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F (F ree(A)) = ⌊F (A) -∪ F (A) ⊙ ⌋, where B - {G -e | G ∈ B, e ∈ E(G)} and B ⊙ {H | H ∼ = G ⊙ v, G ∈ B, v ∈ V (G)
} and operation ⊙ [in its application G ⊙ v] denotes a non unique splitting of vertex v in G, which is the opposite operation to edge addition and its contraction [in result giving vertex v].

We may formulate the unproved statement of [START_REF] Zeps | The Triconnectivity Considered Dinamically, KAM Series N 90-168[END_REF] as a theorem for class of planar graphs P lanar:

Theorem 1. F ree(P lanar) = N • (K - 5 , K - 3,3 ).
It is convenient to call the graphs K - 5 , K - 3,3 -reduced Kuratowski subgraphs (or minors or graphs). Now, direct application of the theorem of Kratochvíl gives the proof of theorem 1, that has been already shown in [START_REF] Kratochvíl | About minor closed classes and the generalization of the notion of free-planar graphs[END_REF]. All possible graphs obtainable following the theorem are in fig. 1.

In [START_REF] Kratochvíl | About minor closed classes and the generalization of the notion of free-planar graphs[END_REF] Kratochvíl suggested to prove Kuratowski's theorem from its weaker version for freeplanar graphs. We do this here in two ways. One way -first specifying the class generated from reduced Kuratowski minors and then showing that it coincides with the class of free-planar graphs and then proving Kuratowski theorem itself. Second way -we prove Kuratowski theorem for free planar graphs directly, showing that with slight alteration this proof fits for a complete class of planar graphs too.

Let us set F P = N • (K - 5 , K - 3,3 ) and start with proving, that graphs belonging to the class F P are free-planar, i.e. an extra edge does not make them nonplanar. Here we should explain how we are going to use Kuratowski theorem during the time we prove it. From a fact that G has a Kuratowski graph as minor we conclude that it is non-planar, i.e. we use the weak direction of Kuratowski theorem. Otherwise we conclude graphs planarity directly embedding it in the plane in cases when the graph is small or built up from 3-connected components in a certain way.

Theorem 2. For ∀G ∈ F P and ∀e ∈ E(G) G + e is planar.

Let us prove this theorem in several steps: firstly, enumerating by several theorems all possible graphs belonging to F P and thereafter, by direct check of each graph (or class of graphs) stating the assumption of the theorem.

Let us denote by ξ (see fig. 2) a particular graph K 2,3 with an extra hanging edge added to the vertex [s with hanging end t] of degree 2. Let vertices in K 2,3 of degree 3 be denoted x and y. Let the remaining vertices of degree 2 be u and v.

Let us denote by m i (i > 0) (see fig. 3) a graph, that actually is a multiedge of degree i with i-1 (elementary) subdivided edges (naming it i-multiedge), e. g.

m 1 ∼ = K 2 , m 2 ∼ = C 3 , m 3 ∼ = K - 4 . Theorem 3. [Subgraph ξ theorem] If G in F P is 3-connected, then ξ is not its minor.
Let us first prove a lemma. Proof. Let us assume, that G is 3-connected, has no one reduced Kuratowski minor, but has 4-multiedge as its minor. But, let us note, that m 4 as a minor is equivalent to K - 5 minus two incident edges at a vertex of degree four. Further, because of 3-connectivity, these absent edges should be recompensed by a chain [, uniting two vertices of degree two and going through the third one and avoiding vertices of degree three (condition of 3-connectivity)] (see fig. 4). Thus, existence of 4-multiedge implies existence of K - 5 too.

Lemma 4. If G in F P is 3-connected, then m 4 is not its minor.

Proof. [Proof of the subgraph ξ theorem]

We can not unite t with any vertex outside the chain x..s..y, without giving K - 3,3 , nor unite t with x or y, because uniting t with, say, y and contracting x..s, we get m 4 . Furthermore, we can not unite t with vertices inside the chain x..s..y, because contracting the subchains of this chain from ends until the touch vertex and s we get m 4 . Thus G can not have any minor isomorphic to ξ.

