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Introduction

Usually, speaking about graphs on orientable surfaces [START_REF] White | Groups and Surfaces[END_REF], we suppose that edges incident with a vertex are cyclically ordered, or, in other words, the rotation of such graphs is fixed. Actually the objects that are fixed are ordered pairs of edges that follow one another in the cyclical order around a vertex. We name such pair of edges a corner due to a natural geometrical interpretation. Now thinking in terms of corners we may say, that just the corners around vertices are ordered cyclically. Moreover, the cyclical sequences of corners of different vertices do not overlap, so they form together one common permutation on the set of all corners. We look on this permutation as the rotation of this graph. Further, if we "forget" the other information about the graph except this one permutation, then the graph cannot be restored uniquely. Only if we take permutations both of the graph and its dual graph (on this surface), then the graph is restorable (up to isomorphism) from them, but, of course, together with its rotation, i. e. its imbedding in the surface. Generally, two arbitrary permutations p 1 and p 2 , whenever all cycles of p -1 1 • p 2 are transpositions, define some graph with fixed rotation(up to isomorphism). In this work we are dealing with combinatorial objects called (combinatorial) maps, which are pairs of permutations.

Combinatorial maps have been studied in many works by several authors, for example [START_REF] Vince | Combinatorial maps[END_REF][START_REF] Stahl | Permutation-partition pairs: A combinatorial generalization of graph embedding[END_REF][START_REF] Stahl | A combinatorial analog of the Jordan curve theorem[END_REF][START_REF] Stahl | A duality for permutations[END_REF][START_REF] Tutte | Combinatorial maps[END_REF][START_REF] Little | Cubic combinatorial maps[END_REF][START_REF] Bonnington | Fundamentals of topological graph theory[END_REF]. This work is done independently from them.

Many ground things considered in this work are well known for many years. But in some points we differ from the attitudes of the named authors. For example, we define a binary operation on the maps that corresponds to multiplication of permutations. This operation is defined only if the product p -1 1 • p 2 is equal for both the graphs and so it is common for the set of graph that is closed under this operation. This set is as big as the set of all permutations (of some fixed degree). Consequently it gives possibility to establish one-one map between all maps and all permutations. We are arrived at the situation where one permutation corresponds to one graph, and, if we could consider this permutation as the rotation of this graph, then this graph is given, when just this rotation is given.

This insight gives us right to speak now about graphs as rotations in the place of graphs with rotation, when we consider them as a whole set, that is closed under one common operation.

All permutations of fixed order comprise the class of maps closed under multiplication of maps.

In chapter 6 we enter a notion of combinatorial knot that is uniquely connected with the edges of that map. It corresponds to zigzag walks in [START_REF] Bonnington | Fundamentals of topological graph theory[END_REF]. In [START_REF] Liu | A Polyhedral Theory on Graphs[END_REF] it is called a closed travel obtained by the T.T.Rule . Every knot defines some subclass of combinatorial maps these with fixed edges. Besides, we define selfconjugate map with as many links in its knot as edges in it. We prove that the subclass of selfconjugate maps is a subgroup of the fixed class of combinatorial maps and that every map can be expressed as the multiplication of the knot of a map with some selfconjugate map.

Permutations

Fixed elements in permutations are these that form cycles of length one. Transpositions are cycles of length two. Permutations with only fixed elements and transpositions we call involutions. Involutions without fixed elements we call matchings.

Our permutations act on a universal set C the elements of which we call sometimes corners (or simply elements). For a permutation P and c ∈ C c P denotes that element of C to which c goes over. We are multiplying permutations from left to right. For two permutations P and

Q P Q equals to Q -1 • P • Q and is the conjugate permutation to P (with respect to Q). When S is a cycle (c 1 c 2 . . .) in P , then S Q is the cycle (c Q 1 c Q 2 . . .) in P Q . (For arbitrary permutations P, Q, R it holds: (P Q ) R = P Q•R and (P • Q) R = P R • Q R .
) I denotes identical permutation, i.e. that with all elements fixed. One way to express a cycle (c 1 c 2 . . . c k )(k > 0) of some permutation as the multiplication of transpositions is this: (c k c k-1 ) . . . (c 2 c 1 ).

