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T a  B O m M Y  INTEGRAL  EQUATION  METHOD FOR THB EXTRAPOLATION OF FIELD MEASURPIENT 

FA. Lhxthoit*, L. Krahenbuhlfi and A. Nicolas** 

ATSTMCT 

How  to  extrapolate  measured  field  values  in 
respect  to  the  physical  equations?  The  authors  expose 
the  concrete  problem  they  had  to  solve  and  the 
solution  they  propose,  by  using  the  Boundary  Integral 
Equation  Method (BIEM) . 

First,  fictitious  sources  are  constructed  giving 
exactly  the  measured  values  of  the  field;  then  we 
compute  the  field in other  points as  for  the  field  of 
these  fictitious  sources. In association  with 1,s. 
techniques,  this  method  permits  also in part  the 
correction  of  the  measurement  errors. 

1. IHTRODUCTION 

1.1. The  concrete  problem  to be solved. 

A ship  is  a  mass  of  iron  magnetized  by  the  action 
of  the  earths'  magnetic  field.  This  factor  is  used  by 
the  military  to provoke the  explosion of "magnetic 
mines":  navigational  security  therefore  demands  the 
demagnetization  of  ships,  achieved  with  the  aid  of 
current  loops  on  the  boat. 

To  regulate  the  currents  it's  necessary  to  measure 
the  boats'  magnetic  field  (Fig. 1): the  boat  passes 
over  the  measuring  device,  which  is  made UP of 

1.2. The  method ue propose. 

We  will  proceed  in  two  stages: 
- The measured  field  calculation of fictitious 

sources,  which  provide  for  the  measuring  device 
(i.e.  field  0.f the  actual  source). 

- Using  these  fictitious  sources,  now known, 
calculation  of  the  field  outside of the  measuring 
device  (intelligent  extrapolation). 

When  the  extrapolation  principle  from  source 
building  is  assumed, it seems  that  the  most  simple 
method is,to associate  a  magnetic  dipole  to  each 
important  iron  part o f  the  ship.  This  method  cannot 
be  applied  unless  one has a  particular  model for  each 
boat  and  its  exact  position  during  the  measurement  (a 
high  order  multipole  must  be  used  to  simulate an 
off-centered  dipole [I] ) . 

Then  we  propose  to  build  fictitious  sources  on  a 
standard  surface  surrounding  the  boat.  This  surface 
must  be  far  enough  to  consider  the  incertitude  of  the 
boats  position,  and  close  enough  to  give  good  values 
also  near  the  boat  (the  surface will be  the  same  for 
all the  boats,  except  the  scale  factor). 

The  theoretical  point  of  view  would  be  discussed 
in  section 2.. Computation  methods  and  results  are 
presented  in  section  3.. 

triaxial  sensors.-  The  measurements  are 
regular  intervals, as if  there  were  many 
sensors on the  surface  to  be  measured. 

taken  at 2. TBPXIRETICAL  CONSIDERATIONS 
rows of 

2.1 . Introduction. 
We  first  prove  the  existence  of  ,surface  field 

sources  which  are  equivalent  to  the  actual  sources, 
and  derive  some  of  their  properties.  We  then  prove 
that  the  field  which  is  given  by  its  values  on  a 
surface S is  unique  (in our example S is  the  plane  on 
which  the  measurements  are  made).  Finally  we  derive 
an  equation  which  relates  directly  the  repartition  of 
the  fictitious  sources  to  the  values  of  the  field on 
S .  

Let us define  now  the  physical  quantities  which  we 
shall use. 

- Fig. 1: General  cross  section  of an array - 2.1.1. The  field H and  the  location  of  its  actual 
sources. 

These  two  questions  are  related  to  this  method  of 
measurement: 

- With  each  passage,  the  water  level  varies  making 
comparisons  impossible  without  bringing  them  to  a 
reference  level. - Once  the  currents  are  regulated,  there  rests  a 
residual  field  surrounding  the  boat,  which  has  to  be 
estimated  to  define  the  boats'  zone of protection. 

In both  cases,  it's  a  matter  of  extrapolating  the 
measurements  in  a  highly  intelligent  manner. 

* 
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The  magnetic  field  Htot  which  surrounds  the  ship 
results  of  the  combined'effects of the  earths  field, 
the  ships  permanent  magnetisation,  the  currents  of 
the  compensation  loops  and  the  induced  magnetisation 
of  the  parts  of  the  ship  which  are  made  of  iron. 

