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A DIRECT LEBEAU-ROBBIANO STRATEGY

FOR THE OBSERVABILITY OF HEAT-LIKE SEMIGROUPS

LUC MILLER

Dedicated to David L. Russell on the occasion of his 70th birthday

Abstract. This paper generalizes and simplifies abstract results of Miller and

Seidman on the cost of fast control/observation. It deduces final-observability
of an evolution semigroup from some stationary observability property on some

spaces associated to the generator, e.g. spectral subspaces when the semigroup

has an integral representation via spectral measures. Contrary to the original
Lebeau-Robbiano strategy, it does not have recourse to null-controllability and

it yields the optimal bound of the cost when applied to the heat equation, i.e.
c0 exp(c/T ), or to the heat diffusion in potential wells observed from cones,
i.e. c0 exp(c/T β) with optimal β. It also yields simple upper-bounds for c.

1. Introduction

This paper concerns the so-called “Lebeau-Robbiano strategy” for the null-
controllabbility of linear evolutions systems like the heat equation. The Lebeau-
Robbiano strategy was originally devised for the heat flux on a bounded domain
of Rd observed from some open subset of this domain. It originally starts from the
interior observability estimate for sums of eigenfunctions of the Dirichlet Laplacian
proved by some Carleman estimates at the end of the nineties in joint papers of
Lebeau with Jerison, Robbiano and Zuazua, cf. § 3.8.

In the last decade, many people have contributed applications, e.g. to nodal sets
of sums of Laplacian eigenfunctions in [JL99], to coupled wave and heat equations in
the same domain in [LZ98], to the heat equation in unbounded domains in [Mil05],
to anomalous diffusions in [Mil06c], cf. § 4.1, to structural damping, e.g. the plate
equation with square root damping, in [Mil06a, AC07], cf. § 4.2, to thermoelasticity
without rotatory inertia in [BN02, Mil07, Cok07, Sei08], to the heat transmission
problem in [LRR07], to diffusions in a potential well of Rd in [Mil08], cf. § 4.3, to
the heat equation discretized in time or space in [Zhe08, BHLR09]. We also refer
to the survey [LRL09].

The Lebeau-Robbiano strategy was already stated in abstract settings with
bounds on the cost of fast control of the form c0 exp(c/T β) in [Mil06c, Sei08].
Our goal is to retain the most general features of both papers while simplifying the
proof to improve the estimate of the cost.

The paper [Mil06c] concerns semigroups generated by negative self-adjoint op-
erators, introduces some notion of observability on spectral subspaces, cf. § 3.6.
It links the exponent β in the fast control cost estimate to some exponent in this
notion, but falls just short of the optimal exponent. It combines final-observability
and null-controllability as in the original setting, but does not use Weyl’s eigenval-
ues asymptotics, not even the discreteness of the spectrum of A. The assumptions
brought out in [Mil07] and introduced as an abstract framework in [Sei08] allow
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2 L. MILLER

generators which are not self-adjoint, but do not apply to the semigroups consid-
ered in [Mil06c, Mil08]. Thus the notion of relative observability on growth spaces
adopted in § 2.2 is a little more general. The paper [Sei08] achieves the break-
through of reaching the exponent β = 1 which is optimal for the heat equation, but
it adds approximate null-controllability as another layer to the strategy.

Here, the strategy goes directly from relative observability on growth spaces to
the estimate of fast final-observability cost, and reaches the optimal exponents β
for the observation from cones of heat diffusion in potential wells V (x) = |x|2k,
k ∈ N∗, cf. § 4.3. Its sheer simplicity yields straightforward upper-bounds of the
rate c in the fast control cost estimate. Since it leaves null-controllability out, it
can be seen as a shortcut to the original Lebeau-Robbiano strategy.

Section 2 introduces the abstract setting, states and proves the direct Lebeau-
Robbiano strategy. The abstract setting is connected to the original setting in § 3.8.
Section 3 gives further background, four lemmas which may be of independent
interest and some open problems. Section 4 describes the application of the main
result to the P.D.E. problems considered in [Mil06c, Mil06a, Mil08].

