . . . . . . . . 1 0 . . . 0 1       , κ ∈ S 1 .
Moreover the lower left coefficient α of M (z) is such that for all ω ∈ C with Re ω > 0, any root ζ of the equation ζ m = κ α z ω satisfies Re ζ = 0. We refer to the blocks M above as being of the first, second, third or fourth type.

The first point in Theorem 2 shows that for z ∈ U , M(z) has no eigenvalue on S 1 . The eigenvalues split in two groups: the stable eigenvalues belonging to D and the unstable eigenvalues belonging to U . It is then clear that the generalized eigenspace E s (z) associated with the stable eigenvalues has constant dimension for all z in the connected set U . It varies holomorphically with respect to z because M depends holomorphically on z. The dimension of E s (z) is computed as in [7, Lemma 5.2] by letting z tend to infinity, and we obtain that the dimension equals N r.

Using the discrete block structure condition, we want to prove that E s (z) extends by continuity as z ∈ U tends to the unit circle S 1 . Then we also want to prove that the uniform Kreiss-Lopatinskii condition -which is defined after first extending the stable subspace for z ∈ S 1 -implies strong stability for [START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF]. Following [START_REF] Métivier | Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems[END_REF], it turns out that a single argument can give both results at the same time. This requires the introduction of so-called K-symmetrizers, which is done in the following paragraph.

3.2. Symmetrizers and continuity of the stable subspace. We recall the following terminology that was introduced in [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] for numerical schemes and that is adapted from [START_REF] Métivier | Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems[END_REF].

Definition 2 (K-symmetrizer). Let z ∈ U , and let M be a function defined on some neighborhood O of z with values in M m (C) for some integer m. Then M is said to admit a K-symmetrizer at z if there exists a decomposition C m = E s ⊕ E u , with associated projectors (π s , π u ), such that for all K ≥ 1, there exists a neighborhood O K of z, there exists a C ∞ function S K on O K with values in H m , and there exists a constant c K > 0 such that the following properties hold for all z ∈ O K ∩ U :

• M (z) * S K (z) M (z) -S K (z) ≥ c K (|z| -1)/|z| I, • for all W ∈ C m , W * S K (z) W ≥ K 2 |π u W | 2 -|π s W | 2 .
The following result was also proved in [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF].

Theorem 3 ([4]

). Let the assumptions of Theorem 1 be satisfied. Assume moreover that the matrix M defined by (7) admits a K-symmetrizer at all points of U and that the dimension of the corresponding vector space E s in the decomposition of C N (p+r) equals N r at all points of U .

Then the holomorphic vector bundle E s defined over U can be extended in a unique way as a continuous vector bundle over U . If moreover the uniform Kreiss-Lopatinskii condition holds, then the scheme (2) is strongly stable.

In order to prove Theorem 1, we thus only need to construct a K-symmetrizer for M at all points z of U with a vector space E s of dimension N r. This argument is made more precise in the following paragraph.

3.3.

A sufficient result for proving Theorem 1. Let us first state without proof the following result which is the key point of our work.

Theorem 4. Let z, κ ∈ S 1 , let m ≥ 2 be an integer. Let M be a holomorphic function defined on a neighborhood O of z with values in M m (C), that satisfies the following three conditions:

• for all z ∈ O ∩ U , sp(M (z)) ∩ S 1 = ∅, • M (z) has the form M (z) = κ       1 1 0 0 0 . . . . . . 0 . . . . . . . . . 1 0 . . . 0 1      
.

• The lower left coefficient α of M (z) is such that for all ω ∈ C with Re ω > 0, any root ζ of the equation ζ m = κ α z ω satisfies Re ζ = 0. Then up to shrinking O, the number of stable eigenvalues of M (z) when z ∈ O ∩ U does not depend on z. Letting µ denote this number, M admits a K-symmetrizer at z with a corresponding vector space E s of dimension µ.

The proof of Theorem 4 is detailed in sections 4-8. We show now why the result of Theorem 4 is sufficient for proving Theorem 1.

Proof of Theorem 1 using Theorem 4. Theorem 4 shows that blocks of the fourth type in the discrete block structure admit a K-symmetrizer. Moreover, we have already shown in our former work [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] that blocks of the first, second and third type admit a K-symmetrizer. As a matter of fact, the analysis for these blocks is far easier than for blocks of the fourth type and we refer to [4, page 2863] for the construction of K-symmetrizers in this case. For each type of block, the dimension of the corresponding vector space E s coincides with the number of stable eigenvalues of the block when z belongs to O ∩ U .

We now use the following two results whose proof -which is omitted here -relies on some direct applications of Definition 2.

Lemma 1. Let z ∈ U , and let M 1 , resp. M 2 , be a function defined on some neighborhood O of z with values in M m1 (C), resp. M m2 (C), for some integer m 1 , resp. m 2 . Assume that both matrices M 1 , M 2 admit a K-symmetrizer at z with vector spaces E s 1 , E s 2 of dimension µ 1 , µ 2 . Then the block diagonal matrix diag(M 1 , M 2 ) ∈ M m1+m2 (C) admits a K-symmetrizer at z with a vector space E s of dimension µ 1 + µ 2 .

Lemma 2. Let z ∈ U , and let M be a function defined on some neighborhood O of z with values in M m (C) for some integer m. Assume that there exists a C ∞ function T defined on O with values in Gl m (C) such that T -1 M T admits a K-symmetrizer at z with a vector space E s of dimension µ. Then M admits a K-symmetrizer at z with a vector space E s of dimension µ.

Combining Lemma 1, Lemma 2 and Theorem 2 above, we obtain that the matrix M defined by (7) admits a K-symmetrizer at all points z ∈ U . Moreover, the dimension of the corresponding vector space E s coincides with the number of stable eigenvalues of M(z) when z ∈ U is close to z. Therefore the dimension of E s equals N r. We can apply Theorem 3 above, and the result of Theorem 1 follows.

The following sections are devoted to the proof of Theorem 4, or in other words to the construction of a K-symmetrizer for a block of the fourth type.

The dissipation index

From now on, we consider a matrix M (z) ∈ M m (C) satisfying all the assumptions of Theorem 4. There is no loss of generality in assuming that the neighborhood O of z is an open disk of center z and of radius r ≤ 1. Consequently O ∩ U is an open connected set. We first compute the number of stable eigenvalues, that is the number of eigenvalues of M (z) in D when z belongs to O ∩ U .

For convenience, we introduce the nilpotent matrix N m , or N in short when the dimension is clear, which is defined by

N m :=       0 1 0 . . . . . . . . . . . . . . . 1 0 • • • • • • 0       ∈ M m (C) .
We warn the reader that N does not refer to the size of the matrices in ( 2) anylonger since from now on we focus on the proof of Theorem 4, which is a completely independent result.

4.1.

The number of stable eigenvalues. The following result clarifies the number of stable eigenvalues.

Proposition 1. Under the assumptions of Theorem 4, the number µ of eigenvalues of

M (z) in D does not depend on z ∈ O ∩ U . If m is even, we have µ = m 2 , α z κ = 0 and (-1) m/2 Re α z κ ≤ 0 . If m is odd, then α z/κ ∈ R \ {0} and µ =      m + 1 2 if (-1) (m-1)/2 α z/κ < 0, m -1 2 if (-1) (m-1)/2 α z/κ > 0.
Proof of Proposition 1. When z belongs to the open connected set O ∩ U , the matrix M(z) has no eigenvalue on the unit circle S 1 . Consequently, the number of eigenvalues of M(z) in D does not depend on z ∈ O ∩ U . Let us first consider the case where m is even, and m ≡ 2 (4). Then we know that for all ω ∈ C with Re ω > 0, (α z/κ) ω does not belong to the real nonpositive axis ] -∞, 0]. Otherwise, we could find a purely imaginary m-th root of (α z/κ) ω. It is easy to see that the complex number α z/κ satisfies the latter property if and only if it is non-zero and its real part is nonnegative.

In the case where m is even and m ≡ 0 (4), we find that for all ω ∈ C with Re ω > 0, (α z/κ) ω does not belong to the real nonnegative axis [0, +∞[. This is equivalent to the fact that α z/κ is non-zero and its real part is nonpositive. In both cases, the real part of (-1) m/2 α z/κ is nonpositive.

Let us now consider the case where m is odd. Then for all ω ∈ C with Re ω > 0, (α z/κ) ω does not belong to the purely imaginary axis i R. This forces α z/κ to be a non-zero real number.

Let us now compute the number µ of stable eigenvalues of M (z) when z ∈ O ∩ U . We define the characteristic polynomial

∀ (z, κ) ∈ O × C , P (z, κ) := det(M (z) -κ I) .
When z = z, we have P (z, κ) = (κ -κ) m . Moreover, the form of M (z) gives the relation

∂P ∂z (z, κ) = (-1) m+1 α κ m-1 .
Consider ε > 0 small enough. Then we compute the number µ by counting the stable eigenvalues of M ((1 + ε) z). The characteristic polynomial of the matrix M ((1 + ε) z) is P ((1 + ε) z, κ). By using Puiseux expansions theory, for which we refer to [START_REF] Baumgärtel | Analytic perturbation theory for matrices and operators[END_REF], the roots of the polynomial P ((1 + ε) z, •) admit the asymptotic expansion Let us now consider the case where m is odd, and m ≡ 1 (4). We know from the analysis above that β := α z/κ is a non-zero real number. Let us first assume that β is positive. Then there are exactly (m -1)/2 roots of negative real part among all possible m-th roots of β. If β is negative, there are (m + 1)/2 roots of negative real part among all possible m-th roots of β. Let us now assume that m is odd, and m ≡ 3 (4). If β is positive, then there are (m + 1)/2 roots of negative real part among all possible m-th roots of β. If β is negative, then there are (m -1)/2 roots of negative real part among all possible m-th roots of β. The result of Proposition 1 follows.

κ (ε) = κ 1 + ε 1/m ζ + O(ε 2/m ) , = 1 

4.2.

A new formulation of Theorem 4 in flat coordinates. As was already pointed out in [START_REF] Gustafsson | Stability theory of difference approximations for mixed initial boundary value problems[END_REF][START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF], the construction of a K-symmetrizer is tedious in the z-space because the variable z belongs to the exterior of the curved unit disk. We are going to reformulate the problem with a matrix depending on a new parameter τ that belongs to a half-plane. 

M (τ ) := i ξ I + +∞ n=1 (-1) n-1 n 1 κ M (z e τ ) -I n , (9) 
defines a holomorphic function M on a neighborhood V of 0, with values in M m (C). For all z sufficiently close to z, we have

M (z) = exp M ln z z .
Moreover, M (τ ) has no purely imaginary eigenvalue when τ ∈ V has positive real part, and the lower left coefficient of M (0) equals α z/κ.

Proof of Lemma 3. The spectral radius of the matrix M (z e τ )/κ -I is zero when τ = 0. Consequently the spectral radius of M (z e τ )/κ -I remains smaller than 1/2 when τ belongs to a small neighborhood V of 0. Then the series (9) converges normally and defines a holomorphic function M on V . The matrix M is a logarithm of M (z e τ ), see for instance [13, page 60]. When τ has positive real part, M (τ ) has no purely imaginary eigenvalue. Otherwise M (z e τ ) would have an eigenvalue on S 1 which is ruled out by the assumptions on M . It remains to compute the lower left coefficient of M (0). We make use of the following formula that is fully justified in [13, page 78]:

d exp | A B := d dζ exp(A + ζ B)| ζ=0 = exp(A) +∞ ν=0 (-1) ν (ν + 1)! (adA) ν B , (adA) B := A B -B A . ( 10 
)
Let us now differentiate the relation M (z e τ ) = exp M (τ ) with respect to τ , and evaluate at τ = 0. We obtain

z M (z) = d exp | M (0) M (0) . (11) 
Using the relation M (z) = κ (I + N ), we get

M (0) = i ξ I + N , N := m-1 k=1 (-1) k-1 k N k .
Using [START_REF] Métivier | Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems[END_REF], [START_REF] Métivier | Hyperbolic boundary value problems for symmetric systems with variable multiplicities[END_REF] reads

z M (z) -κ M (0) = κ N M (0) + +∞ ν=1 (-1) ν (ν + 1)! (adN ) ν M (0) . (12) 
Observe that N can we written as

N = N Q(N ) = Q(N ) N where Q is a polynomial. Moreover, for all B ∈ M m (C)
, the last row of N B and the first column of B N are zero. Consequently the lower left coefficient of (adN ) B is zero for all matrix B. The relation [START_REF] Michelson | Stability theory of difference approximations for multidimensional initial-boundary value problems[END_REF] thus shows that the lower left coefficient α of M (0) satisfies z α = κ α . The proof of Lemma 3 is complete.

The following result is originally due to Ralston.