The fact that m 4 is forbidden for graphs in F P can be formulated in the following assertion.

Corollary 5. [3-chain corollary] Let G be 3-connected in F P . Then G is isomorphic to K n , n < 5 or every pair of vertices are joined by 3 disjoined chains that contain all vertices of the graph and the remaining edges join inner vertices of different chains.

Still, we need one more theorem that would help us to determine, which graphs belong to F P . Theorem 6. For every 3-connected G ∈ F P there exists an edge e, that Ge is outer planar.

Proof. Let us assume G different from K n , n < 5 and the theorem is not right, i.e. Ge is not outer planar. Because of 3-chain corollary and 3-connectivity condition, arbitrary pair of vertices s and t are joined by just three chains, where all vertices are positioned on these chains. By the incorrectness assumption every of these chains contain at least one inner vertex, otherwise it should be outer planar. Let us denote these chains s..x..t, s..y..t and s..z..t. Then, by the same arguments x and y join similar chains too. It is possible, supposing that all inner vertices of s..z..t now are on x..y which avoids s, t. But the same argument must be right also for a pair, say, x and z. It is impossible without giving K - 5 .

Now we are ready to enumerate 3-connected graphs belonging to F P .

Theorem 7. [Prism-and wheel-graph theorem] The only properly 3-connected graphs belonging to F P are the prism-graph [C 6 ] and the wheel-graph

[W k (k > 2)].
Proof. Let us assume G different from K n , n < 4. Let us choose the edge e = s (joining vertices s and t) that Ge is outer planar. Then two chains s..t contain all other vertices of the graph G. Let l be the length of the shortest of these chains. Case l=1 is not possible. For l=2 all cases with the number of inner vertices on the other chain i > 0 are possible, giving graphs

W k (k = i + 2 > 3)[wheelgraph].
Let the length of both chains be 3. This gives a possible graph C 6 [prismgraph].

Let both chains be longer than 2 excluding both being equal to 3. Let the chains be s..x 1 ..x 2 ..t and s..y 1 ..y 2 ..y 3 ..t. If we join x 2 with y 1 or y 2 then x 1 joined with y 3 would give K - 3,3 . By symmetry all other cases are excluded too.

Up to now, we have considered the cases of 3-connective graphs in F P . Further, let us consider other cases and let us state, which edges in the 3-connected graphs eventually can be subdivided and which not in order to get different from 3-connected members of F P . Surely, by this reasoning we must get all non 3-connected graphs [START_REF] Zeps | The Triconnectivity Considered Dinamically, KAM Series N 90-168[END_REF], because the edges that can be subdivided are just those [and only those], that can become virtual edges, when the graph is divided into 3-connected components. We are now ready to specify all the class of graphs F P by enumerating all possible graphs in it. In fact, we name all possible 3-connected graphs in F P with additionally telling which edges in them might become virtual as if the graphs that are not 3-connected would be divided into 3-connected components.

Dealing with the 3-connected components, we must admit , that they are in general multigraphs [START_REF] Zeps | The Triconnectivity Considered Dinamically, KAM Series N 90-168[END_REF].

Corollary 11. Graphs or their 3-connected components that belong to F P are [START_REF] Zeps | The Triconnectivity Considered Dinamically, KAM Series N 90-168[END_REF]: 0) C n or m n , n > 2 with all edges possibly being virtual edges; 1) W 3 with spike edges possibly being virtual edges; 2) W k , k > 2 with rim edges possibly being virtual edges; 3) C 6 with possible virtual edges not belonging to triangles.

Proof. Dividing the graph into 3-connected components, possible virtual edges can be only these edges which can eventually be subdivided, to give possible new members of F P .