2. Setting and main result

2.1. Observability cost. We consider the abstract differential equation

φ̇(t) = Aφ(t), φ(0) = x ∈ E , t > 0,(1)

where A : D(A) ⊂ E → E is the generator of a strongly continuous semigroup
(etA)t>0 on a Hilbert space E . The solution is φ(t) = etAx. We think of A as a
negative self-adjoint operator, cf. § 3.6

We also consider an observation operator C ∈ L(D(A),F) admissible for this
semigroup, i.e. C is a continuous operator from D(A) with the graph norm to
another Hilbert space F and satisfies (norms in E and F are both denoted ‖·‖)

∫ T

0

‖CetAx‖2dt 6 AdmT ‖x‖2, x ∈ D(A), T > 0,(2)

where the admissibility constant T 7→ AdmT > 0 is nondecreasing, cf. § 3.1. We
think of C as a bounded operator from E to itself.

We say that (A,C, T ) is observable at cost κT > 0 if

‖eTAx‖2
6 κT

∫ T

0

‖CetAx‖2dt, x ∈ D(A).(3)

This final-observability of (1) through C in time T > 0 is equivalent to a control-
lability property for which κT is the ratio of the size of the input annihilating the
disturbance to the size of this disturbance, cf. § 3.2. N.b. κT ′ 6 ‖e(T ′−T )A‖2κT for
T < T ′. We are interested in the asymptotic behavior of κT as T → 0. We think
of κT as the cost of fast control.

The crucial lemma to bound this cost here is (cf. a continuous version in § 3.3)

Lemma 2.1. If the approximate observability estimate (§ 3.5 justifies this name)

f(T )‖eTAx‖2 − f(qT )‖x‖2
6

∫ T

0

‖CetAx‖2dt, x ∈ D(A), T ∈ (0, T ′),(4)

holds with f(T ) → 0 as T → 0+, q ∈ (0, 1) and T ′ > 0, then κT 6 1/f((1 − q)T )
for T ∈ (0, T ′), i.e. the fast control cost does not grow more than the inverse of f .

In particular, if (4) holds with f(T ) = exp(− 1
(c2T )β ), f(qT ) = exp(− 1

(c1T )β ) and

c3 = c2 − c1 > 0, then κT 6 exp( 1
(c3T )β ) for T ∈ (0, T ′).
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Proof. Let T0 = T , Tk+1 = Tk − τk, τk = qk(1 − q)T , k ∈ N. The series
∑

τk = T
defines a disjoint partition ∪(Tk+1, Tk] = (0, T ]. Applying (4) to x = eTk+1Ay and
T = τk yields

f(τk)‖eTkAy‖2 − f(τk+1)‖eTk+1Ay‖2
6

∫ Tk

Tk+1

‖CetAy‖2dt, y ∈ D(A), k ∈ N.

Summing-up yields

f(τ0)‖eTAy‖2 − f(τk)‖eTkAy‖2
6

∫ T

Tk

‖CetAy‖2dt, y ∈ D(A), k ∈ N.

Taking the limit k → ∞ completes the proof since f(τk) → 0 and the continuous
function t 7→ ‖etAy‖ is bounded on the compact set [0, T ]. �

2.2. Relative observability on growth subspaces. We assume that there is a
nondecreasing family of semigroup invariant spaces Eλ ⊂ E , λ > 0 (i.e. etAEλ ⊂
Eλ ⊂ Eλ′ , t > 0, λ′ > λ) satisfying the growth condition (namely some decay)

‖etAx‖ 6 m0e
−λt‖x‖, x ⊥ Eλ, t ∈ (0, T0), λ > 0.(5)

We call them growth spaces. We think of them as spectral subspaces of A, i.e.
σ(A⌉E⊥

λ
) ⊂ {z ∈ σ(A) | Re z 6 −λ}, and we think of (5) as a spectrally determined

growth property, cf. § 3.6.
We also assume that there is an admissible observation operator C0 satisfying

the bound relative to C on growth spaces with exponent α ∈ (0, 1) and rate a > 0

‖C0x‖2
6 a0e

2aλα‖Cx‖2, x ∈ Eλ, λ > 0.(6)

We call C0 a reference operator and the property (6) of C: observability on growth
subspaces relatively to C0. We think of C0 as a simple operator with a good estimate
of fast control like the identity operator, cf. § 3.7.