Lemma 4 (Ralston [START_REF] Ralston | Note on a paper of Kreiss[END_REF]). Let M be defined by [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF]. Then up to shrinking the neighborhood V of 0 on which M is defined, there exists a holomorphic function Q defined on V with values in Gl m (C), and there exist holomorphic functions b 1 , . . . , b m on V such that for all τ ∈ V , there holds

M (τ ) := Q(τ ) -1 M (τ ) Q(τ ) = i ξ I + i N +    b 1 (τ ) 0 • • • 0 . . . . . . . . . b m (τ ) 0 • • • 0    .
Moreover, M (τ ) has no purely imaginary eigenvalue when τ has positive real part, and the function

b m satisfies b m (0) = (-i) m-1 α z/κ = 0. If m is even, then Im b m (0) ≤ 0. If m is odd, then b m (0) ∈ R.
We refer to [START_REF] Ralston | Note on a paper of Kreiss[END_REF] and [3, chapter 7] for the proof of this Lemma. The property of b m (0) follows from Proposition 1.

The number of eigenvalues of M (τ ) with negative real part does not depend on τ as long as τ has positive real part. This number coincides with the number µ of stable eigenvalues of M (z e τ ). Rephrasing Proposition 1, we have

µ = m 2 if m is even, µ =      m + 1 2 if m is odd and b m (0) < 0, m -1 2 if m is odd and b m (0) > 0. ( 13 
)
Theorem 4 is a consequence of the following analogous result in flat coordinates.

Theorem 5. Let ξ ∈ R, let m ≥ 2 be an integer. Let b 1 , . . . , b m denote some holomorphic functions on some neighborhood V of 0, that vanish at 0. Let us define a matrix M (τ ) by the formula

∀ τ ∈ V , M (τ ) := i ξ I + i N +    b 1 (τ ) 0 • • • 0 . . . . . . . . . b m (τ ) 0 • • • 0    .
Let us assume that M satisfies the following conditions:

• for all τ ∈ V with Re τ > 0, sp(M (τ )) ∩ i R = ∅, • if m is even, b m (0) = 0 and Im b m (0) ≤ 0, • if m is odd, b m (0) ∈ R \ {0}.
Let the integer µ be defined by [START_REF] Mneimné | Introduction à la théorie des groupes de Lie classiques[END_REF], and introduce the decomposition

∀ W ∈ C m , W = W s W u , W s ∈ C µ , W u ∈ C m-µ .
Then for all K ≥ 1, there exists a neighborhood V K of 0, there exists a C ∞ function S K on V K with values in H m , and there exists a constant c K > 0 such that the following properties hold:

• for all τ ∈ V K with Re τ ≥ 0, Re (S K (τ ) M (τ )) ≥ c K (Re τ ) I, • for all τ ∈ V K and for all W ∈ C m , W * S K (τ ) W ≥ K 2 |W u | 2 -|W s | 2 .
Proof of Theorem 4 using Theorem 5. Let us now show why the result of Theorem 5 implies the result of Theorem 4. Using Theorem 5, we already know that the matrix M defined in Lemma 4 admits a symmetrizer S K for all K ≥ 1. The properties satisfied by S K are those stated in Theorem 5. In the same spirit as Lemma 2, one easily shows that the existence of such symmetrizers is invariant under C ∞ changes of basis. More precisely, the matrix M defined in Lemma 3 equals M up to a smooth change of basis, see Lemma 4. Thus for all K ≥ 1, there exists a neighborhood V K of 0, there exists a C ∞ function S K on V K with values in H m , and there exists a constant c K > 0 such that the following properties hold:

• for all τ ∈ V K with Re τ > 0, Re (S K (τ ) M (τ )) ≥ c K (Re τ ) I,
• for all τ ∈ V K and for all

W ∈ C m , W * S K (τ ) W ≥ K 2 |W u | 2 -|W s | 2 .
Let K ≥ 1, and consider the function S K defined on a neighborhood V K of 0 with values in H m . Let z belong to a sufficiently small neighborhood O K of z so that ln(z/z) ∈ V K . We define S K (z) := S K (ln(z/z)). We are going to check that S K defines a K-symmetrizer for the matrix M (z). We recall that in Lemma 3, the matrix M was constructed in such a way that the relation M (z) = exp M (ln(z/z)) holds for z sufficiently close to z.

Let z ∈ U ∩ O K . Then we know that S K (z) is Hermitian, and for all W ∈ C m we have

W * S K (z) W = W * S K (ln(z/z)) W ≥ K 2 |W u | 2 -|W s | 2 .
Moreover, the calculations of [7, page 685] show that there exists a constant c K > 0, possibly smaller than the constant c K , such that

M (z) * S K (z) M (z) -S K (z) ≥ c K |z| -1 |z| I .
We have thus proved that S K is a K-symmetrizer for M . The corresponding vector space E s in the decomposition of C m is the vector space spanned by the µ first vectors in the canonical basis of C m :

E s = W s 0 , W s ∈ C µ , E u = 0 W u , W u ∈ C m-µ .
As claimed in Theorem 4, the dimension of E s coincides with the number of stable eigenvalues of M (z) when |z| > 1.

It remains to prove Theorem 5, which is done in the following sections. Let us already observe that the existence of the symmetrizer S K in Theorem 5 does not depend on the real number ξ. More precisely, if the symmetrizer S K works for one value of ξ, then it also works for any value of ξ. We shall therefore assume from now on that ξ is zero, which simplifies a little bit the notation.

Theorem 5 is due to Kreiss [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF], see also [START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF][START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF][START_REF] Ralston | Note on a paper of Kreiss[END_REF], in the case where all functions b 1 , . . . , b m have purely imaginary values when τ is purely imaginary. In particular, all derivatives b 1 (0), . . . , b m (0) should be real. In our framework, there is no reason why b j (τ ) should have purely imaginary values when τ is purely imaginary. This phenomenon was already highlighted in our former work [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] where we proved Theorem 5 in the special case m = 2, Im b 2 (0) < 0. We extend here the result of [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF] to the general framework of Theorem 5. This is done by first classifying the matrices M according to the dissipation index defined in Proposition 2 below. We then construct the symmetrizer S K in the various possible cases depending on the size m and on the dissipation index.

For simplicity, we omit the index or superscript from now on.

4.3. The dissipation index. Classification of all possible cases. This paragraph is devoted to the following result.

Proposition 2. Let M satisfy all the assumptions of Theorem 5 with ξ = 0. Then there exists a unique holomorphic function defined on a neighborhood W of 0 such that for all

(τ, ζ) ∈ V × W , there holds det M (τ ) -ζ I = ϑ(τ, ζ) τ -(ζ) , ( 14 
)
where ϑ is holomorphic and does not vanish on V × W . Furthermore, the function satisfies

(0) = (0) = • • • = (m-1) (0) = 0 , (m) (0) = m! i m-1 b m (0) = 0 , ( 15 
)
and one of the following two properties holds true:

• (ζ) ∈ i R for all ζ ∈ i R ∩ W , or equivalently i ν-1 (ν) (0) ∈ R for all integer ν,
• there exists a smallest even integer m 0 and there exists a constant c > 0 such that for all ξ ∈ R ∩ W , there holds Re (i ξ) ≤ -c ξ m0 . This condition equivalently reads

∀ ν = 0, . . . , m 0 -1 , i ν-1 (ν) (0) ∈ R , and (-1) m0/2 Re (m0) (0) < 0 .
In the first case, we define the dissipation index of M as +∞ while in the second case, we define the dissipation index of M as m 0 . The dissipation index is always larger than or equal to m.

Proof of Proposition 2. The existence of the holomorphic function follows from the Weierstrass preparation Theorem by simply noting that

∂ ∂τ det M (τ ) -ζ I (τ,ζ)=(0,0) = (-i) m-1 b m (0) = 0 .
Once we know that exists, we evaluate ( 14) at τ = 0, and we obtain the relation

(-ζ) m = det M (0) -ζ I = -ϑ(0, ζ) (ζ) , ϑ(0, 0) = (-i) m-1 b m (0) = 0 .
Differentiating m times with respect to ζ and evaluating at ζ = 0, we obtain [START_REF] Sakamoto | Mixed problems for hyperbolic equations. I. Energy inequalities[END_REF]. We know that for τ ∈ V of positive real part, M (τ ) has no purely imaginary eigenvalue. This implies that for ζ ∈ i R sufficiently small, (ζ) has nonpositive real part.

Let us consider the real function Re (i ξ) of the real variable ξ, which is defined on an interval ] -ξ 0 , ξ 0 [. This function vanishes at 0 and has nonpositive values. There are two possible cases: either all derivatives at 0 vanish (case 1), or there exists a smallest integer m 0 such that the derivative of order m 0 is non-zero (case 2).

In case 1, we have

(ν) (0) ∈ R if ν is odd and (ν) (0) ∈ i R if ν is even.
Then we can expand (i ξ) in power series for small ξ because is holomorphic, and we find that (i ξ) ∈ i R for all small real ξ. In case 2, the integer m 0 is necessarily even because 0 is a maximum of Re (i ξ). Then we find that the m 0 -th derivative of Re (i ξ) at 0 is negative because the function is nonpositive, and the conclusion follows from a Taylor expansion.

There are now four cases to consider for the proof of Theorem 5. The construction of the symmetrizer varies from one case to the other.

• Case I: m is even and the dissipation index m 0 equals m.

• Case II: m is even and the dissipation index m 0 is larger than m but finite.

• Case III: m is odd and the dissipation index m 0 is finite.

• Case IV: the dissipation index is infinite (m is either even or odd). We are going to construct a symmetrizer for each case. The proof in section 5 for case I is a generalization of [4, Theorem 2.7] where we dealt with the case m = m 0 = 2. It is also important to understand the construction of the symmetrizer in case I in view of the more involved cases II and III. The latter have never been considered in the literature so far. Case IV is somehow simpler since it can be treated with the standard Kreiss symmetrizers of [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF].

Construction of a symmetrizer: case I

We recall for clarity that we consider a function M that is holomorphic on a neighborhood V of 0 with values in M m (C), m ≥ 2, and whose expression is given by

∀ τ ∈ V , M (τ ) = i N m +    b 1 (τ ) 0 • • • 0 . . . . . . . . . b m (τ ) 0 • • • 0    , N m =       0 1 0 . . . . . . . . . . . . . . . 1 0 • • • • • • 0       . ( 16 
)
All functions b 1 , . . . , b m vanish at 0. Case I corresponds to a function b m that satisfies Im b m (0) < 0, see Proposition 2. A numerical scheme that produces a block of case I with arbitrarily large m is given in section 9. We also recall that we have m = 2 µ, see [START_REF] Mneimné | Introduction à la théorie des groupes de Lie classiques[END_REF], and that any vector W ∈ C m is decomposed as W = (W s , W u ) where W s ∈ C µ is the vector formed by the µ first coordinates of W , while W u ∈ C µ is the vector formed by the µ last coordinates of W .

In the analysis of all cases I-IV, the construction of the symmetrizer S K (τ ) is based on the following observation. Writing τ = γ + i δ, we first expand M (τ ) as

M (τ ) = M (i δ) + γ M (0) + γ r(τ ) ,
where r is continuous with respect to τ ∈ V and r(0) = 0. Then we choose the symmetrizer S K (τ ) under the form

S K (τ ) = S(δ) + γ H , (17) 
where S(δ) is Hermitian and H is a constant Hermitian matrix. The following Lemma is based on the above expansion of M (τ ). Its elementary proof is omitted.

Lemma 5. Assume that for all K ≥ 1, we can construct a C ∞ function S on some interval ] -δ K , δ K [ with values in H m , and a matrix H ∈ H m such that the following properties hold:

i) for all δ ∈ ] -δ K , δ K [, Re (S(δ) M (i δ)) ≥ 0, ii) for all W ∈ C m , W * S(0) W ≥ (K 2 + 1/2) |W u | 2 -|W s | 2 /2, iii) Re (S(0) M (0) + i H N m ) is positive definite.
Then the result of Theorem 5 holds with the symmetrizer S K in (17).

The construction of S varies from one case to the other, because the behavior of the functions b j when τ is purely imaginary is encoded in the dissipation index m 0 . In particular, the choice in [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF] of a real symmetric matrix S(δ) such that S(δ) M (i δ) is skew-Hermitian is not convenient in cases I, II and III (see appendix B). However, we shall see in the analysis of case II-III that the larger the dissipation index m 0 , the more our construction ressembles Kreiss' choice.