Combinatorial maps

We say that two permutations P and Q of equal order n are differing whenever i P = i Q for every i ∈ [1 . . . n]. A pair of permutations (P, Q) we call combinatorial map whenever P and Q are differing permutations and P -1 • Q is a matching.

We denote the product P -1 • Q with the letter π. It is convenient to choose one fixed π. In that case we are speaking about a map P , keeping Q and matching π in mind, or saying, that π is fixed. The definition of the combinatorial map is such, that we do not need to speak about the orders of the permutations. But sometimes we do, and then it is easy to see, that the order of the permutations P, Q, π is even, let us put it equal to n = 2 × m.

We say, that P, Q, π act on 2m corners or elements. If C is the set of corners , then it is divided by π into m pairs. Let (c 1 , c 2 ) be such a pair, i.e. c π 1 = c 2 . Then there exists such pair of corners (c, c ′ ) that (c, c ′ ) • P = P • (c 1 , c 2 ). We call the pair (c, c ′ ) an edge of the map and (c 1 , c 2 ) we call a next edge of the map. We call matching π the next-edge-matching(n-matching) of a map. For a map (P, P • π) there exists some other unique matching ̺ satisfying ̺•P = P •π. We call matching ̺ edge-matching(e-matching) of the map. We say that π contains next edges and ̺ contains edges of the map P , n-matching π being fixed.

For a combinatorial map (P, Q) we call the map (Q, P ) its dual combinatorial map. We use also denotation P for Q, saying that P is dual to P by π being fixed.

Closed classes of combinatorial maps

Let us define the multiplication of two maps S and T (with fixed the same nmatching π) as usual multiplication of permutations, i.e. we put

(S 1 , S 2 ) • (T 1 , T 2 ) = (S 1 • T 1 , S 1 • T 1 • π)
by definition, where on the left side of the expression sign ′ • ′ stands for multiplication of maps.

It is easy to see that

(S 1 , S 2 ) • (T 1 , T 2 ) = (S 1 • S 2 , S 1 • T 2 )
In practice, writing S • T we mean both multiplication of permutations S and T and multiplication of corresponding maps with common n-matching π.

It is easy to see that it hold 1) (S, S)

• (T, T ) = (S • T, S • T ) 2) (S, S) • ( T , T ) = (S • T , S • T ) 3) ( S, S) • (T, T ) = ( S • T, S • T ) 4) ( S, S) • ( T , T ) = ( S • T , S • T )
Multiplication for maps with different n-matchings is not defined.

For any fixed n-matching (with m next edges) the set of all permutations P 2m with 2m elements defines and forms a class of maps that is closed against multiplication of maps. For two different permutations we have correspondingly two different (not equal) maps. Hence, we have established one-one map between a set of permutations and a set of maps. So, we may think in terms of one fixed n-matching and a set of all permutations, under each permutation seeing a graph P that stands for the ordered pair (P, P ). So, for arbitrary permutation P we have also a graph (P, P )). Let us take the map (I, π) as identity map. Graphically interpreted it consists of m isolated edges. Its dual map (π, I) consists of m isolated loops.

P -1 being reverse permutation of P , (P -1 , P -1 • π) is called reversed map of (P, P ). So, both map and its reverse map belong to the same class of maps closed under multiplication. Hence, because all permutations with 2m elements comprise the symmetric group S 2m [START_REF] Zeps | Graph Theory and Finite Combinatorics[END_REF][START_REF] Wielandt | Finite Permutations Groups[END_REF], so similarly, all maps with one fixed n-matching form a group that is isomorphic to S 2m .

If (a, b) is a transposition, (a, b) • P can be graphically interpreted as a union of two vertices at the given corners a and b (or split of the vertex which contains both corners)in the graph corresponding to the map P . Remembering that each permutation can be expressed as a sequence of multiplications of simple transpositions, each map can be generated by this sequence of the operations of union of two corners (or split of vertex): if P = (a l b l )(a l-1 b l-1 )...(a 1 b 1 ) for some l > 0 then P 0 = I, P k = (a k , b k ) • P k-1 , 0 < k ≤ l, P = P l . Graphically, this shows l unions of vertices (or splits)at given corners giving the graph P .