2.3. Main result. When the reference operator C0 satisfies the observability cost
estimate with exponent β > 0 and rate b > 0

‖eTAx‖2
6 b0e

2b

T β

∫ T

0

‖C0e
tAx‖2dt, x ∈ D(A), T ∈ (0, T0),(7)

we claim that C satisfies an observability cost estimate with exponent max
{

β, α
1−α

}

:

Theorem 2.2. Under the assumptions (5), (6) and (7) with β = α
1−α , the system

(A,C, T ) is observable at a cost κT such that 2c = lim supT→0 T
β lnκT <∞.

More precisely, this rate c is bounded in terms of an implicitly defined s > 0:

c 6

(

b

a
(β + 1)

)

β+1
β ββ

s
(β+1)2

β

, with s(s+ β + 1)β = (β + 1)β
β2

β+1
b

1
β+1

a
.(8)

This exponent β is optimal, i.e. c > 0 for some “meaningful” example, cf. § 4.3.

Corollary 2.3. Under the same assumptions as theorem 2.2, the cost rate c is
bounded more explicitly in the following cases:

(i) If (6) holds with α = 1
2 (i.e. β = 1) then c 6 4b2

(√

a+ 2
√
b−√

a

)−4

.

(ii) If (7) holds for any b then c 6 aβ+1(β + 1)β(β+1)β−β2

.
(iii) If (6) holds for any a then c 6 b.

(iv) If b > aβ+1(β + 1)β(β+1)β−β2

then c 6

(

b

a

)
1
α

(

b(1−α)2

a1−α
− (β + 1)α

βα2

)−1

.
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Theorem 2.2 for α = 1
2 (i.e. β = 1) is due to Seidman with some less precise and

less simple cost rate bound than (8); e.g. [Sei08, theorem 2.4] proves1 c 6 8a2 in
case (ii) with β = 1 instead of c 6 4a2, and does not state (i).

With the exponential bound b0e
bT−β

in (7) replaced by a polynomial bound b0
T b ,

the papers [Mil06c, Mil07] only prove lim supT→0 T
β lnκT <∞ for β > α

1−α , hence

fall short of the optimal exponent. The optimality results from [Mil08], cf. § 4.3.
N.b. (ii) applies to the identity operator as reference operator C0, cf. § 3.7.

2.4. Proof of the main result. Plugging (6) in (7) yields

‖eτAφ‖2
6 a0b0e

2aλα+ 2b

τβ

∫ τ

0

‖CetAφ‖2dt, φ ∈ D(A), τ ∈ (0, T0).(9)

Given x ∈ D(A) and T ∈ (0, T0), we introduce an observation time τ = εT with
ε ∈ (0, 1), a spectral threshold λ defined by (rλ)α = 1

τβ with r > 0, the orthogonal

projection of x on Eλ denoted xλ, and x⊥λ = x− xλ.

Since Eλ is semigroup invariant, we may apply (9) to φ = e(1−ε)Txλ and obtain:

‖eTAxλ‖2
6

1

4f(T )

∫ T

(1−ε)T

‖CetAxλ‖2dt, f(T ) =
1

4a0b0
exp

(

− 2

T β

a+ brα

rαεβ

)

.(10)

We put the factor 4 in the definition of f because we shall use twice the inequality:

‖y + z‖2
6 2(‖y‖2 + ‖z‖2), y ∈ E , z ∈ E .(11)

Using (11) then (2) yields
∫ T

(1−ε)T

‖CetAxλ‖2dt 6 2

∫ T

(1−ε)T

‖CetAx‖2dt+ 2 AdmεT ‖e(1−ε)TAx⊥λ ‖2.(12)

Using (11) again, then (10) and finally (12) yields

f(T )‖eTAx‖2
6

∫ T

(1−ε)T

‖CetAx‖2dt+ AdmεT ‖e(1−ε)TAx⊥λ ‖2 + 2f(T )‖eTAx⊥λ ‖2.