Let K ≥ 1, and let us construct a matrix S(δ) satisfying conditions i) and ii) of Lemma 5 in case I. We decompose the matrix M (i δ) as follows:

M (i δ) = i N µ N µ 0 N µ + δ β 1 (δ) 0 i δB 1 + δ 2 β 2 (δ) 0 , (18) 
where each block in (18) represents a matrix of size µ = m/2. The coefficients of the matrix N µ vanish, except the lower left coefficient that equals 1. When m equals 2, we use the convention

N 1 = 0, N 1 = 1.
Moreover, B 1 is a constant matrix defined by

B 1 :=    b µ+1 (0) 0 • • • 0 . . . . . . . . . b m (0) 0 • • • 0    ∈ M µ (C) . ( 19 
)
The matrices β 1 (δ), β 2 (δ) ∈ M µ (C) depend analytically on δ but we have no information about their coefficients. In case I, the only piece of information we have is on the lower left coefficient of B 1 : Im b m (0) < 0. We choose the symmetrizer S(δ) under the following form 3 :

S(δ) := δ 2 A 2 C 0 + δ C 1 C * 0 + δ C * 1 D 0 , (20) 
where A 2 , D 0 belong to H µ , and C 0 , C 1 belong to M µ (C). We shall first fix C 0 , then D 0 , then C 1 and eventually A 2 . Computing the product of S(δ) in (20) with M (i δ) in (18) and taking the real part, we obtain

Re (S(δ) M (i δ)) = δ Re (i C 0 B 1 ) + δ 2 Re (i A 2 N µ + i C 1 B 1 + C 0 β 2 (0)) i 2 (C * 0 N µ -N * µ C * 0 ) + i δ 2 (C * 1 N µ -N * µ C * 1 + D 0 B 1 -i C * 0 β 1 (0)) Re (i D 0 N µ + i C * 0 N µ ) + O(δ 3 ) O(δ 2 ) O(δ) , (21) 
where denotes here and from now the only possible matrix such that the whole m × m matrix is Hermitian. As in [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF], see also [START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF]chapter VII.5], we shall use repeatedly the following fact:

3 The reader will observe that this choice is similar to the form we had used in [START_REF] Coulombel | Stability of finite difference schemes for hyperbolic initial boundary value problems[END_REF], and is completely different from the choice in [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF].

Lemma 6. Let ν ≥ 1 be an integer. A matrix S ∈ M ν (C) satisfies S N ν = N * ν S if and only if S has the form

S =       0 • • • 0 s 1 . . . 0 s 1 s 2 0 s 1 s 2 . . . s 1 s 2 • • • s ν       . ( 22 
)
In particular, S ∈ H ν satisfies Re (i S N ν ) = 0 if and only if S is a real symmetric matrix of the form (22).

We first fix the matrix C 0 .

Lemma 7. Let the numbers ρ 2 , . . . , ρ µ ∈ C be determined as the solution to the triangular system

   b m (0) 0 . . . . . . b µ+2 (0) • • • b m (0)       ρ 2 . . . ρ µ    = -b m (0)    b m-1 (0) . . . b µ+1 (0)    .
Let the matrix C 0 ∈ M µ (C) be defined by

C 0 :=       0 • • • 0 b m (0) . . . 0 b m (0) ρ 2 0 b m (0) ρ 2 . . . b m (0) ρ 2 • • • ρ µ       . ( 23 
)
Then the matrix C 0 satisfies Re (i

C 0 B 1 ) = 0, C * 0 N µ = N * µ C * 0 ,

and the upper left coefficient of

Re (i C * 0 N µ ) is positive.
The proof of Lemma 7 follows from straightforward algebraic manipulations, and from the fact that b m (0) has negative imaginary part. The details are left to the reader. In view of our choice (20) and of the relation (21), we now wish to construct a matrix D 0 ∈ H µ that is positive definite -in order to satisfy condition ii) in Lemma 5 -and such that the real part of i (D 0 N µ + C * 0 N µ ) is positive definite. The construction of D 0 is based on the following general result that is proved in appendix A. Lemma 8. Let C 1 , C 2 ∈ R, let c > 0, and let ν ≥ 1 be an integer. Then there exists a matrix H ∈ H ν such that for all W = (W 1 , . . . , W ν ) ∈ C ν , the following inequalities hold true

W * H W ≥ C 1 |W | 2 , W * Re (i H N ν ) W ≥ -c |W 1 | 2 + C 2 ν j=2 |W j | 2 .
Corollary 1. Let ν ≥ 1 be an integer and let

H 1 ∈ H ν . If the upper left coefficient of H 1 is positive, then there exists H 2 ∈ H ν such that Re (i H 2 N ν ) + H 1 is positive definite.
Since the upper left coefficient of Re (i C * 0 N µ ) is positive (see Lemma 7), Young's inequality shows that there exists a constant c > 0 such that

∀ W ∈ C µ , W * Re (i C * 0 N µ ) W ≥ 2 c |W 1 | 2 - 1 c µ j=2 |W j | 2 . ( 24 
)
We apply Lemma 8 with C 1 := K 2 + 1/2 + 2 C 0 2 , C 2 := c + 1/c, and c := c. We obtain that there exists D 0 ∈ H µ such that

∀ W ∈ C µ , W * D 0 W ≥ K 2 + 1 2 + 2 C 0 2 |W | 2 , (25) 
W * Re (i D 0 N µ ) W ≥ -c |W 1 | 2 + c + 1 c µ j=2 |W j | 2 . ( 26 
)
If we combine (24) and (26), we already see that the lower right block in the right-hand side of (21) satisfies Re (i D 0 N µ + i C * 0 N µ ) ≥ c I . Moreover, (25) shows that we have the following inequality for all W ∈ C m :

W * S(0) W = (W u ) * D 0 W u + 2 Re (W s ) * C 0 W u ≥ K 2 + 1 2 |W u | 2 - 1 2 |W s | 2 .
Condition ii) of Lemma 5 is thus satisfied. Our choice of C 0 and of D 0 yields some simplification in (21):

Re (S(δ) M (i δ)) ≥ δ 2 Re (i A 2 N µ + i C 1 B 1 + C 0 β 2 (0)) i δ 2 (C * 1 N µ -N * µ C * 1 + D 0 B 1 -i C * 0 β 1 (0)) c I + O(δ 3 ) O(δ 2 ) O(δ) , (27) 
It remains to fix the matrices C 1 and A 2 such that condition i) in Lemma 5 holds. Let us first of all choose C 1 of the form given in Lemma 6, so that

C 1 satisfies C * 1 N µ = N * µ C * 1 .
Applying Young's inequality in (27) shows that there exists a constant C > 0, that does not depend on C 1 nor on A 2 , such that Re (S(δ)

M (i δ)) ≥ δ 2 Re (i A 2 N µ + i C 1 B 1 ) -C I 0 0 c 2 I + O(δ 3 ) O(δ 2 ) O(δ) , (28) 
Let us now fix the matrices C 1 and A 2 .

Lemma 9. For all C 3 ∈ R, there exists a matrix E ∈ M µ (C) and there exists a matrix H ∈ H µ that satisfy ). This coefficient equals e |Im b m (0)|. We thus fix e ∈ R such that the upper left coefficient of Re (i E B 1 ) equals C 3 + 1. Then there exists a constant C 4 > 0 such that for all W ∈ C µ there holds

E N µ = N * µ E , Re (i H N µ + i E B 1 ) ≥ C 3 I . Proof of
W * Re (i E B 1 ) W ≥ C 3 + 1 2 |W 1 | 2 -C 4 µ j=2 |W j | 2 .
It remains to apply Lemma 8 above with c := 1/2, C 2 := C 3 + C 4 and with an arbitrary C 1 (take for instance C 1 = 0) to construct the Hermitian matrix H.

Applying Lemma 9 in (28), we can pick a matrix

C 1 ∈ M µ (C) that satisfies C * 1 N µ = N * µ C * 1 , and a matrix A 2 ∈ H µ such that Re (i A 2 N µ + i C 1 B 1 ) ≥ C + c 2 I .
Consequently, (28) reduces to Re (S(δ) M (i δ)) ≥ c 2

δ 2 I 0 0 I + O(δ 3 ) O(δ 2 ) O(δ) ≥ c 2 
δ 2 I 0 0 I + O(δ 3 ) 0 0 O(δ) ,
where we have used Young's inequality in the end. Choosing δ small enough, we have thus constructed a matrix S(δ) of the form (20) and that satisfies conditions i) and ii) of Lemma 5. Moreover, the matrix C 0 in the decomposition (20) is defined by (23). We now construct the Hermitian matrix H such that condition iii) in Lemma 5 is satisfied. Using the expression (23) of C 0 , the upper left coefficient of the matrix Re (S(0) M (0)) equals |b m (0)| 2 > 0. Corollary 1 shows that there exists a matrix H ∈ H m such that Re (S(0) M (0) + i H N m ) is positive definite. Condition iii) in Lemma 5 is thus satisfied, which shows that Theorem 5 holds in case I.

The analysis of cases II and III below follows the same strategy as for case I. The most difficult part is to guess the form and construct the Hermitian matrix S(δ). The construction of H ∈ H m always follows from Corollary 1. For clarity, we rephrase and simplify Lemma 5 in order to take the result of Corollary 1 into account.

Lemma 10. Assume that for all K ≥ 1, we can construct a C ∞ function S on some interval ] -δ K , δ K [ with values in H m such that the following properties hold:

i) for all δ ∈ ] -δ K , δ K [, Re (S(δ) M (i δ)) ≥ 0, ii) for all W ∈ C m , W * S(0) W ≥ (K 2 + 1/2) |W u | 2 -|W s | 2 /2,
iii) the upper left coefficient of Re (S(0) M (0)) is positive. Then the result of Theorem 5 holds with a symmetrizer S K of the form (17).

Construction of a symmetrizer: case II

In this section, we consider a matrix M (τ ) of the form (16) where m is an even number, and where the dissipation index m 0 defined in Proposition 2 is larger than m. The dissipation index gives some information on the holomorphic function . First of all, we are going to convert this information on into some information on the derivatives b (q) j (0). This is done in Proposition 3 below. According to the values of m 0 with respect to m, we shall construct a symmetrizer. Observe that since both m and m 0 are even numbers, the Euclidean division of m 0 by m reads

m 0 = q 0 m + 2 µ 0 , q 0 ≥ 1 , 0 ≤ µ 0 ≤ µ -1 .
(29)

What does the dissipation condition mean ?

The following Proposition gives some information on the derivatives b (q) j (0). Proposition 3. Let M satisfy the assumptions of Theorem 5 and correspond to case II (m 0 > m, m is even). Let the dissipation index m 0 satisfy (29). Then the following properties hold:

• b m (0) ∈ R \ {0},
• for all q = 1, . . . , q 0 -1 and for all j = 1, . . . , m, i q-1 b (q) j (0) ∈ R, • for all j = 0, . . . ,

2 µ 0 -1, i q0-1 b (q0) m-j (0) ∈ R, • if q 0 is even, b m (0) Im (i q0-1 b (q0) m-2 µ0 (0)) < 0, • if q 0 is odd, Im (i q0-1 b (q0) m-2 µ0 (0)) < 0.
Proof of Proposition 3. We recall that there exists a unique holomorphic function satisfying [START_REF] Ralston | Note on a paper of Kreiss[END_REF]. In case II, this function satisfies [START_REF] Sakamoto | Mixed problems for hyperbolic equations. I. Energy inequalities[END_REF] and

i m-1 (m) (0) ∈ R \ {0} , ∀ ν = m + 1, . . . , m 0 -1 , i ν-1 (ν) (0) ∈ R , (30) 
(-1) m0/2 Re (m0) (0) < 0 .

If we use the form (16) of the matrix M (τ ) together with the relation ( 14), we get

0 = det M ( (ζ)) -ζ I = (-1) m    ζ m - m j=1 i j-1 b j ( (ζ)) ζ m-j    .
Defining the functions

(ω) := 1 i (i ω) , b j (θ) := 1 i b j (i θ) , (31) 
we obtain the relation

ω m = m j=1 b j (ω) ω m-j . ( 32 
)
The latter equality holds for all ω ∈ C sufficiently close to 0. We recall that the functions b 1 , . . . , b m , are holomorphic on a neighborhood of 0.

The proof of Proposition 3 then consists in expanding the functions b 1 , . . . , b m , near 0, and in identifying the powers of ω. Let us perform this argument in detail. First of all we assume q 0 = 1, and therefore µ 0 > 0. Using [START_REF] Sakamoto | Mixed problems for hyperbolic equations. I. Energy inequalities[END_REF], we have the Taylor expansions

(ω) = (m) (0) m! ω m + • • • + (2 m-1) (0) (2 m -1)! ω 2 m-1 + O(ω 2 m ) , b j (ω) = b j (0) 2 m-1 ν=m (ν) (0) ν! ω ν + O(ω 2 m ) .
We use the latter expansion in (32) and obtain

ω m = m j=1 b j (0) ω m-j 2 m-1 ν=m (ν) (0) ν! ω ν + O(ω 2 m ) .
Identifying the powers ω m , ω m+1 , . . . , ω m+2 µ0 , we obtain

b m (0) (m) (0) m! = 1 , (33) 
b m (0) (m+1) (0) (m + 1)! + b m-1 (0) (m) (0) m! = 0 , . . . b m (0) (m+2 µ0) (0) (m + 2 µ 0 )! + • • • + b m-2 µ0 (0) (m) (0) m! = 0 . (34) 
The definition (31) gives the relation (ν) (0) = i ν-1 (ν) (0). Using the properties (30), we obtain inductively

b m (0) ∈ R \ {0} , b m-1 (0), . . . , b m-2 µ0+1 (0) ∈ R .
Then we multiply (34) by the real number b m (0), take the imaginary part, use (33) and (30). We find Im b m-2 µ0 (0) < 0 .