Proof. Completion of the proof of theorem 2 Now, it can be immediately checked, that adding an edge to the properly 3-connected graphs of F P , i.e. prism-graph and wheel-graph, can not give a nonplanar graph. This does not need use of Kuratowski theorem because we infer planarity from direct implementation in the plane. Further, looking through all cases of corollary 11, immediately can be checked, that subdividing edges in the mentioned graphs, as it is allowed by the 3 last theorems, and adding an extra edge, can not give a graph, that is not embeddable in the plane. Now the theorem is proved, saying that adding an edge to G from F P always gives a planar graph. We have proved that F P is a subset of the class of free-planar graphs. Let P lanar be class of planar graphs. The result of theorem 2 can be expressed in the following lemma.

Lemma 12. F P ⊆ F ree(P lanar).

Furthermore, we want to show that these sets in fact coincide. For this purpose, the following lemma is useful.

Lemma 13. K - 5 , K - 3,3 ∈ F (F ree(P lanar)).

Proof. It is easy to see, that K - 5 , K - 3,3 are forbidden in F ree(P lanar) -addition of an appropriate edge gives a nonplanar graph. Further, the corresponding elimination of an edge in both graphs K - 5 and K - Further, from two facts, F (F P ) = {K - 5 , K - 3,3 } and F (F ree(P lanar)) is equal to {K - 5 , K - 3,3 , ...something}, there follows, that F ree(P lanar) ⊆ F P . Now, together with lemma 12 we might formulate, what may be called, the Kuratowski theorem for free-planar graphs.

Theorem 14 (Kuratowski-like theorem for free planar graphs). F (F ree(P lanar)) = {K - 5 , K - 3,3 }.

In fact, as we have already seen in the beginning, this theorem would be easy got using both traditional Kuratowski theorem and Kratochvíl's theorem [START_REF] Kratochvíl | About minor closed classes and the generalization of the notion of free-planar graphs[END_REF], but now we did this proof without the use of these theorems.

Let us prove Kuratowski theorem from its weaker version, i.e. from this Kuratowski-like theorem that we have just proven.

Theorem 15 (Kuratowski theorem-version 1).

F (P lanar) = {K 5 , K 3,3 }.
Let us first prove a lemma.

Lemma 16. Let H be critical non-planar minor. Then H minus two arbitrary edges is freeplanar.

Proof. Let H be minimal non-planar minor distinct from Kuratowski minors and besides let us assume that it is not free-planar after deleting some two edges from it. Let us assume these edges be e and f . Then there must be an edge h so that Hef + h is non-planar. Then 1) He + h[= H ′ ] is non-planar; 2) H ′ minus some non-empty set of edges is critically non-planar [= H"] [and because of minimality of H, H" be equal to one of the Kuratowski minors]; 3)H"e is planar graph such that with h becomes non-planar. Let us imagine in the place of H" be some of Kuratowski graphs. Then there must be some non-edge h such that Kuratowski graph without arbitrary edge plus h becomes non-planar. It is not possible for Kuratowski graph[For K 5 it is trivially, for K 3,3 after some simple consideration]. Contradiction.

Proof of the Kuratowski theorem. Let us assume that there is some non-planar minor distinct from Kuratowski minors. It must be free-planar after reduction of two edges. Let after removing edge i from H reduced Kuratowski graph K i be left undestroyed. Let us choose the next edge j from K i and after this K j be left undestroyed. Then after removing both edges i and j graph must be free planar, i.e. both K i and K j should be destroyed. Followingly, i must belong to the edges of K j . Let us choose i and j from r.K.m. K ij , where i leaves K i undestroyed and j -correspondingly K j . Then, deleting i and j all three r.K.m's should disappear, but as a consequence edge sets of K i and K j must intersect at least in a subset of two edges, i and j.

At least two edges are there that do not belong to this intersection, i.e. l i from K i and l j from K j . Eliminating edges l i and l j all r.K.m's should disappear, but K ij is left untouched, thus we have come to contradiction.