Applying (5) to x⊥λ , we deduce the approximate observability estimate:

f(T )‖eTAx‖2 −m2
0

(

AdmεT e
−2(1−ε)Tλ + 2f(T )e−2Tλ

)

‖x‖2
6

∫ T

0

‖CetAx‖2dt,

where Tλ = 1/(rεβ/αT β). Since AdmεT 6 AdmT0 and f(T ) 6 1
4a0b0

, this proves

f(T )‖eTAx‖2 − g(T )‖x‖2
6

∫ T

0

‖CetAx‖2dt, with: ε ∈ (0, 1), r > 0,

f(T ) =
1

4a0b0
exp

(−2

T β

a+ brα

rαεβ

)

, g(T ) = m2
0

(

AdmT0
+

1

4a0b0

)

exp

(−2

T β

1 − ε

rεβ/α

)

.

Now lemma 2.1 implies the cost estimate c < +∞ by choosing c1 and c2 such that

1

cβ2
>

1

cβ1
,

1

cβ2
> 2

a+ brα

rαεβ
= lim sup

T→0
T β ln f(T ),

1

cβ1
< 2

1 − ε

rεβ/α
= lim sup

T→0
T β ln g(T ),

which is made possible by choosing r small enough since α ∈ (0, 1).
More precisely, introducing for convenience γ = 1

β and s = ε
1−ε , it satisfies

c 6 j−β
a,b (r, s), ja,b(r, s) =

(

2 lim sup
T→0

T β ln f(T )

)−γ

−
(

2 lim sup
T→0

T β ln g(T )

)−γ

.

1Indeed [Sei08, theorem 2.4] states c 6 2a2, but correcting the factor 2 into 1

2
in the definition

of d(s) in [Sei08, theorem 2.1] only proves c 6 8a2.
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Therefore we are left with maximizing with respect to r > 0 and s > 0:

ja,b(r, s) =
ε

(ar−α + b)γ
−
(

r

1 − ε

)γ

ε
1
α =

s

s+ 1
rγ
(

h−γ(r) − sγ
)

,

where h(r) = ar
γ

γ+1 + br, since 1
α = 1 + γ, ε = s

s+1 and 1 − α = 1
β+1 = γ

γ+1 .

The optimality condition ∇ja,b = 0 writes successively, abbreviating h = h(r),

{

γrγ−1 (h−γ − sγ) = rγγh′

hγ+1 ,
1

(s+1)2 (h−γ − sγ) = γsγ

s+1 ,

{

hγ+1 (h−γ − sγ) = rh′ = γ
γ+1h+

(

1 − γ
γ+1

)

br,

h = (γsγ(s+ 1) + sγ)
− 1

γ = 1
s (γs+ γ + 1)

− 1
γ .

Plugging the last equation (h in terms of s) in the former yields r in terms of s:

br

γ + 1
= hγ+1

(

h−γ − sγ
)

− γ

γ + 1
h = hγ+1

(

h−γ

γ + 1
− sγ

)

=
γ

γ + 1
(sh)γ+1,

hence r = γb−1(γs+ γ + 1)−
γ+1

γ . Plugging this once in h(r) in terms of s yields

γs+ γ + 1 = s(γs+ γ + 1)
γ+1

γ h = s
γ

br
h = sγ

(a

b
r−

1
γ+1 + 1

)

.

Simplifying γs and plugging r in terms of s again yields the equation for s in (8):

sγ(γs+ γ + 1) =

(

γ + 1

a

)γ (
b

γ

)

γ2

γ+1

,

which has a unique solution since the L.H.S. increases from 0 to +∞ as s does. We

still denote s this solution. The corresponding r = γb−1(γs + γ + 1)−
γ+1

γ satisfies

r
1

γ+1 =
(

γ
b

)
1

γ+1 = sa
b

γ
γ+1 . The second equation of the first system ∇ja,b = 0 yields:

ja,b(r, s) =
s

s+ 1
rγ
(

h−γ(r) − sγ
)

= γsγ+1rγ = γs(γ+1)2
(

a

b

γ

γ + 1

)γ(γ+1)

.