We then obtain the result of Proposition 3 by using the relations b j (0) = b j (0), j = 1, . . . , m.

Let us now consider the case q 0 ≥ 2. We follow the same strategy as above and use the following expansions in (32):

(ω) = (q0+1) m-1 ν=m (ν) (0) ν! ω ν + O(ω (q0+1) m ) , b j (θ) = q0 q=1 b (q) j (0) q! θ q + O(θ q0+1 ) .
We obtain the relation

ω m = m j=1 ω m-j q0 q=1 b (q) j (0) q!   (q0+1) m-1 ν=m (ν) (0) ν! ω ν   q + O(ω (q0+1) m ) . ( 35 
)
We first identify the terms ω m , . . . , ω 2 m-1 on either side of (35). Following the same argument as in the case q 0 = 1 yields

b m (0) ∈ R \ {0} , b m-1 (0), . . . , b 1 (0) ∈ R .
Then we identify the terms ω 2 m , ω 2 m+1 and so on, up to ω q0 m+2 µ0-1 . We obtain

b m (0), . . . , b 1 (0) ∈ R , . . . , b (q0-1) m (0), . . . , b (q0-1) 1 (0) ∈ R , b (q0) m (0), . . . , b (q0) 
m-2 µ0+1 (0) ∈ R .

Let us now identify the term ω q0 m+2 µ0 = ω m0 on either side of (35) and get

0 = m j=1 b j (0) 1! ((q0-1) m+2 µ0+j) (0) ((q 0 -1) m + 2 µ 0 + j)! + m j=1 q0-1 q=2 b (q) j (0) q! (q0+1) m-1 ν1,...,νq=m ν1+•••+νq=(q0-1) m+2 µ0+j (ν1) (0) ν 1 ! . . . (νq) (0) ν q ! + m j=m-2 µ0 b (q0) j (0) q 0 ! (q0+1) m-1 ν1,...,νq 0 =m ν1+•••+νq 0 =(q0-1) m+2 µ0+j (ν1) (0) ν 1 ! . . . (νq 0 ) (0) ν q0 ! .
Taking the imaginary part of either side gives

0 = b m (0) Im (m0) (0) m 0 ! + Im b (q0) m-2 µ0 (0) q 0 ! (m) (0) m! q0 .
The conclusion for b (q0) m-2 µ0 (0) immediately follows (use (33) when q 0 is odd). We have thus proved all the relations stated in Proposition 3.

Our aim is to construct a symmetrizer S(δ) ∈ H m that satisfies the properties i), ii), iii) of Lemma 10. It turns out that the construction of S(δ) depends on the integers q 0 , µ 0 in the Euclidean division (29). More precisely we shall distinguish the following four possible cases, which correspond to an increasing level of difficulty.

• Case IIa: µ 0 = 0, q 0 is even.

• Case IIb: µ 0 = 0, q 0 is odd. (This implies q 0 ≥ 3.) • Case IIc: 1 ≤ µ 0 ≤ µ -1, q 0 is even. (This implies m ≥ 4.) • Case IId: 1 ≤ µ 0 ≤ µ -1, q 0 is odd. (Same remark as for case IIc.) 6.2. Case IIa. We shall repeatedly use the following result. We recall that S ν denotes the vector space of real symmetric matrices of size ν. Lemma 11. Let ν ≥ 1 be an integer, and let Ψ be the linear mapping defined by

Ψ : S ν -→ H ν S -→ Re (i S N ν ) .
The kernel of Ψ is made of all matrices S ∈ S ν of the form (22), and the image of

Ψ is H ν ∩ i M ν (R).
Proof of Lemma 11. The dimension of S ν is ν (ν + 1)/2. Moreover, Lemma 6 shows that the kernel of Ψ is made of all matrices S ∈ S ν of the form (22). Thus the kernel of Ψ has dimension ν, and the image of Ψ has dimension ν (ν -1)/2.

If S ∈ S ν , then Re (i S N ν ) is a Hermitian matrix with purely imaginary coefficients. Consequently, the image of Ψ is included in

H ν ∩ i M ν (R). Moreover, the dimension of H ν ∩ i M ν (R) is ν (ν -1)/2
so the claim of Lemma 11 holds.

We decompose the matrix M (i δ) as follows:

M (i δ) = i N m + i q0 q=1 δ q B q + O(δ q0+1 ) , ( 36 
)
where the matrices B 1 , . . . , B q0 are given by 4

∀ q = 1, . . . , q 0 , B q := i

q-1 q!     b (q) 1 (0) 0 . . . 0 . . . . . . . . . b (q) m (0) 0 . . . 0     ∈ M m (C) . (37) 
In case IIa, Proposition 3 shows that B 1 , . . . , B q0-1 have real coefficients. Some coefficients of B q0 are complex. Let K ≥ 1. We choose the symmetrizer S under the form

S(δ) := q0 q=0 δ q S q , S 0 , . . . , S q0-1 ∈ S m , S q0 ∈ H m . ( 38 
)
Computing the product of S(δ) in (38) with M (i δ) in (36), then taking the real part, we first get

Re S(δ) M (i δ) = Re (i S 0 N m ) + q0 q=1 δ q Re i S q N m + i q-1 p=0 S p B q-p + O(δ q0+1 ) . ( 39 
)
The choice of the real symmetric matrix S 0 is the same as in [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF].

Lemma 12 ([9]

). Let c > 0 and let C ∈ R. If m is even, there exists a matrix S 0 ∈ S m of the form (22) with s 1 = b m (0), and that satisfies

∀ W ∈ C m , W * S 0 W ≥ C |W u | 2 -c |W s | 2 .
For the sake of clarity, we reproduce the proof of Lemma 12 in appendix A. The main reason for doing so is that in case IId, we shall need a refined version of Lemma 12. We hope that the proof of this refined version will be more clear once the reader is familiar with the classical proof of Lemma 12.

We choose S 0 ∈ S m by applying Lemma 12 with c := 1/2 and C := K 2 +1/2. It is straightforward to check that the symmetrizer S(δ) in (38) already satisfies the properties ii), iii) of Lemma 10. It thus remains to fix S 1 , . . . , S q0 such that property i) of Lemma 10 holds.

We wish to choose the matrix S 1 ∈ S m such that the coefficient of δ 1 in the right-hand side of (39) vanishes. In other words, we are looking for a matrix S 1 ∈ S m that satisfies Ψ(S 1 ) = -Re (i S 0 B 1 ) .

(40)

Recall that the linear mapping Ψ is defined in Lemma 11. The matrix Re (i S 0 B 1 ) is Hermitian and has purely imaginary coefficients because both S 0 and B 1 belong to M m (R). Applying Lemma 11, we can thus choose S 1 ∈ S m such that (40) holds. Applying repeatedly Lemma 11, we can choose some matrices S 2 , . . . , S q0-1 ∈ S m that satisfy

∀ q = 2, . . . , q 0 -1 , Ψ(S q ) + Re i q-1 p=0 S p B q-p = 0 .
Our construction of S 0 , . . . , S q0-1 yields the following simplification in (39):

Re S(δ) M (i δ) = δ q0 Re i S q0 N m + i q0-1 p=0 S p B q0-p + O(δ q0+1 ) . ( 41 
)
We wish to make the coefficient of δ q0 in (41) positive definite by suitably choosing S q0 ∈ H m . In view of Corollary 1, it is sufficient to check that the upper left coefficient of the matrix 4 We feel free to use the notation B 1 even though it does not denote the same matrix as in (19). We hope this does not create any confusion.

Re i q0-1 p=0 S p B q0-p = Re (i S 0 B q0 ) + Re i q0-1 p=1 S p B q0-p

is positive. Observing that the upper left coefficient of a matrix in H

m ∩ i M m (R) is zero, we compute Re i q0-1 p=0 S p B q0-p 1,1 = Re (i S 0 B q0 ) 1,1 = -b m (0) Im i q0-1 b (q0) m (0) q 0 ! .
The latter quantity is positive thanks to the result of Proposition 3. (Recall that in case IIa, q 0 is even and µ 0 = 0.) Applying Corollary 1, there exists a matrix S q0 ∈ H m such that the coefficient of δ q0 in (41) is positive definite. Choosing δ small enough, the symmetrizer S(δ) satisfies Re S(δ) M (i δ) ≥ c δ q0 I , for a suitable constant c > 0. Hence property i) of Lemma 10 is satisfied and the result of Theorem 5 holds. Let us turn to case IIb.

6.3. Case IIb. In case IIb, we use the refined expansion

M (i δ) = i N m + i q0 q=1 δ q B q + δ q0+1 β + O(δ q0+2 ) . ( 42 
)
The matrices B 1 , . . . , B q0 are defined in (37), while β belongs to M m (C). Using Proposition 3, we know that B 1 , . . . , B q0-1 have real coefficients. Moreover the lower left coefficient of B q0 has negative imaginary part. We recall that q 0 is an odd number, with q 0 ≥ 3. Let K ≥ 1. We choose the symmetrizer S under the form

S(δ) := q0+1 q=0 δ q S q , S 0 , . . . , S q0-2 ∈ S m , S q0-1 , S q0 , S q0+1 ∈ H m . (43) 
Computing the product of S(δ) in (43) with M (i δ) in ( 42), then taking the real part, we first get Re S(δ)

M (i δ) = Re (i S 0 N m ) + q0 q=1 δ q Re i S q N m + i q-1 p=0 S p B q-p + δ q0+1 Re i S q0+1 N m + i q0 p=1 S p B q0+1-p + S 0 β + O(δ q0+2 ) . ( 44 
)
We start as in the analysis of case IIa. We first fix S 0 ∈ S m by applying Lemma 12 with c := 1/2 and C := K 2 + 1/2. Then we choose S 1 , . . . , S q0-2 ∈ S m such that the coefficients of δ 1 , . . . , δ q0-2 in (44) vanish. We thus get Re S(δ)

M (i δ) = δ q0-1 Re i S q0-1 N m + i q0-2 p=0 S p B q0-1-p + δ q0 Re i S q0 N m + i q0-1 p=0 S p B q0-p + δ q0+1 Re i S q0+1 N m + i q0 p=1 S p B q0+1-p + S 0 β + O(δ q0+2 ) . ( 45 
)
Let us now fix the matrix S q0-1 .

Lemma 13. There exists a matrix S q0-1 ∈ H m that satisfies

Re i S q0-1 N m + i q0-2 p=0 S p B q0-1-p = 0 0 0 H q0-1
,

where H q0-1 ∈ H µ is positive definite. Furthermore, the upper left µ × µ block of the matrix

q0-1 p=0 S p B q0-p (46) 
vanishes.

Proof of Lemma 13. Applying Lemma 11, we first choose a matrix S q0-1 ∈ S m that satisfies

Re i S q0-1 N m + i q0-2 p=0 S p B q0-1-p = 0 .
We decompose S q0-1 as S q0-1 = S q0-1 + S q0-1 , and we are going to construct S q0-1 . We look for S q0-1 under the form

S q0-1 := 0 C q0-1 C * q0-1 D q0-1 , C q0-1 ∈ M µ (C) , D q0-1 ∈ H µ .
The matrix C q0-1 is fixed first. Namely let us choose C q0-1 of the form ( 22), that is

C q0-1 :=       0 • • • 0 α 1 . . . 0 α 1 α 2 0 α 1 α 2 . . . α 1 α 2 • • • α µ       . We compute Re i S q0-1 N m + i q0-2 p=0 S p B q0-1-p = Re (i S q0-1 N m ) = 0 0 0 Re (i D q0-1 N µ + i C * q0-1 N µ )
, where the matrix N µ is the same as in section 5. Let us also compute the upper left µ × µ block of the matrix (46). The matrices S 0 , . . . , S q0-2 , S q0-1 as well as the matrices B 1 , . . . , B 

υ µ 0 . . . 0    , (47) 
where υ 1 , . . . , υ µ are some complex numbers that only depend on S 0 , . . . , S q0-2 . The crucial observation for what follows is that υ 1 satisfies

υ 1 -b m (0) i q0-1 b (q0) m (0) q 0 ! ∈ R . (48) 
The matrix (47) vanishes if and only if the coefficients α 1 , . . . , α µ solve the linear system

   b m (0) 0 . . . . . . b µ+1 (0) . . . b m (0)       α 1 . . . α µ    = -    υ 1 . . . υ µ    .
This system has a unique solution, which determines the matrix C q0-1 ∈ M µ (C). In particular, (48) and Proposition 3 show that α 1 = -υ 1 /b m (0) has positive imaginary part. It remains to fix the matrix D q0-1 ∈ H µ . The upper left coefficient of the matrix Re (i C * q0-1 N µ ) equals Im α 1 > 0. Consequently we can apply Corollary 1 and find

D q0-1 ∈ H µ such that Re (i D q0-1 N µ + i C * q0-1 N µ
) is positive definite. This completes the proof.