From  now on we  define H as  Htot  minus  the  earths 
magnetic  field. It follows  that H has  all  its  sources 
within  a  volume V'; this  volume  (Fig. 2) contains  the 
ship  but  doesn't  contain  the  region in which  we  want 
to  extrapolate  it. 

actual sources 

on bv: fictitious 
sources 

on S: measure- 
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2.1.2. The  scalar  potential 4.  

Let  us  define V as  the  volume  which  is  exterior  to 
VI (i.e.  the  whole  space  except VI). Because  there  is 
no  current  flowin , H is  in V the  derivative of a 
scalar  potential $: 

E = -  grad $ in v (1 1 

Flux  conservation  makes  the  potential 4 obey  the 
Laplace  equation: 

A$ = 0 in V (2) 

2.2. Equivalent  surface  sources. 

2.2.1. Existence  and  properties. 
From  Greens  identity  for  the  scalar  functions 4 

and C, (the  Laplacians  Greens 
point P) we  get: 

- jdL?.hnGp - h,,4.Gp).ds = 

The  quantities: 

JS 
q .Gpds  and 

represent  the  potentials  at 
monopole  surface  distribution 

function  centered  on  a 

P of  respectively  a 
(magnetic  masses)  and 

a  distribution of  dipoles  which  are  perpendicular  to 
the  surface  (superficial  currents).  It  follows  that 
we  can  rewrite ( 3 )  in  the  following  form: 

$(P) = - (T.hnGP - f.Gp).ds 
L V  ( 5 )  

This  proves  the  existence  of  a  system  of  sources ( e ,  a, ) which  is  equivalent  to  the  actual  sources; 
these  actual  sources  have  to  be  localised  into  the 
volume V I  (delimited  by  the  surface hV) , and  this  is 
the  only  restriction. 

The  equivalent,  fictitious  sources  have to be 
localised  on  a  surface.  which  encloses  the  actual 
sources.  This  equivalence  is  only  valid  in V because 
for any  point  of VI the  1.h.s.  of ( 5 )  equals  zero. 
The  concrete  choice  of  the  surface aV is  absolutly 
free.  Because  of  the  shape  ships  usually  possess,  we 
suggest  the  choice  of an ellipsoid. 

2.2.2. Example  and  other  systems  of  sources. 
As an illustration,  let us consider  the  case  of  a 

ponctual  dipole. In this  very  simple  case, 
calculations  are  carried  out  analytically. 

The  potential  of  the  dipole  of  moment p is: 
@(r,e) = p.cose/4w2 ( 6 )  

-4----G 
- Fig. 3: Potential of a  dipole - 

Let us choose bV as  being  a  sphere  of  radius a whose 
centre  is  the  dipole;  we  get: 

( 7 )  
( 8 )  

Of  course  there  exists  other  distributions  on bV 
which  produce  the  same  potential  outside  of  the 
sphere. For example,  in  the  case  of  a  distribution  of 
monopoles  only: 

?* (e )  = 3p.cosB/&~a = 3.q(0)/2 (9)  

From  these  results,  one  can  see  that  there  are 
infinitely  many  solutions  which  are  linear 
combinations  of  mono-  and  di-poles: 

(?s/2) . ? ( e )  + ~ ( I - s )  . Z,(e) SER ( I O )  

2.2.3. Commentary. 
From our considerations  it  follows  that  ficticious 

equivalent  sources  exist  but  they  are  not  unique.  One 
has  to  be  careful  not  to  generalise  the  example  of 
section 2.2.2: we  don't  pretend  it  is  generally 
possible  to  construct  equivalent  sources  made of 
monopoles  only or of  dipoles  only:  for  example  it  is 
impossible  to  simulate  a  ponctual  monopole  using 
dipoles  only!  This  case  however  never  appears  within 
the  frame  of  magnetostatics. 

2.3. The field on the  measurement  surface  and  the 
uniqueness of  the extrapolation. 

The  measurements  correspond  to  the  knowledge of 
the  field  on  a  finite  surface S (section 1 .I ). It  is 
reasonable  to  think  that  it  is  possible  to  deduce 
correct  values  of  the  field in  a  close  neighbourhood 
of  this  surface,  particularly  just  below  it. 

In the  following  we  show  that  it  is  not  impossible 
to  do  much  better. 

2.3.1. Theorem  of  the  uniqueness  of  the 
extrapolation. 

Let H1 and H2 be  two  fields  which  (in V) derive 
from  potentials 01 and 02. 

Let 01 and $2 obey  Laplaces  equation  in V, and S a 
finite  surface  included  in V. 