Now c 6 j−β
a,b (r, s) is (8) since 1 + γ = β+1

β , γ+1
γ = β + 1 and (γ+1)2

γ = (β+1)2

β .

Corollary 2.3 is deduced by the following arguments

(i) The positive solution of the quadratic equation in (8) is s =

√

1 + 2
√

b
a −1.

(ii) Eliminating b from (8) yields c 6 (a/(β+1))β+1β−β2

(s+β+1)(β+1)2 , and
the implicit equation yields s→ 0 as b→ 0.

(iii) Eliminating a from (8) yields c 6 b(s + β + 1)β+1/sβ+1, and the implicit
equation yields s→ ∞ as a→ 0.

(iv) The easiest lower bound for s is s + β + 1 > (β + 1)
1
β β( β

β+1 )2 b
1

(β+1)2

a
1

β+1

,

obtained by plugging s > s+ β + 1 in its implicit equation.

3. Comments

3.1. Admissibility. Any C ∈ L(E ,F) satisfies the admissibility condition (2) with
AdmT = T‖C‖2. The canonical setting in § 2.1 (cf. [Wei89]) is required in many
P.D.E. problems, e.g. when the heat flux is observed on the boundary rather than
an open subset of the domain.
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3.2. Controllability cost. The dual problem to the final-observability of (1) is
the null-controllability of

ḟ(t) = A∗f(t) +Bu(t), f(0) = f0 ∈ E , t > 0,(13)

with input u ∈ L2([0, T ],F) and control operator B = C∗ ∈ L(F ,D(A∗)′) (A∗

denotes the adjoint of A and D(A∗)′ denotes the dual space of D(A∗) in E).

Since C satisfies the admissibility condition (2), B satisfies ‖
∫ T

0
etA∗

Bu(t)dt‖2 6

KT

∫ T

0
‖u(t)‖2dt, and the solution of (13) is f(T ) = eTA∗

f0 +
∫ T

0
e(T−t)A∗

Bu(t)dt.
More precisely, if (A,C, T ) is observable at cost κT then, for all f0, there is a u

such that f(T ) = 0 and
∫ T

0
‖u(t)‖2dt 6 κT ‖f0‖2 (cf. [DR77]).

The study of the cost of fast controls was initiated by Seidman in [Sei84] with a
result on the heat equation obtained by Russell’s method in [Rus73]. We refer to
the surveys [Sei05, Mil06b] and the more recent paper [TT07]. An application to
reachability is given in § 3.4.

3.3. Integrated observability estimate. Lemma 2.1 can be seen as the discrete
version of the following lemma which has been used with f(t) = exp(−c/t) when
proving observability by some parabolic global Carleman estimates.

Lemma 3.1. In the setting of § 2.1, if the integrated observability estimate
∫ T

0

f(t)‖etAx‖2dt 6

∫ T

0

‖CetAx‖2dt, x ∈ D(A), T ∈ (0, T0),(14)

holds with T0 > 0 and f an increasing function such that f(T ) → 0 as T → 0+,
then κT 6 MT /f(T ) for T ∈ (0, T0) with MT = supt∈[0,T ]‖etA‖2 6 MT0 < ∞, i.e.

the fast control cost does not grow more than the inverse of f . Conversely, if (3)
holds for T ∈ (0, T0) then (14) holds for T ∈ (0, T0) with f(T ) = 1/(T0κT ).

Proof. The implication results from ‖eTAx‖2 = ‖e(T−t)AetAx‖2 6 MT ‖etAx‖2 and
f(t) 6 f(T ) for t ∈ (0, T ). The converse results from integrating (3) on (0, T ) and
∫ T

0

∫ τ

0
‖CetAx‖2dtdτ 6

∫ T

0

∫ T

0
‖CetAx‖2dtdτ = T

∫ T

0
‖CetAx‖2dt. �

3.4. Reachability. As the input u varies, the final state f(T ) of (13) spans the
set of states which are reachable from f0 in time T , denoted R(T, f0). Assuming
(A,C, T ) is observable for all T > 0, the usual duality in § 3.2 implies that this
reachability set R = R(T, f0) does not depend on T and f0 (by an argument due
to Seidman in [Sei79], cf. [Mil06b, footnote 7]) and satisfies etA(E) ⊂ R, t > 0.