We now fix the matrices S q0 and S q0+1 . We choose S q0 ∈ H m of the form

S q0 := 0 C q0 C * q0 0 , C q0 :=   0 c c c 0   ∈ M µ (C) ,
and we choose S q0+1 ∈ H m of the form

S q0+1 := A q0+1 0 0 0 , A q0+1 ∈ H µ .
We compute

Re (i S q0 N m ) = 0 0 0 Re (i C * q0 N µ )
.

Using the latter relation as well as Lemma 13 yields some simplifications in (45). At this stage, we have

Re S(δ) M (i δ) =δ q0-1 0 0 0 H q0-1 + δ q0 0 H q0 H * q0 0 + δ q0+1 Re i S q0+1 N m + i q0 p=1 S p B q0+1-p + S 0 β 1...µ,1...µ 0 0 0 + O(δ q0+2 ) O(δ q0+1 ) O(δ q0+1 ) O(δ q0 ) ,
where H q0-1 ∈ H m is positive definite, and H q0 ∈ M m (C) does not depend on c nor on A q0+1 . Following the same strategy as in the proof of Lemma 9, we can choose c ∈ C and A q0+1 ∈ H µ such that the block Re (i

A q0+1 N m ) + Re (i S q0 B 1 ) 1...µ,1...µ
is positive definite as large as we wish. We can now conclude as in the analysis of case I. Applying Young's inequality and choosing δ small enough, the symmetrizer S(δ) satisfies Re S(δ)

M (i δ) ≥ c δ q0+1 I µ 0 0 δ q0-1 I µ , c > 0 .
Hence S(δ) satisfies properties i), ii), iii) of Lemma 10, and the result of Theorem 5 holds. Let us now turn to the more involved case IIc.

6.4. Case IIc. The following result is similar to Lemma 11 and will be used in the analysis below.

Lemma 14. Let ν ≥ 1 be an integer, and let Φ be the linear mapping defined by

Φ : H ν -→ H ν S -→ Re (i S N ν ) .
The kernel of Φ is made of all matrices S ∈ S ν of the form (22). If ν is even, the image of Φ is made of all matrices H ∈ H ν that satisfy

∀ j = 1, . . . , ν 2 , 1 2 
H j,j + Re j-1 k=1 H j-k,j+k = Re j-1 k=0 H j-k,j+k+1 = 0 . ( 49 
)
If ν is odd, the image of Φ is made of all matrices H ∈ H ν that satisfy

∀ j = 1, . . . , ν + 1 2 , 1 2 H j,j + Re j-1 k=1 H j-k,j+k = 0 , (50) 
∀ j = 1, . . . , ν -1 2 , Re j-1 k=0 H j-k,j+k+1 = 0 . (51) 
Proof of Lemma 14. The dimension of the (real) vector space H ν is ν 2 . Lemma 6 shows that the kernel of Φ is made of all matrices S ∈ S ν of the form (22), and thus coincides with the kernel of Ψ. Consequently the rank of Φ is ν 2 -ν.

It is not so difficult to check that if ν is even, then any matrix H in the image of Φ satisfies the conditions (49). Moreover, the Hermitian matrices that satisfy (49) form a subspace of H ν of dimension ν 2 -ν. The same arguments yield the characterization of the image of Φ when ν is odd.

We shall also need the following rectangular version of Lemma 6. The proof is completely elementary and therefore omitted. Lemma 15. Let ν 1 ≥ 1 and ν 2 > ν 1 be some integers. A matrix S ∈ M ν1,ν2 (C) satisfies S N ν2 = N * ν1 S if and only if S has the form

S =       0 . . . 0 0 • • • 0 s 1 . . . . . . . . . 0 s 1 s 2 . . . . . . 0 s 1 s 2 . . . 0 . . . 0 s 1 s 2 • • • s ν1       . (52) 
Let us now construct a symmetrizer S(δ) in case IIc. We recall that q 0 is even and the remainder µ 0 in the Euclidean division (29) satisfies 1 ≤ µ 0 ≤ µ -1. In particular there holds µ ≥ 2, that is m ≥ 4. We expand M (i δ) as

M (i δ) = i N m + i q0 q=1 δ q B q + δ q0+1 β 1 + δ q0+2 β 2 + O(δ q0+3 ) . (53) 
The matrices B 1 , . . . , B q0 are defined in (37), while the matrices β 1 , β 2 belong to M m (C) and have the same form as B 1 , . . . , B q0 (only the first column is non-zero). Applying Proposition 3, we know that B 1 , . . . , B q0-1 have real coefficients. Moreover the coefficients of B q0 satisfy

i q0-1 b (q0) m (0), . . . , i q0-1 b (q0) m-2 µ0+1 (0) ∈ R , b m (0) Im i q0-1 b (q0) m-2 µ0 (0) < 0 . (54) 
We have absolutely no information on b

(q0) m-2 µ0-1 (0), . . . , b (q0) 1 (0) 
, nor on β 1 , β 2 . Let K ≥ 1. We seek the symmetrizer S under the form S(δ) := q0+2 q=0 δ q S q , S 0 , . . . , S q0-1 ∈ S m , S q0 , S q0+1 , S q0+2 ∈ H m .

(55)

Computing the product of S(δ) in (55) with M (i δ) in (53) and taking the real part yields Re S(δ)

M (i δ) = Re (i S 0 N m ) + q0 q=1 δ q Re i S q N m + i q-1 p=0 S p B q-p + δ q0+1 Re i S q0+1 N m + i q0 p=1 S p B q0+1-p + S 0 β 1 + δ q0+2 Re i S q0+2 N m + i q0+1 p=2 S p B q0+2-p + S 1 β 1 + S 0 β 2 + O(δ q0+2 ) . (56) 
The starting point is the same as in cases IIa and IIb. We choose S 0 ∈ S m by applying Lemma 12 with c := 1/2 and C := K 2 + 1/2. Properties ii), iii) of Lemma 10 are satisfied. Then we choose S 1 , . . . , S q0-1 ∈ S m such that the coefficients of δ 1 , . . . , δ q0-1 in the right-hand side of (56) vanish. The choice of the matrix S q0 is more delicate.

Lemma 16. There exists a matrix S q0 ∈ H m that satisfies

Re i S q0 N m + i q0-1 p=0 S p B q0-p = 0 0 0 H q0 , (57) 
where H q0 ∈ H m-µ0 is positive definite. Furthermore, the upper left µ 0 × µ 0 block of the matrix

q0 p=1 S p B q0+1-p -i S 0 β 1 (58) vanishes. 
Proof of Lemma 16. The difficulty lies in the fact that the product S 0 B q0 appears in the left-hand side of (57) and we do not know how all the coefficients of B q0 look like. More precisely, we know that B q0 has the form (37) and its coefficients satisfy (54). The matrix S 0 has the form (22) with s 1 = b m (0). Therefore we compute

Re (i S 0 B q0 ) = 1 2      0 -i υ 2 . . . -i υ m i υ 2 0 . . . 0 . . . . . . . . . i υ m 0 . . . 0      . ( 59 
)
The numbers υ 2 , . . . , υ m in (59) satisfy

υ 2 , . . . , υ 2 µ0 ∈ R , Im υ 2 µ0+1 < 0 . (60) 
We have no information on υ 2 µ0+1 , . . . , υ m . We decompose the matrix in (59) as

Re (i S 0 B q0 ) = H 0 + H 1 , H 0 := 1 2             0 -i υ 2 . . . -i υ 2 µ0 0 . . . 0 i υ 2 . . . i υ 2 µ0 0 0 . . .             . ( 61 
)
In particular, the matrix H 0 is Hermitian with purely imaginary coefficients. We first choose a matrix S q0 ∈ S m that satisfies

Re i S q0 N m + i q0-1 p=1 S p B q0-p + H 0 = 0 . (62) 
This is possible because the matrices S 1 , . . . , S q0-1 , B 1 , . . . , B q0-1 have real coefficients. The Hermitian matrix H 1 is the difference between the matrix Re (i S 0 B q0 ) whose expression is given in (59), and the matrix H 0 whose expression is given in (61). At this stage, the reader can check that H 1 does not belong to the image of the linear mapping Φ (see the conditions (49) that characterize the image of Φ). Let us construct a matrix H 2 ∈ H m such that H 1 -H 2 belongs to the image of Φ. We choose H 2 of the form

H 2 := 0 0 0 H 2 , H 2 ∈ H m-µ0 .
The matrix H 2 ∈ H m-µ0 is defined in the following way:

∀ j = 1, . . . , µ -µ 0 , ( H 2 ) j,j := -Re (i υ 2 µ0+2 j-1 ) , ( H 2 ) j,j+1 = ( H 2 ) j+1,j := -i υ 2 µ0+2 j /2 . (63) 
All other coefficients in H 2 vanish. Straightforward computations show that H 1 -H 2 satisfies conditions (49) and thus belongs to the image of Φ. Moreover, the upper left coefficient of H 2 is positive (use (63) and ( 60)). We can choose S q0 ∈ H m that satisfies

Φ(S q0 ) + H 1 -H 2 = 0 . (64) 
It remains to choose S q0 under the form

S q0 := S q0 + S q0 + S q0 ,
where the matrix S q0 has the structure

S q0 := 0 C q0 C * q0 D q0 , C q0 ∈ M µ0,m-µ0 (C) , D q0 ∈ H m-µ0 . (65) 
The matrix C q0 is chosen of the form (52), that is

C q0 :=       0 . . . 0 0 • • • 0 Θ 1 . . . . . . . . . 0 Θ 1 Θ 2 . . . . . . 0 Θ 1 Θ 2 . . . 0 . . . 0 Θ 1 Θ 2 • • • Θ µ0       ∈ M µ0,m-µ0 (C) .
The upper left µ 0 × µ 0 block of the matrix (58) then reads 5

C q0 ×    b µ0+1 (0) 0 . . . 0 . . . . . . . . . b m (0) 0 . . . 0    ∈Mm-µ 0 ,µ 0 (R) +    Υ 1 0 . . . 0 . . . . . . . . . Υ µ0 0 . . . 0    ∈Mµ 0 (C)
,

where the coefficients Υ 1 , . . . , Υ µ0 are determined by the matrices S 0 , . . . , S q0-1 , S q0 , S q0 which have already been fixed. It is clear that there exists a unique choice of the coefficients Θ 1 , . . . , Θ µ0 ∈ C such that this upper left block vanishes. These coefficients are determined by solving an invertible linear system of dimension µ 0 . It remains to fix D q0 such that (57) holds with a positive definite H q0 . Let us compute the matrix in the left-hand side of (57) by using the relations (62) and (64). We have

Re i S q0 N m + i q0-1 p=0 S p B q0-p = Re (i S q0 N m ) + H 2 + Re (i S q0 N m ) + H 1 -H 2 + Re (i S q0 N m ) + H 0 + Re i q0-1 p=1 S p B q0-p = Re (i S q0 N m ) + H 2 . ( 66 
)
Following the block decomposition (65) of S q0 , we introduce the block decomposition of N m , that is

N m = N µ0 N µ0,m-µ0 0 N m-µ0 .
Going back to (66), we compute the real part of i S q0 N m by applying Lemma 15. We thus obtain

Re i S q0 N m + i q0-1 p=0 S p B q0-p = 0 0 0 H 2 + Re i C * q0 N µ0,m-µ0 + i D q0 N m-µ0
.

The first row of C * q0 is zero so the upper left coefficient of Re (i C * q0 N µ0,m-µ0 ) is zero. Consequently, the upper left coefficient of H 2 +Re (i C * q0 N µ0,m-µ0 ) is positive. Applying Corollary 1, we can choose D q0 ∈ H m-µ0 such that the lower right block in (57) is positive definite.