It is convenient to choose one special class of maps with n-matching equal to π = (12)(34) . . . (2i-1 2i) . . . (2m-1 2m). The maps of this class we call normal. It is convenient for practice to get used to some particular chosen n-matchings and this one named normal is sufficiently natural.

The multiplication of maps gives right to the following graphical interpretation. The right member of multiplication is the map is the given one, i.e. that is subjected to changes, but the left comprise these transpositions that must affect the right one. Consequently, a map can be considered as move from one map to some other. In category language a map is both the object and the arrow.

In applications it is convenient to choose one big natural number, say M, and consider it as the bound for the possible number of edges in maps . Taking this number M as the order of all permutations, defining maps, then formally all maps have M edges, but most of them should be isolated. Such view is convenient also because it can be used directly in computer application. The only pay for this approach is that we loose possibility to have isolated edges, when we actually need them, from some graph theoretical point of view. In the graphical interpretation then we have, say, at the beginning M isolated edges (being initialized), and each permutation, multiplied to the currant graph, is some set of transpositions, that union and split vertices at distinct corners, giving in this way new graphs.

Classes of maps with fixed edges

For a map P with n-matching π its e-matching ̺ is equal to P • π • P -1 (= π P -1 ). Except P there exist other maps with the same e-matching. Truly, every permutation Q against which matchings π and ̺ are conjugate, defines a map with the same e-matching ̺.

Let us define a set K ̺ of maps as class of all maps whose e-matching is ̺. For different ̺ these classes K ̺ are subclasses of maps of all class of maps with fixed π, under which one this subclass is special, namely, K π , that comprise the maps with e-matching equal to π. This subclass is not empty, because the maps (π, I) and (I, π) belong to it. Really, ̺ I = π I = π.

Theorem 1 For two maps S, T with n-matching π e-matching of their multiplication

S • T is equal to ̺ S -1 T , i.e. ̺ S S•T = ̺ T . Proof ̺ S•T = S • T • π • T -1 • S -1 = S • ̺ T • S -1 = ̺ S -1 T . Let us denote by P • K σ class of maps {P • Q|Q ∈ K σ }.
From theorem 1 we know that P • K σ goes into K ̺ , where ̺ = σ P -1 . We are going to prove the equality of these classes. First we start with this.

Theorem 2 K π is a group. Proof If ̺ S = ̺ T = π then ̺ S•T = S • T • π • T -1 • S -1 = S • π • S -1 = π. Further, ̺ S -1 = S -1 • π • S = π.
Identity map also belongs to this subclass , and, so, it forms a subgroup.

Theorem 3 P • K σ = K σ P -1 . (P • K T P = K T .)
Proof If σ = π then P • K σ is a left coset of K σ equal to K π P -1 and theorem is right.

Let σ = π and Q be such map that Q • K π = K σ , i.e. Kσ is a left coset of K π and Q is some of its elements:

̺ Q = π Q -1 and Q belongs to K σ by theorem 1. If P • Q = R then we have P • K σ = P • Q • K π = R • K π = K π R -1 = K σ P -1 .
As a conclusion of this theorem we have that the class K π and its left cosets are classes with fixed edges.

Corollary 1 Left cosets of K π are classes of maps with fixed edges.

So arbitrary map P with e-matching ̺ = π P -1 belongs to K ̺ = P • K π . For two involutions σ and τ (σ 2 = τ 2 = I) we write σ ⊆ τ , if every transposition of σ is also a transposition in τ .

Lemma 1 P π = P iff P ∈ K π . Proof ̺ P = π ≡ π = P • π • P -1 ≡ P = π • P • π ≡ P = P π .
Let c be a cycle of P . Cycle c π is called its conjugate cycle (with respect to π). If c = c π then it is called a selfconjugate cycle. If every cycle in P has its conjugate cycle in P or is selfconjugate then P is called selfconjugate map. Lemma says that K π is the class of selfconjugate maps with respect to π.

We reformulate this in theorem.

Theorem 4 K π is the class of selfconjugate maps with respect to π.

We can reveal the structure of these maps as follows.

Theorem 5 K π is isomorphic to S m • S m 2 .
Proof 

• Q 2 where Q 1 has corners of C 1 and Q 2 corners of C 2 .
Then Q 1 and Q 2 are both isomorphic between themselves and to some permutation in S m and σ isomorphic to some permutation of S m 2 .