The following lemma provides further information on the reachability set when
a cost estimate as in theorem 2.2 is available.

Lemma 3.2. In the setting of § 2.1, assume A is self-adjoint and σ(A) ⊂ (−∞, λ1],
and consider the fractional powers Aβ = −(−A+ λ1)

β, β > 0.

For all exponents β > 0, α = β
β+1 , and rates b > 0, c > b(β+1), a > (bβ)

1
β+1 /α,

‖eaAαx‖2
6 c0e

2c

T β

∫ T

0

e−
2b

tβ ‖etAx‖2dt, x ∈ D(A), T ∈ (0, T0).(15)

If (A,C, T ) is observable at a cost κT such that 2b = lim supT→0 T
β lnκT < ∞,

then the reachability set satisfies eaAα(E) ⊂ R for α = β
β+1 and a > (bβ)

1
β+1 /α.

Proof. The reachability statement results from (15) and the converse in lemma 3.1
with f(t) = exp(−2b/tβ) by the same duality argument (cf. [DR77, (3.22)]).

Given x ∈ D(A) and T ∈ (0, T0), using the spectral measure dEx(λ) of A for x:

‖eaAαx‖2 =

∫

σ(A)

e−2a(λ1−λ)α

dEx,

∫ T

0

f(t)‖etAx‖2dt =

∫ T

0

∫

σ(A)

f(t)e2tλdExdt.
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Hence (15) boils down to
∫ T

0
e−2jλ(t)dt > 1

c0
e−

2c

T β e−2a(λ1+λ)α

for λ > −λ1, and

further to (by changing λ into λ− λ1, with c1 = c0 max
{

1, e−T0λ1
}

):
∫ T

0

e−2jλ(t)dt >
1

c1
e−

2c

T β e−2a(λ1+λ)α

, T ∈ (0, T0), λ > 0,(16)

where jλ(t) =
b

tβ
+ tλ satisfies jλ(t) > jλ(tλ) =

tλ

α
, tλ =

(

bβ

λ

)
1

β+1

, λ > 0.

On the one hand, if tλ < T , then
∫ T

0

e−2jλ(t)dt >

∫ tλ

δtλ

e−2jλ(t)dt > (1 − δ)tλe
−2jλ(δtλ), δ ∈ (0, 1),

with jλ(δtλ) =

(

1

βδβ
+ δ

)

tλλ = aδλ
α, aδ = (bβ)

1
β+1

(

1

βδβ
+ δ

)

δ→1−−−→ (bβ)
1

β+1

α
,

hence (16) holds for c = 0 and a > (bβ)
1

β+1

α by choosing δ such that a > aδ.

On the other hand, if λ 6
bβ
T β then

∫ T

0

e−2jλ(t)dt >

∫ T

δT

e−2jλ(t)dt > (1 − δ)Te−2jλ(δT ), δ ∈ (0, 1),

with jλ(δT ) >
b

T β
+ T

bβ

T β
=

cδ
T β

, cδ = b

(

1

δβ
+ δβ

)

δ→1−−−→ b(β + 1),

hence (16) holds for a = 0 and c > b(β + 1) by choosing δ such that c > cδ. �

Concerning the heat semigroup in § 3.8, as a corollary to the cost upper bound
in § 3.2 under the geometrical optics condition, this lemma with β = 1 proves that

e−a
√
−∆φ0 is reachable for a >

√
3LΩ, φ0 ∈ L2(M), cf. [Mil06b, corollary 10]. In

dimension one a better result is due to Fattorini and Russell, cf. [FR71, (3.19)]: ifM

is a segment of length L controlled from one endpoint then e−a
√
−∆φ0 is reachable

for all a > L, φ0 ∈ L2(M) (this cannot be proved by the same method for a < L,

cf. [FR71, (3.20)]). Whether “the optimal” rate a such that e−a
√
−∆(L2(M)) ⊂ R

can be expressed geometrically in the general setting of § 3.8 is an open question,
e.g. is it supy∈M dist(y, Ω)?