It remains to fix the matrices S q0+1 and S q0+2 . We first choose S q0+1 of the form

S q0+1 := 0 C q0+1 C * q0+1 0 , C q0+1 ∈ M µ0,m-µ0 (C) ,
and S q0+2 of the form

S q0+2 := A q0+2 0 0 0 , A q0+2 ∈ H µ0 .
We choose C q0+1 of the form (52). Lemma 15 shows that the coefficient of δ q0+1 in (57) has the form 0 H q0+1 H * q0+1 , 5 We recall that only the first column of the matrices B 1 , . . . , Bq 0 , β 1 does not vanish.

where H q0+1 ∈ M µ0,m-µ0 (C) does not depend on C q0+1 . To conclude the construction of S, it remains to observe that we can choose C q0+1 of the form (52) and A q0+2 ∈ H µ0 so that the upper left µ 0 × µ 0 block of Re i S q0+2 N m + i S q0+1 B 1 is positive definite as large as we wish. (The argument is entirely similar to Lemma 9 so we do not repeat it.) Young's inequality and the argument already used for case I and case IIb show that we can achieve the estimate Re S(δ)

M (i δ) ≥ c δ q0+2 I µ0 0 0 δ q0 I m-µ0 , c > 0 ,
provided that δ is small enough. The symmetrizer S(δ) thus satifies all properties of Lemma 10 and Theorem 5 holds. We now turn to case IId which requires some new arguments.

6.5. Case IId. In this paragraph, q 0 is odd and µ 0 satisfies 1 ≤ µ 0 ≤ µ -1. In particular, we have µ ≥ 2. The case q 0 = 1 has to be dealt with separately from the case q 0 ≥ 3 because the value of the symmetrizer S at the origin is different. Let us therefore deal first with the case q 0 = 1. Applying Proposition 3, we know that b m (0), . . . , b m-2 µ0+1 (0) are real numbers while b m-2 µ0 (0) has negative imaginary part. We expand M (i δ) as

M (i δ) = i N m + i δ B 1 + δ 2 β + O(δ 3 ) , B 1 :=    b 1 (0) 0 . . . 0 . . . . . . . . . b m (0) 0 . . . 0    , (67) 
and we choose the symmetrizer S under the form

S(δ) = S 0 + δ S 1 + δ 2 S 2 , S 0 , S 1 , S 2 ∈ H m . (68) 
We fix a constant K ≥ 1. As usual, the matrix S 0 is determined first.

Lemma 17. There exists a matrix S 0 ∈ H m that satisfies

• for all W ∈ C m , W * S 0 W ≥ (K 2 + 1/2) |W u | 2 -|W s | 2 /2,
• the upper left coefficient of Re (S 0 M (0)) is positive,

• the matrix Re (i S 0 N m ) has the form

0 0 0 H 0 , H 0 ∈ H µ-µ0 ,
where H 0 is positive definite, • the upper left (µ + µ 0 ) × (µ + µ 0 ) block of Re (i S 0 B 1 ) has purely imaginary coefficients.

Proof of Lemma 17. The idea consists in "interpolating" between the construction of S(0) in case I and the classical construction by Kreiss (see Lemma 12 whose proof is reproduced in appendix A). More precisely, let us consider some real numbers c 1 , . . . , c 2 µ0 , some complex numbers c 2 µ0+1 , . . . , c µ+µ0 and a matrix D 0 ∈ H µ-µ0 to be fixed later on. We choose S 0 of the form

S 0 := 0 C 0 C * 0 D 0 ,
where the matrices C 0 ∈ M µ (C) and D 0 ∈ H µ are defined as follows:

C 0 :=       0 • • • 0 c 1 . . . 0 c 1 c 2 0 c 1 c 2 . . . c 1 c 2 • • • c µ       , D 0 :=          c 2 . . . c µ0+1 c µ0+2 . . . c µ+1 . . . . . . . . . . . . c 2 µ0 c 2 µ0+1 . . . c µ+µ0 D 0          .
The symbol in the definition of D 0 stands for the unique coefficients that make D 0 a Hermitian matrix.

For a vector W = (W 1 , . . . , W m ) ∈ C m , we recall that W s denotes the vector (W 1 , . . . , W µ ), W u denotes the vector (W µ+1 , . . . , W m ). We also introduce the notation W to denote the vector (W µ+µ0+1 , . . . , W m ) ∈ C µ-µ0 . We compute

W * S 0 W = 2 µ0 k=1 c k m j=k W j W m+k-j + µ+µ0 k=2 µ0+1 m j=k j<m+k-j 2 Re (c k W j W m+k-j ) + W * D 0 W .
We first choose c 1 := b m (0) so the upper left coefficient of Re (S 0 M (0)) equals b m (0) 2 > 0. Following the proof of Lemma 12, we also choose c 3 = • • • = c 2 µ0-1 := 0. Using the same arguments as in the proof of Lemma 12 (see appendix A), we can choose inductively c 2 , . . . , c 2 µ0 > 0 sufficiently large such that, for a certain constant C 0 > 0, there holds

W * S 0 W ≥ - 1 4 |W s | 2 + (K 2 + 1) µ0 k=1 |W µ+k | 2 -C 0 | W | 2 + m j=k j<m+k-j 2 Re (c k W j W m+k-j ) + W * D 0 W . ( 69 
)
The constant C 0 in (69) depends on K and b m (0) but it does not depend on c 2 µ0+1 , . . . , c µ+µ0 nor on D 0 . We now choose the coefficients c 2 µ0+1 , . . . , c µ+µ0 as the unique solution to the triangular linear system

   b m (0) 0 . . . . . . b µ+µ0+1 (0) • • • b m (0)       c 2 µ0+1 . . . c µ+µ0    = -    c 1 b m-2 µ0 (0) + • • • + c 2 µ0 b m-1 (0) . . . c 1 b µ-µ0+1 (0) + • • • + c 2 µ0 b µ+µ0 (0)    .
This choice has two consequences. First, c 2 µ0+1 has positive imaginary part. Second, the reader can check that the upper left (µ + µ 0 ) × (µ + µ 0 ) block of Re (i S 0 B 1 ) has purely imaginary coefficients.

Let us now go back to the estimate (69). Since c 2 µ0+1 , . . . , c µ+µ0 are fixed, we wish to apply Young's inequality for the cross products in the right-hand side of (69). More precisely, let us consider a product c k W j W m+k-j with k = 2 µ 0 + 1, . . . , µ + µ 0 and j ≥ k, j < m + k -j. Then at least one of the indices j, m + k -j is strictly larger than µ + µ 0 . It may happen that both are strictly larger than µ + µ 0 . Consequently, we need to derive a lower bound for terms of the form

|W s | | W |, |(W µ+1 , . . . , W µ+µ0 )| | W | or | W | 2 .
We apply Young's inequality in (69) and obtain

W * S 0 W ≥ - 1 2 |W s | 2 + K 2 + 1 2 µ0 k=1 |W µ+k | 2 + W * ( D 0 -C 1 I) W ,
where C 1 > C 0 is a new constant that does not depend on D 0 . With our choice of S 0 , we can compute

Re (i S 0 N m ) = 0 0 0 Re (i D 0 N µ-µ0 ) + H 0 .
The upper left coefficient of H 0 equals Im c 2 µ0+1 > 0. Applying Lemma 8, we can choose a matrix D 0 ∈ H µ-µ0 that satisfies

D 0 ≥ C 1 + K 2 + 1 2 I ,
and such that Re (i D 0 N µ-µ0 )+ H 0 is positive definite. We have thus constructed a matrix S 0 ∈ H m that satisfies all the properties stated in Lemma 17.

We now need to fix the matrices S 1 , S 2 . The choice of S 0 yields Re (i S(δ) M (i δ))

= 0 0 0 H 0 + δ Re (i S 1 N m ) + H 1 H 2 H * 2 0 + δ 2 Re (i S 2 N m + i S 1 B 1 + S 0 β) + O(δ 3 ) , (70) 
where H 1 ∈ H µ+µ0 has purely imaginary coefficients. Let us first choose S 1 ∈ S m such that

Re (i S 1 N m ) + H 1 0 0 0 = 0 . (71) 
We choose S 1 := S 1 + S 1 where S 1 ∈ H m still needs to be determined. Using (71) in (70) eliminates the upper left block H 1 in the coefficient of δ. Moreover, the matrix H 2 ∈ M µ+µ0,µ-µ0 (C) only depends on S 0 which has already been fixed. We can thus apply Young's inequality in (70). For appropriate positive constants c 0 and C 0 , we obtain

Re (i S(δ) M (i δ)) ≥ 0 0 0 2 c 0 I µ-µ0 + δ Re (i S 1 N m ) + δ 2 Re (i S 2 N m + i S 1 B 1 ) -C 0 I + O(δ 3 ) .
(72) At this point, it would seem natural to seek S 1 such that only the lower right (µ -µ 0 ) × (µ -µ 0 ) block of Re (i S 1 N m ) is non-zero. However, this would lead to a disaster since with such a matrix S 1 , the upper left coefficient of Re (i S 1 B 1 ) would be zero (this is because, opposite to case I, b m (0) is now a real number). There would be no way to make the coefficient of δ 2 positive definite.

The following choice turns out to work:

S 1 :=        0 . . . 0 -i b m (0) s 0 . . . 0 0 . . . . . . 0 0 i b m (0) s 0 . . . 0        , s ∈ R . (73) 
This may seem desperate at first glance because s should be so large that the upper left coefficient of δ 2 in (72) is positive. However, choosing s large will introduce a large O(δ) cross term in (72). Let us show in detail why the choice (73) is appropriate. The upper left coefficient of Re (i S 1 B 1 ) is b m (0) 2 s. We thus choose s large enough such that the upper left coefficient of the matrix

Re (i S 1 B 1 ) -C 0 I equals 1. With this choice of S 1 , we compute W * Re (i S 1 N m ) W = b m (0) s Re (W 2 W m ) ≤ c 0 |W m | 2 + C 1 |W 2 | 2 ,
where c 0 > 0 is the constant that appears in (72). Using the latter inequality in (72) and assuming that |δ| is not larger than 1, we get

Re (i S(δ) M (i δ)) ≥ 0 0 0 c 0 I µ-µ0 + δ 2 Re (i S 2 N m ) + Re (i S 1 B 1 ) -C 0 I -C 1 0 0 0 I m-1 + O(δ 3 ) . ( 74 
)
Corollary 1 shows that we can find a matrix S 2 ∈ H m such that the coefficient of δ 2 in (74) is positive definite. Choosing δ small, we thus end up with the estimate

Re (i S(δ) M (i δ)) ≥ c δ 2 I µ+µ0 0 0 I µ-µ0 . 
The symmetrizer S(δ) satisfies properties i), ii), iii) of Lemma 10 so Theorem 5 holds.

• the matrix Re (i S 0 N m ) has the form

0 0 0 H 0 , H 0 ∈ H µ-µ0 ,
where H 0 is positive definite, • the upper left (µ+1+µ 0 )×(µ+1+µ 0 ) block of Re (i S 0 B 1 ) has purely imaginary coefficients.

Proof of Lemma 19. We indicate the form of the matrix S 0 :

S 0 := 0 C 0 C * 0 D 0 ,
where the matrices C 0 ∈ M µ,µ+1 (C) and D 0 ∈ H µ+1 are defined as follows:

C 0 :=       0 0 • • • 0 c 1 . . . . . . 0 c 1 c 2 0 0 c 1 c 2 . . . 0 c 1 c 2 • • • c µ       , D 0 :=          c 1 . . . c µ0+1 c µ0+2 . . . c µ+1 . . . . . . . . . . . . c 2 µ0+1 c 2 µ0+1 . . . c µ+µ0+1 D 0          . The idea is to choose first c 2 = • • • = c 2 µ0 = 0.
Then we choose inductively c 1 , . . . , c 2 µ0+1 > 0 sufficiently large. Then we choose c 2 µ0+2 , . . . , c µ+µ0+1 ∈ C so that the upper left (µ + 1 + µ 0 ) × (µ + 1 + µ 0 ) block of Re (i S 0 B 1 ) has purely imaginary coefficients. Eventually, we choose D 0 ∈ H µ-µ0 positive definite large enough in such a way that the block H 0 is positive definite (the existence of D 0 is ensured by Lemma 8). The details are similar to the proof of Lemma 17.

Once S 0 is fixed, the construction of S 1 and S 2 follows the method used in case IId. This completes the proof of Theorem 5 in case III.

Construction of a symmetrizer: case IV

First of all, we make the assumption on the dissipation index more explicit. Proposition 5. Let M satisfy the assumptions of Theorem 5 and correspond to case IV. Then b m (0) is a non-zero real number, and there holds

∀ q ≥ 1 , ∀ j = 1, . . . , m , i q-1 b (q) j (0) ∈ R .
In particular M (i δ) has purely imaginary coefficients when δ ∈ R is sufficiently small. The method used in the proof of Proposition 3 applies and the process has no end (because all the derivatives i ν-1 (ν) (0) are real). To show that M (i δ) has purely imaginary coefficients, one expands M (i δ) in power series. This is possible because the functions b j are holomorphic.