One  has: 
H1 H2 on S =3 H1 E H2 in V (11 1 

2.3.2. Commentary. 
Giving H on  a  surface S (even  if S is  'lsmalltl) 

permits  a  unique  determination  of  it in the  whole 
space  (outside  the  sources);  therefore  it  is 
theoretically  no  obstacle  for  solving  our 
extrapolation  problem. 

One  can  remark  that  complex  functions  exhibit 
similar  properties in the  complex  plane. 

2.3.3. Proof. 
Let us consider  two  fields  which  obey  the 

hypothesis  of  our  theorem.  Their  difference H 
derives  (in V) from  a  potential Q, and  equals aero on 
S. One  has: 

0 3 00 (cte)  on S (12) 

A$ E 0 in V (14)  

Before  presenting  a  rigourous  proof  of  the 
theorem,  let  us  intuitively  show  its  plausibility: 

- The  condition (12) gi'ves equipotential  surfaces 
which  are  ttparallel''  to S ;  

- The  condition (13) gives  equipotential  surfaces 
which  are  "perpendicular"  to S; 

Both  conditions  together  lead  necessarily  to  a 
constant  potential  around S: the  property  then 
propagates  at  every  place  where A@ 0. 

a,@ = 0 on S (13)  

Let us now  prove  the  theorem  rigourously,  using  a 
method  which is analogous  to  the  proof  of  Gauss'  mean 
value  theorem: 



2441 

For example  one  can  assume: z,= 0 or p = 0 (21 ) 
which  means  using  only  monopoles  or  only  normal 
dipoles  (see  warning 2.2.3.). One  can  also  impose  the 
integral  equation (3) onto OV or into VI and  this 
leads  to: 

(p,Zn) = (bv/bn,v) (22) 

and  we  have  the  conditions  of  existence  of  section 
2.2.1 .. 

C' 

S 

- Fig. 4: The  uniqueness  theorem - 

Let P be a point of  S (Fig. 4 )  
C an  hemisphere  of  radius r centered  in P 
C' the  part  of S which  is  delimited  by C. 

Greens  identity  gives: 

R : solid  angle  from P to C. _c__ 

- L R  4x 

Condition (13) on GI and  flux  conservation  give: 

(16) 

it  follows: 
I/2 (lo = $ i c  f $0. (=+1/2) R 

- 
and QC = $0 (18) 

where  oc  is  the  mean  value  of  the  potential 
calculated  separately on. each  of  both  parts of the 
sphere. 

(18) being  verified,  there  exists  at  least  one 
line  on C which  has  the  potential 40. This  property 
is  independant of the  radius of C, therefore  an 
equipotential  surface (of potential 00) reaches  the 
point P, and  this  surface  is  distinct of S.  

The  position  of P on S being  arbitrary,  one has: 

- 

Q, = 40 in (19)  

2.3.4. Commentary. 
This  theorem  does  not  provide  any  practical  method 

to  extrapolate;  at  any  rate  one  has  to  fear 
difficulties  due  to  the  precision  of  the 
measurements:  two  fields  which  are  nearly  the  same  on 
S could  differ  tremendously  far  away  from s. 

For practical  purposes  one  should  be  advised  to 
choose S in  an  intelligent  manner, so that  to 
minimise  the  sensitivity  of  the  extrapolation  to  the 
measured  values. 

2.4.2. Conclusion. 
The  sources (p, zn ) being  determined,  the 

extrapolation  consists  of  using (20) for  each  point P 
on  which  we  want  to  know  the  field.  This  reduces  to 
the  mechanical  numerical  application  of a formula. 

A method  to  solve  equation (20) remains  to  be 
found. In practice  one  has  only a  finite  number  of 
measurement  points:  we  are  going  to  cut  the  surface 
bV in  a  sufficient  number  of  finite  elements  and 
represent  the  sources  with  thf  help  of  these 
elements. 

This  classical  method [2] is  presented in  section 
3. as  well  as an example  of  the  results  obtained. 

3. COMPUTATION METHODS AND RESULTS. 

3.1. Discretisation of the B.I.E.. 

ellipsoid  which  one  discretises in  finite  elements: 
The  surface  of  the  equivalent  sources  is  an 

- Fig. 5: Discretisation of the  ellipsoidal  surface - 
A value  of  the  unknown  surface  densities z, or q 

is  attributed  to  each  mesh  node;  the  variations of 
these  functions on each  element  are  defined a priori 
by  weighted  functions of order  one or two.  This 
permits  the  numerical  integration:  equation (20) is 

~ written in  a form  of a simple  linear  combination. 