Theorem 6 | K π |= m! × 2 m . Proof | S m |= m! ; | S m 2 |= 2 m .
Theorem 7 K π has (together with itself ) (2m -1)!! left cosets.

Proof We have as many left cosets of K π as many e-matchings can be generated.

Their number is (2m -1)!! . One more way to convince oneself that all left cosets of K π have the same number of elements, i.e. (2m -1)!!, and that they really do not overlay each other, is to see that the equality (2m -1)!! × m!2 m = (2m)! holds.

Combinatorial knot

Let (P, P • π) be a map on set of corners C and ̺ = π P -1 . Let C 1 ∪ C 2 be some partition of C such that it is induced both by π and ̺, i.e. for every both edge and next edge one of its corner belongs to C 1 and other to C 2 . In this case we say that C is well partitioned or well colored in two colors or we say that C 1 ∪ C 2 is well coloring of C induced by this map (P, P • π).

Theorem 8 There always exists well coloring of C induced by arbitrary map (P, P • π).

Theorem 11 Let (π 1 , P ) ≃ (π 2 , Q), i.e. they are conjugate with respect to A. Both maps belong to one closed against multiplication class of maps iff A ∈ K π with π = π 1 .

Proof If A ∈ K π 1 then π A 1 is equal to π 1 ,but because of conjugacy of π 1 and π 2 against A also equal to π 2 . So π 1 = π 2 and P and Q are maps in one class with π = π 1 = π 2 . Conversely, if π 1 = π 2 , then π A 1 = π 2 = π 1 and A ∈ K π .

  Let P ∈ K π and P work on C and C 1 ∪ C 2 be one partition of C induced by π. Then there is such involution σ ⊆ π that P = Q • σ and cycles of Q belong completely to C 1 or C 2 . i.e. if a cycle c goes into C 1 then c π goes into C 2 or reversely. Q can be expressed as Q 1
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Proof Let c 1 c 2 . . . c 2k be a cycle of corners such that c 2 = c π 1 and c 3 = c ̺ 2 and so on in alternating way, i.e. c 2i = c π 2i-1 and c 2i+1 = c ̺ 2i ,for i = 1, . . . k, where

3 and so on, until c k+1 = c k , but it isn't possible. It follows, that these cycles may have only even number of elements.

Then we may put odd elements of cycle in C 1 and even elements in C 2 . If this cycle runs through all corners, then we have only one possibility to color all corners. Otherwise we choose arbitrary non colored corner taking it as c 1 and proceed as before. In the end we get well partition C 1 ∪ C 2 induced by the map (P, P • π).

Let us define permutation µ having cycles as in the previous proof, i.e. if

Permutation µ is called combinatorial knot. In place we use shorter name knot for µ. In a graphical 'corner' interpretation µ really is (alternating) knot of the graph [START_REF] Burde | [END_REF]. In [START_REF] Bonnington | Fundamentals of topological graph theory[END_REF] it is called zigzag walk.

Lemma 2 If µ is a knot then if µ ′ is obtained with some cycle of µ changed in the opposite direction then µ ′ is also a knot.

Proof Starting a new cycle in the proof of 8 we can choose a corner arbitrary . Consequently, cycle in a knot can go in one or another direction. It follows that if µ is a knot then also µ -1 is a knot. It is easy to see that a knot µ depends only on π and ̺, so it is common for all class K ̺ . The following theorem shows that, if we consider a map (π, µ) then ̺ µ = ̺.

Proof Taking (cc π ) ∈ π , (cc π ) µ equals to (c π c π̺ ) or (c ̺ c ππ ) = (c ̺ c) both cases giving (cc π ) µ ∈ ̺.

By µ(π, ̺) we denote arbitrary knot of some map belonging to K ̺ . Previous theorem and 3 gives what follows .

This gives right for what follows.

Corollary 2 Every map can be expressed as a knot of this map multiplied by some selfconjugate map.

Isomorphism

Let us notice that A ∈ K π if and only if π A = π, because π A -1 = ̺ A . Two maps (P, P • π 1 ) and (Q, •π 2 ) are isomorphic if and only if there exist such permutation A that π A 2 = π 1 and Q A = P . We write P ≃ Q, saying that P is isomorphic to Q because they are conjugate with respect to A.