Since M (i δ) has purely imaginary coefficients for real δ, Kreiss' construction in [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF] applies.

Theorem 6 ([9]

). For all K ≥ 1, there exists an open interval I K that contains 0 and there exists a C ∞ function S defined on I K with values in S m that satisfies

• for all δ ∈ I K , Re (S(δ) M (i δ)) = 0, • for all W ∈ C m , W * S(0) W ≥ (K 2 + 1/2) |W u | 2 -|W s | 2 /2,
• the upper left coefficient of Re (S(0) M (0)) is positive.

In particular, Lemma 10 shows that the conclusion of Theorem 5 holds. We have therefore proved Theorem 5 in all possible cases.

We refer to appendix B for a converse result of Theorem 6.

Example of large size dissipative blocks

We are going to show on an example that blocks of the fourth type and of arbitrarily large size can occur in the discrete block structure. In the example below, such blocks correspond to case I. We consider the scalar transport equation

∂ t u + a ∂ x u = 0 . (76) 
For simplicity, we assume a > 0 but the case a < 0 produces similar results. We recall that A (κ) denotes the symbol defined by (4). For scalar equations and one-step schemes (s = 0), this symbol is a complex number so the uniform power-boundedness and geometric regularity of eigenvalues reduce to the inequality |A (κ)| ≤ 1 for all κ ∈ S 1 . Let us consider an integer J ∈ N that is fixed once and for all. Then we define the numbers

∀ j = 0, . . . , J , q j := 1 2 2 J+1 2 J + 1 J -j 1 2 j + 1 . (77) 
Using these numbers, we define the following finite difference operator (the operator is an approximation of the space derivative ∂ x , as shown below):

Q := J j=0 q j T 1+2 j -T -1-2 j .
Following [6, chapter 6], we consider the Runge-Kutta scheme of order 3 that is obtained after using the operator Q for the spatial discretization (λ still denotes the Courant number ∆t/∆x)

u n+1 j = 3 =0 (-λ a Q) ! u n j . (78) 
We compute

A (κ) = 3 =0 -λ a Q(κ) ! , Q(κ) = J j=0 q j κ 1+2 j -κ -1-2 j .
Assumption 1 is satisfied as long as a = 0. We thus check the 2 -stability of the scheme (78) and compute

|A (e i ξ )| 2 = 1 - λ 4 a 4 12 h(ξ) 4 1 - λ 2 a 2 3 h(ξ) 2 , h(ξ) := J j=0 2 q j sin((2 j + 1) ξ) . (79) 
The main properties of the function h are summarized below.

Lemma 20. Let the numbers q j be defined by (77) and let h be defined by (79). Then h is odd and satisfies ∀ ξ ∈ R , h (ξ) = cos 2 J+1 ξ . The function h vanishes exactly for ξ ∈ Z π. The maximum of h on R, that we denote β J , is positive and is attained when ξ ∈ π/2 + Z 2 π.

The scheme (78) is 2 -stable and geometrically regular if and only if 6 λ a ≤ √ 3/β J . Moreover, the scheme (78) is consistent with the transport equation (76).

Proof of Lemma 20. It is clear that h is odd, and we now differentiate h using the expression (77) of the q j 's:

h (ξ) = 1 2 2 J J j=0 2 J + 1 J -j cos((2 j + 1) ξ) = 1 2 2 J J j=0 2 J + 1 j cos((2 J + 1 -2 j) ξ) = 1 2 2 J+1 2 J+1 j=0 2 J + 1 j cos((2 J + 1 -2 j) ξ) = Re e i ξ + e -i ξ 2 2 J+1
= cos 2 J+1 ξ . 6 The value of β J equals the Wallis integral π/2 0 cos 2 J+1 ξ dξ, that is 2 2 J (J!) 2 /(2 J + 1)!. Since β J tends to 0 as J tends to +∞, the range of stability for the scheme (78) is getting larger and larger with J going to +∞.

It follows that h behaves exactly as the sine function: h vanishes at 0, is increasing on [0, π/2], attains its maximum at π/2, is decreasing on [π/2, 3 π/2] and vanishes at π, attains its minimum at 3 π/2, and so on.

We see on the relation (79) that |A (e i ξ )| is bounded by 1 for all ξ ∈ R if and only if λ a max R |h| ≤ √ 3, which is equivalent to λ a ≤ √ 3/β J . It remains to prove that the scheme (78) is consistent with the transport equation (76). We have

A (e i ξ ) = 1 - λ 2 a 2 2 h(ξ) 2 -i λ a h(ξ) 1 - λ 2 a 2 6 h(ξ) 2 .
Since h(0) = 0 and h (0) = 1, we have h(ξ) ∼ ξ for small ξ, and we obtain

A (e i ξ ) = 1 -i λ a ξ + O(ξ 2 ) = e -i λ a ξ + O(ξ 2 ) .
Applying Theorem 5.2.5 in [START_REF] Gustafsson | Time dependent problems and difference methods[END_REF], the scheme (78) is consistent with (76).

We analyze the behavior of A (κ) when it touches the unit circle S 1 . We assume that the CFL condition is chosen in an optimal way, that is λ a = √ 3/β J . Then we have A (κ) ∈ S 1 if and only if κ ∈ {±1, ±i} according to (79) and to Lemma 20. More precisely, we have A (±1) = 1, and A (±i) = -1/2 ∓ i √ 3/2. Differentiating A (e i ξ ) with respect to ξ and using the properties of h, we obtain A (±1) = ∓λ a = 0. The point 1 which is attained for ξ ∈ Z π on the parametrized curve {A (e i ξ ), ξ ∈ R} is a regular point, see Figure 1. This expansion has two consequences. First of all, we obtain A (i) = • • • = A (2 J+1) (i) = 0, and A (2 J+2) (i) = 0. In the block reduction for M(e -i 2 π/3 ), this corresponds to a block of the fourth type and of size 2 J + 2, see [4, section 3]. Moreover, we also obtain

|A (e i ξ )| 2 = 1 -λ a √ 3 4 (J + 1) (ξ -π/2) 2 J+2 + O(ξ -π/2) 2 J+3 , which corresponds to a dissipation of order 2 J + 2.

We have therefore proved that the scheme (78) gives an example of a block of the fourth type of size 2 J + 2 with a dissipation index m 0 = 2 J + 2. The symmetrizer construction for this block corresponds to case I. It does not seem so easy to find a one-step scheme that yields a block of size m ≥ 2 for which the dissipation index is larger than m (case II or case III). Though the general theory does not exclude this case, we have not yet found an example of a finite difference scheme that produces this behavior.

Appendix A. Some results about matrices A.1. Proof of Lemma 8. For the reader's convenience, we recall the statement of Lemma 8.

Lemma 21. Let C 1 , C 2 ∈ R, let c > 0, and let ν be an integer. Then there exists a matrix H ∈ H ν such that for all W = (W 1 , . . . , W ν ) ∈ C ν , there holds

W * H W ≥ C 1 |W | 2 , ( 80 
)
W * Re (i H N ν ) W ≥ -c |W 1 | 2 + C 2 ν j=2 |W j | 2 . ( 81 
)
Lemma 8 is a refined version of Lemma 5.7 in [START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF]chapter VII] where it is shown that there exists a Hermitian matrix H satisfying (81). Here we want to satisfy (80) and (81) simultaneously.

Proof of Lemma 8.

There is nothing to prove if ν = 1 since N 1 = 0, and it is therefore sufficient to choose H = C 1 . We thus assume ν ≥ 2 in what follows. We choose the matrix H of the form , where a 1 , . . . , a ν , g 1 , . . . , g ν-1 are real numbers to be fixed appropriately. We compute the following relations for all vector W ∈ C ν :

H :=    a 1 0 . . .
W * H W = ν j=1 a j |W j | 2 -2 ν-1 j=1 g j Im W j W j+1 , (82) 
W * Re (i H N ν ) W = ν j=2 g j-1 |W j | 2 - ν-1 j=1 a j Im W j W j+1 - ν-2 j=1 g j Re W j W j+2 . ( 83 
)
The idea is to choose first a 1 , then g 1 , then a 2 , then g 2 and so on, and in the end to choose a ν . More precisely, it follows from an easy induction argument using Young's inequality that for all J = 1, . . . , ν -1, there exist some real numbers a 1 , g 1 , . . . , a J , g J such that the inequalities We can therefore fix some real numbers a 1 , g 1 , . . . , a ν-1 , g ν-1 such that (84) and (85) hold with J = ν -1. Using (85) in (83), we already find that the inequality (81) is satisfied by H. This inequality does not involve the coefficient a ν . If we use (84) in (82), we obtain

J j=1 a j |W j | 2 -2 J-1 j=1 g j Im W j W j+1 ≥ C 1 J-1 j=1 |W j | 2 + (C 1 + 1) |W J | 2 , (84) and 
W * H W ≥ a ν |W ν | 2 -2 g ν-1 Im W ν-1 W ν + |W ν-1 | 2 + C 1 ν-1 j=1 |W j | 2 .
Applying Young's inequality and choosing a ν large enough, we can construct the matrix H such that (80) holds. The proof of Lemma 8 is now complete. A.2. Proof of Lemma 12. We first recall the statement of Lemma 12.

Lemma 22 ( [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF]). Let a ∈ R. Let c > 0 and let C ∈ R. If m is even, there exists a matrix S ∈ S m of the form (22) with s 1 = a, and that satisfies

∀ W ∈ C m , W * S W ≥ C |W u | 2 -c |W s | 2 .
Proof of Lemma 12. Consider the case m = 2. We wish to choose s 2 ∈ R sufficiently large such that the inequality

W 1 W 2 0 a a s 2 W 1 W 2 ≥ C |W 2 | 2 -c |W 1 | 2
holds for all W ∈ C 2 . The result is clear and is based on Young's inequality. The proof of Lemma 12 in the case m ≥ 4 follows the same lines. More precisely, we consider a real symmetric matrix S of size m = 2 µ and of the form (22). The first coefficient s 1 is fixed by choosing s 1 := a. It remains to choose the coefficients s 2 , s 3 , . . . , s 2 µ appropriately. We first make the choice s Re W j W m+2 k-j .

We apply Young's inequality for the first term in the right-hand side. There exists a constant C 0 > 0, that only depends on a and c such that

W * S W ≥ - c 2 µ-1 |W s | 2 + µ k=1 (s 2 k -C 0 ) |W µ+k | 2 + µ-1 k=1 2 s 2 k µ+k-1 j=2 k Re W j W m+2 k-j . (86)
The following property is proved by induction on J = 1, . . . , µ -1: there exist some coefficients s 2 , . . . , s 2 J > 0 and there exists a constant C J > 0 that only depend on a, c, C such that the inequality

J k=1 (s 2 k -C 0 ) |W µ+k | 2 + J k=1 2 s 2 k µ+k-1 j=2 k Re W j W m+2 k-j ≥ C + 1 2 J J k=1 |W µ+k | 2 -c 1 2 µ-1-J - 1 2 µ-1 |W s | 2 -(C J -C 0 ) µ k=J+1 |W µ+k | 2 . (87)
holds for all W ∈ C m . We use the inequality (87) with J = µ -1 in (86). This yields

W * S W ≥ -c |W s | 2 + C + 1 2 µ-1 µ-1 k=1 |W µ+k | 2 + (s 2 µ -C µ-1 ) |W 2 µ | 2 .
It remains to choose s 2 µ := C + C µ-1 and the inequality

W * S W ≥ -c |W s | 2 + C |W u | 2 holds.
Showing that B 2 has real coefficients is a little more difficult. Expanding M (i δ) and S K (δ) at second order, we obtain Re (i S 2,K N m + i S 1,K B 1 + i S 0,K B 2 ) ≥ 0 . 

The coefficient d in (89) equals -s K 1 Im b m (0). If we can show that d is zero, then the matrix Re (i S 0,K B 2 ) has purely imaginary coefficients. Consequently B 2 has real coefficients. Let us assume that d is non-zero or in other words that b m (0) is not a real number (observe that this assumption is independent of K). Then for all j = 2, . . . , m, the coefficient Re (i S 0,K B 2 ) 1,j is a purely imaginary number. We obtain Let us now consider the vector W := (-σ m /2, 0, . . . , 0, 1) that does not depend on K. We use the last assumption of Theorem 7 and derive

0 = W * S 0,K W ≥ K 2 |W u | 2 -|W s | 2 = K 2 - σ 2 m 4 .
Since K can be arbitrarily large and v m is fixed, we are led to a contradiction. We have therefore obtained d = 0 in (89) which yields B 2 ∈ M m (R).

An induction argument then shows that for all integer q ≥ 1, the matrices B 1 , . . . , B 2 q have real coefficients. Theorem 7 is proved.