2.4. Determination of the  fictitious  80UPCeS and 
-calculation of the  extrapolation. 

3.2. Pretreatment of the  measures. 

2.4.1. Equation of the  sources. 
Taking  the  gradient of ( 5 )  one  gets: 

If P travels on S where H is  known,  one  gets  a  system 
of  integral  equations  with 7, and e as unknown 
quantities. As we  have  already  shown  in  section 2.2. 
the  solution  is  not  unique  and  one  has  to  impose 
supplementary  conditions. 

Experience  shows  us  that  the  available  measures 
are  overabondant,  taking  into  consideration  the 
number of nodes  which  are  necessary  to  discretise  the 
ellipsoidal  surface  surrounding  the  boat. 

Two questions  are  thus  imposed: 
- which  measures  to  keep,  which  to  discard; - how  many  measures  are  really  necessary  to  attain 

a given  accuracy, i.e. how  many  finite  elements  are 
necessary  on  the  surface. 
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The  most  interesting  points  of  a  characteristic 
(i.e.  the  points  which  make  the  interpolation  more 
difficult,  see  Fig.  6-a)  are  neither  these  where  the 
field  values  are  high,  nor  these  where  the  field 
value  varies  quickly,  but  these  where  the 
characteristics  curvature  is  high  (for  example  the 
top  of  a  peak).  Also,  it  would  be  desirable  to 
promote  these  points  by  using  more  measurement  points 
in  their  neighbourhood. 

The  algorithm  we  have  selected  uses  a  threshold 
criterion  with  the  values  of  the  second  derivative  of 
each  three  components  of  the  field.  One  example  is 
shown  on  Fig.  6-b. 

- Fig. 6 - 
a: measured  boats  characteristic  (a-values) ; 
b:  chosen  points. 

3.3. Linear  system and resolution. 

The  equation (20) is  written  in  its  discretised 
form  on  the  chosen  measurement  points;  it  gives  a 
linear  system: 

where M is  a  full  matrix, X the  vector  of  the 
unknown  sources  and  B  the  vector  of  the  measured 
values.  This  system  is  willfully  overdetermined  to 
permit  the  correction  of  the  measurement errors. It 
can  be  solved  by  a  "least  squares''  method, for 
example : 

M . X  = B (23) 

x = CM~MT' .  M ~ .  B (24) 

3.4. Example. 

To  test  this  method,  it's  necessary  to  compare  the 
extrapolated  values  of  the  field  with  its  actual 
values:  to  do  that, we have  defined  analytic  test 
fields. 

The  error  due  to  the  extrapolation  process  is 
conventionally  defined  for  each  depth  (under  the 
water  level)  by: 

error = max(Ha - Hex)/max(Ha) (25) 

where Ha and  Hex  are  respectively  the  analytic  and 
the  extrapolated  values  of  each  field's  component. 
Fig. 7 shows  the  result  for  monopolar  and  dipolar 
sources: 

[%I 
error 

1001, \, 
I \  '0 monopoles 

- Fig. 7: Extrapolations  error as  function  of  depth - 

The  monopoles  are  better  near  the  boat,  while 
their  field  varies in space  more  slowly;  at  a  great 
distance,  result  degrades  and  dipoles  improve.  We 
think  it  is  possible  to  improve  monopoles  by  fixing 
their  resultant  monopolar  moment  to  equal  zero: 

n 

Jav 
e.ds = 0 

it  is  also  a  boundary  integral  equation. 
At  the  time  being,  we  are  testing  systematically 

all  the  parameters  to  optimise OUT method: 
- choice  of  the  sources:  monopoles,  dipoles, 

mixture  (section 2.4.1 .); - ratio  between  the  numbers  of  the  measured  values 
and  the  values  finally  used  (section 3.2.); - ratio  between  the  number  of B.I.E. and  the  number 
of  unknowns (3.2.) and  method  for  solving  the 
resulting  linear  system; 

- ratio  between  the  numbers  of  finite  elements  over 
and  under  the  ellipsoidal  surface  (Fig. 5); - order  of  the  finite  elements,  and so on. 

CONCLUSION 

Built on a strong  theoretical  base,  the 
extrapolation  method  that  we  propose  is  a  very 
original  application  of  the B.1.E  method. 

The  first  numerical  results  obtained  are  of  a  very 
high  quality  and  the  study  will  be  continued  to 
optimise  the  final  solution. 
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