Further we give a proof of the Kuratowski theorem for free-planar graphs, which serves as a proof for Kuratowski theorem for all class of planar graphs too.

Theorem 17 (Kuratowski theorem-version 2).

F (P lanar) = {K 5 , K 3,3 }.
Proof. Without loss of generality we suppose that graph G is two-connected.

Let us assume that theorem is not right and G is not free planar and it does not contain reduced Kuratowski minors. Then there is a cycle C with two vertices x, y on it and at least two bridges B x and B y that screen x from y on C and either they are not placeable on one side against C or they are connected [i.e. not placeable together] with an alternating [i. -is not hold. When this condition is not true, easy checkable K - 3,3 arises. and the chain through y goes through even vertices belonging to, say, inner bridges of joining sequence of bridges. The chain through x goes through odd vertices, i.e. outer bridges of the sequence of joining bridges. Thus G must have reduced Kuratowski graphs as its minors and G + xy correspondingly -Kuratowski graph as its minor. This completes the proof of the Kuratowski theorem . It is easy to see that case 3 in the last proof is not necessary, i.e. it is equal to case 4 with k = 0.
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 12 Figure 1: Graphs received applying the theorem of Kratochvíl to Kuratowski graphs.
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 34 Figure 3: Graph m i , i = 1, ..., 4
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 567 Figure 5: Prism graph with the triangle-edge subdivided, thus giving a minor K - 3,3 .
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 33 , gives four possibilities for free planar graphs which are shown in fig. 8. The corresponding vertex split gives two non-trivial possibilities [see fig. 9].
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 33 Figure 8: K - 3,3 and K - 5 without an edge give four non isomorphic graphs

.

  Figure 10: A bridge [x, a, b, y, c, d] with respect to a cycle with two distinguished vertices x and y: a) a bridge in general; b)a trivial screening bridge [F, a, a, F, d, c) a trivial non-screening bridge [F, a, b, F, F, F ]; d) edge x, y as a bridge with respect to C [T, F, F, T, F, F ].

  e. on one and other side of C] sequence [B 1 , ..., B 2k , k > 0] of non-screening [x from y] bridges. Finding of reduced Kuratowski minors would reprove the incorrectness assumption. Let us describe bridge with sextet [x, a, b, y, c, d], where values of it are either vertices on the cycle C or logical values T (= true) or F (= f alse) [see fig. 10]: 1) in place of x(y) stands T if x(y) is a leg[i.e. touch vertex to C] of the bridge, otherwise F ; 2) a(c) is nearest leg clockwise from x(y), if different from y(x), otherwise F ; 3) b(d) is nearest leg anticlockwise from y(x), if different from x(y), otherwise F ;
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 11 Figure 11: Case 4 in the proof of Kuratowski theorem

  4) Similarly as in case 3 bridges B x and B y can not be placed on one side of C, if alternating sequence of bridges, say of form, [F, a i , b i , F, F, F ] [0 < i ≤ 2k] join them when the conditionexistence of path x.a 1 ..b x .a 2 ..b 1 .a 3 .. ... .a 2k ..b 2k-1 .a y ..b 2k .y -is hold. When the bridges joining condition is true, K - 3,3 arises [see fig. 11]: 1) cycle a y ..d y ..c x ..b x .a 2 .b 2 .a 4 . ... .b 2k-2 .a 2k ..b 2k-1 .a y ; 2) a chain through x: c x ..x.a 1 ..b 1 .a 3 .. ... .a 2k-1 ..b 2k-1 ; 3) a chain through y: d y ..y.b 2k ..a 2k . It can be seen from fig. 11[and fig. 12 with K - 3,3 bold] that both the cycle of supposed K - 3,3
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 212 Figure 12: Minor K 3,3 bold: 1) cycle avoiding x and y, 2) chain through x outside and 3) chain through y inside
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