  Notation. Throughout this article, we use the notationU := {ζ ∈ C, |ζ| > 1} , U := {ζ ∈ C, |ζ| ≥ 1} , D := {ζ ∈ C, |ζ| < 1} , S 1 := {ζ ∈ C, |ζ| = 1} . We let M d,p (K)denote the set of d × p matrices with entries in K = R or C, and we use the notation M d (K) when p = d. The group of invertible matrices of size d is denoted Gl d (K). If M ∈ M d (C), sp(M ) denotes the spectrum of M while M * denotes the conjugate transpose of M . The matrix (M + M * )/2 is called the real part of M and is denoted Re(M ). The real vector space of Hermitian matrices of size d is denoted H d . The vector space of real symmetric matrices of size d is denoted S d .

.∈

  For later use, we introduce the symbol associated with the discretization of the hyperbolic operator∀ κ ∈ C \ {0} , A (κ) := M N (s+1) (C) , Q σ (κ) := p =-r κ A ,σ .

  , . . . , m , where the complex numbers ζ 1 , . . . , ζ m denote the m-th roots of α z/κ. Observe that all these m-th roots have non-zero real part. Consequently, the number µ of stable eigenvalues of M ((1 + ε) z) equals the number of m-th roots of α z/κ of negative real part (use a Taylor expansion for |κ (ε)|). Let us consider the case where m is even. The m-th roots of α z/κ are simple and invariant under the transformation (ζ → -ζ). Therefore m/2 of these roots have positive real part and m/2 have negative real part. Thus µ equals m/2.

Lemma 3 .

 3 Under the assumptions of Theorem 4, let ξ ∈ [0, 2 π[ denote the argument of κ. Then the series

Lemma 9 .

 9 We first choose the matrix E ∈ M µ (R) of the form , e ∈ R , so that E N µ = N * µ E. Then we compute the upper left coefficient of Re (i E B 1

  -1 have real coefficients. Moreover, S 0 has the form (22) with s 1 = b m (0). The upper left µ × µ block of the matrix (46) thus reads

Figure 1 .

 1 Figure 1. The curve {A (κ), κ ∈ S 1 } (blue dots), and the unit circle (black line).

  Im W j W j+1 -Re W j W j+2 ≥ -c |W 1 | 2 + C 2 J j=2 |W j | 2 + (C 2 + 1) |W J+1 | 2 , (85)hold for all W ∈ C ν .

s 2 k

 2 3 = s 5 = • • • = s 2 µ-1 := 0. We compute W * S W = 2 a µ k=1 Re W k W m+1-k + µ k=1 |W µ+k | 2 +

  Since only the first column of B 1 and B 2 are non-zero, we can apply Lemma 23 and deriveRe (i S 2,K N m + i S 1,K B 1 + i S 0,K B 2 ) =

  b 2 (0)) . . . Re (i b m (0))In particular, there exists some real numbers σ 2 , . . . , σ m that are independent of K and such that

Research of the author was supported by the Agence Nationale de la Recherche, contract ANR-08-JCJC-0132-01. and refer to [6] for some discretized boundary conditions.

The analysis of case IId with q 0 ≥ 3 is somehow simpler. The symmetrizer S(δ) is chosen of the form S(δ) := q0+1 q=0 δ q S q , S 0 , . . . , S q0-2 ∈ S m , S q0-1 , S q0 , S q0+1 ∈ H m .

The matrix S 0 is fixed by applying Lemma 12. We then choose S 0 , . . . , S q0-2 by applying Lemma 11. The construction of the matrices S q0-1 , S q0 , S q0+1 follows the arguments that we have just developed above for case IId with q 0 = 1. We leave the details to the reader. The final estimate is Re (S(δ) M (i δ)) ≥ c δ q0+1 I µ+µ0 0 0 δ q0-1 I µ-µ0 , which yields the conclusion of Theorem 5.

6.6. Some remarks. The symmetrizer construction is probably better understood if, for a fixed even integer m, one starts with m 0 = m and increases m 0 . The situation m 0 = m corresponds to case I treated in section 5. The final estimate is Re (S(δ)

Each time m 0 increases of 2 with m < m 0 ≤ 2 m, the final estimate is weakened as follows: a coefficient 1 on the diagonal is replaced by a δ 2 , starting with the (µ + 1)-th coefficient and ending with the m-th coefficient. Since δ is small, the estimate is weaker. When m 0 reaches m 0 = 2 m, that is when q 0 = 2 and µ 0 = 0, the diagonal is filled only with δ 2 . Then we increase m 0 with 2 m < m 0 ≤ 3 m. Each time m 0 increases of 2, one δ 2 coefficient on the diagonal is replaced by a δ 4 . The process goes on and on. We conjecture that such estimates are optimal. Compared to case IV below which was already treated by Kreiss [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF], dissipation helps! More precisely, the matrix Re (S(δ) M (i δ)) is positive definite for δ = 0 in cases I and II. At the opposite, Kreiss' construction in case IV yields a symmetrizer that satisfies Re (S(δ) M (i δ)) = 0. Here, the higher the dissipation, the weaker the estimate.

Eventually, we observe that in all cases I, IIa,. . . ,IId, the symmetrizer S(δ) is a Hermitian matrix and not a real symmetric matrix (except possibly at the origin). Our construction thus differs from Kreiss' choice. In appendix B we determine necessary conditions for the application of Kreiss' choice. In particular, we show that Kreiss' choice can not work for cases I, II and III. We also observe that as m 0 gets larger and larger, our symmetrizer S(δ) tends more and more to become a symmetric matrix and thus to ressemble Kreiss' choice.

Construction of a symmetrizer: case III

In this section, we consider a matrix M (τ ) of the form (16) where m ≥ 3 is an odd number. The dissipation index m 0 defined in Proposition 2 is even so it is necessarily larger than m. The Euclidean division of m 0 by m reads

The integers q 0 and ν 0 are simultaneously even or odd. The analogue of Proposition 3 is the following result whose proof is omitted. The arguments used to prove Proposition 3 work exactly in the same way.

Proposition 4. Let M satisfy the assumptions of Theorem 5 and correspond to case III. Let the dissipation index m 0 satisfy (75). Then the following properties hold:

• for all q = 1, . . . , q 0 -1 and for all j = 1, . . . , m, i q-1 b

Our aim is to construct a symmetrizer S(δ) ∈ H m that satisfies the properties i), ii), iii) of Lemma 10. As for case II, the construction of S(δ) depends on the integers q 0 , ν 0 in the Euclidean division (75). We shall consider the following three possible cases.

• Case IIIa: ν 0 = 0, q 0 is even.

We recall that the integer µ is given by [START_REF] Mneimné | Introduction à la théorie des groupes de Lie classiques[END_REF]. In particular, µ depends on the sign of b m (0). 7.1. Case IIIa. The construction of the symmetrizer follows very closely the analysis in case IIa. We use the expansion (36) for M and choose S of the form (38). The matrix S 0 is chosen by applying the following analogue of Lemma 12.

Lemma 18 ( [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF]). Let c > 0 and let C > 0. If m is odd, there exists a matrix S 0 ∈ S m of the form

Moerover, the coefficient

The construction of S 0 in Lemma 18 depends on the sign of b m (0) because the size of W s and W u depend on b m (0). However, the upper left coefficient of Re (S 0 M (0)) is always positive.

For K ≥ 1, we fix S 0 by applying Lemma 18 with c := 1/2 and C := K 2 + 1/2. Then the construction of the matrices S 1 , . . . , S q0 follows by applying exactly the same arguments as in case IIa. Indeed Proposition 4 shows that B 1 , . . . , B q0-1 have real coefficients and the lower left coefficient of B q0 satisfies b m (0) Im (i q0-1 b (q0) m (0)) < 0 as in case IIa. The final estimate reads Re (S(δ) M (i δ)) ≥ c δ q0 I , which yields the conclusion of Theorem 5.

Case IIIb.

For the sake of clarity, we assume that b m (0) is positive. The relation [START_REF] Mneimné | Introduction à la théorie des groupes de Lie classiques[END_REF] shows that m equals 2 µ + 1. Since q 0 is even, we can write ν 0 = 2 µ 0 with 1 ≤ µ 0 ≤ µ. We follow the analysis of case IIc, and choose the symmetrizer S of the form (55). We also use the expansion (53) of M (i δ) and recall that the relations (54) hold, see Proposition 4.

Given K ≥ 1, the matrix S 0 is fixed by applying Lemma 18. Then the matrices S 1 , . . . , S q0-1 ∈ S m are chosen such that the powers δ, . . . , δ q0-1 in (56) vanish. The construction of S q0 follows from Lemma 16. There is a slight subtlety here. The proof of Lemma 16 was made for the case m ≡ 0(2). Here m is odd and Lemma 14 shows that the image of Φ is characterized by the relations (50), (51). When proving Lemma 16 for m odd, we need to adapt the definition (63) of the matrix H 2 by adding one more coefficient on the diagonal. Anyway, this modification is harmless and the conclusion of Lemma 16 still holds.

Eventually, the construction of S q0+1 , S q0+2 follows from the same arguments as in case IIc. The final estimate satisfied by Re (S(δ) M (i δ)) is identical to case IIc. We skip the details.

When b m (0) is negative, the analysis of case IIIb follows the same argument. Lemma 16 still holds, provided the modification indicated above, because b m (0) and the coefficient s 1 in the matrix S 0 have the same sign (in particular (60) holds again and the rest of the proof follows). 7.3. Case IIIc. It remains to consider the case when m is odd, q 0 is odd and therefore ν 0 is also odd. For the sake of clarity, we shall assume b m (0) > 0, so m = 2 µ + 1. The integer ν 0 is written as

First of all we consider the case q 0 = 1. Let K ≥ 1. We use the expansion (67) for M (i δ) and choose the symmetrizer S of the form (68). The matrix S 0 is fixed by applying the analogue of Lemma 17.

Lemma 19. There exists a matrix S 0 ∈ H m that satisfies

When does Kreiss' construction apply ?

In this appendix, we clarify when Kreiss' symmetrizer construction works. We show that it actually works only in case IV. Our result is the following. Theorem 7. Let m ≥ 2 and let M be given by (16) where the functions b 1 , . . . , b m are holomorphic on a neighborhood of 0 and vanish at 0. Assume that there exists an integer µ ∈ {1, . . . , m -1} such that the following property holds:

For all K ≥ 1, there exist two constants α K > 0, c K > 0, and there exists a

. . , W µ ) and W u := (W µ+1 , . . . , W m ). Then M (i δ) has purely imaginary coefficients for all δ ∈ R sufficiently small.

Theorem 7 shows that the choice S K (0, δ) ∈ S m that was made in [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF], see also [START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF][START_REF] Benzoni-Gavage | Multidimensional hyperbolic partial differential equations[END_REF], is convenient only in case IV. When the dissipation index is finite, one needs to consider a symmetrizer S K (0, δ) with complex coefficients. As a byproduct, our new construction of the symmetrizer in cases I, II, III was necessary.

Proof of Theorem 7. We adopt some similar notation to what was introduced in the proof of Theorem 5. More precisely, we introduce the matrices B q ∈ M m (C) defined by (37) for q ≥ 1. For K ≥ 1, we also introduce the notation S K (δ) := S K (0, δ), and ∀q ∈ N , S q,K := 1 q! ∂ q S K ∂δ q (0, 0) ∈ S m . In order to prove Theorem 7, it is sufficient to show that all matrices B q have real coefficients.

Let K ≥ 1. Then S 0,K is a real symmetric matrix such that Re (i S 0,K N m ) is nonnegative. We feel the following Lemma can be used without proof since it is elementary.

Lemma 23. Let m ≥ 2 and let H ∈ H m satisfy H ≥ 0 and ∀ j = 2, . . . , m , H j,j = 0 .

The matrix Re (i S 0,K N m ) has purely imaginary coefficients. Lemma 23 gives Re (i S 0,K N m ) = 0. Applying Lemma 6, we find that S 0,K has the form (22), that is

Let us now show that the coefficient s K 1 is non-zero. The Taylor expansion of S K (γ, 0) gives Re S K (0, 0) M (0) + i ∂S K ∂γ (0, 0) N m ≥ c K I .

In particular, the upper left coefficient of Re (S K (0, 0) M (0)) is non-zero, which yields s K 1 = 0. Let us now show that the matrix B 1 has real coefficients. Using a Taylor expansion, we obtain Re (S K (δ) M (i δ)) = δ Re (i S 1,K N m + i S 0,K B 1 ) + O(δ 2 ) ≥ 0 .

This implies

Re (i S 1,K N m + i S 0,K B 1 ) = 0 , because δ can be either positive or negative. In particular, Re (i S 0,K B 1 ) is a Hermitian matrix with purely imaginary coefficients. Using the form (88) of S 0,K with s K 1 = 0, and the expression (37) of B 1 , we obtain that all coefficients of B 1 are real.