3.5. Approximate observability. The following lemma clarifies the connection
of (4) in lemma 2.1 to approximate controllability, and therefore to [Sei08].

Lemma 3.3. If (A,C, T ) satisfy the approximate observability estimate

4‖eTAx‖2
6 κ

∫ T

0

‖CetAx‖2dt+ ε‖x‖2, x ∈ D(A),(17)

for some positive κ and ε, then approximate null-controllability of (13) holds, i.e.

for all f0 there exists u such that ‖f(T )‖2 6 ε‖f0‖2 and
∫ T

0
‖u(t)‖2dt 6 κ‖f0‖2.

Proof. Consider the strictly convex C1 functional J defined on E by density as

J(x) =
κ

8

∫ T

0

‖CetAx‖2dt+
ε

8
‖x‖2 + 〈etAx, f0〉, x ∈ D(A).

The assumption (17) implies J(x) > 1
2‖eTA‖2 + 〈eTAx, f0〉, hence J is coercive.

Therefore J has a unique minimizer ψ0 ∈ E , i.e. J(ψ0) = infx∈E J(x). In particular
J(ψ0) 6 J(0) = 0. Plugging this in (17) yields

1

2
‖eTAψ0‖2

6 J(ψ0) − 〈eTAx, f0〉 6 ‖eTAψ0‖‖f0‖.
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Hence ‖eTAψ0‖ 6 2‖f0‖. Plugging this in J(ψ0) 6 0 yields

κ

∫ T

0

‖CetAψ0‖2dt+ ε‖x‖2
6 8〈etAx, f0〉 6 8‖eTAψ0‖‖f0‖ 6 16‖f0‖2.(18)

Since the minimizer ψ0 satisfies

0 = ∇J(ψ0) =
κ

4

∫ T

0

etA∗

BCetAψ0dt+
ε

4
ψ0 + eTA∗

f0,

the input u(t) = κ
4Ce

tAψ0 yields the final state f(T ) = − ε
4ψ0. According to (18)

‖f(T )‖2 =
ε

16
‖ψ0‖2

6 ε‖ψ0‖2 and

∫ T

0

‖u(t)‖2dt =
κ

16

∫ T

0

‖CetAψ0‖2dt 6 κ‖f0‖2.

�

3.6. Normal semigroups and spectral spaces. For a normal semigroup (i.e. A
is normal, e.g. A is self-adjoint), the natural growth spaces are their spectral spaces.
It has a spectral decomposition E (a.k.a. projection-valued measure) which com-
mutes with any operator which commutes with A and defines spectral projections
Eλ = E({z ∈ σ(A) | Re z > −λ}) and spectral spaces Eλ = Eλ(E). Then (5) holds
if the semigroup satisfies the spectral bound equal growth bound condition (e.g. it
is eventually norm-continuous, e.g. A is self-adjoint and bounded from above). E.g.
in [Mil06c] A is negative self-adjoint. N.b. (5) never holds for unitary groups (i.e.
A is skew-adjoint, e.g. Schrödinger or wave equations).

If there is an orthonormal basis {en} of E such that −Aen = λnen, then the
spectral spaces are just spanned by linear combinations of normalized eigenfunctions
Eλ = Span {en}λn<λ and (6) is an estimate on sums of eigenfunctions of A.

For A = −∆ on E = L2(Rd), the spectral decomposition is the Fourier transform:
̂f(−∆)φ(ξ) = f(|ξ|2)φ̂(ξ), φ ∈ L2(Rd), thus φ ∈ Eλ just means φ̂(ξ) = 0 for

|ξ|2 > λ, i.e. φ is the restriction to the real axis of an entire function φ̃ such that

|φ̃(z)| 6 ce
√

λ|Im z| by the Paley-Wiener theorem. When C0 is the identity operator,
C is the multiplication by the characteristic function of the exterior of a ball and
F = E , [Mil05] proves (6) with exponent α = 1

2 by Carleman estimates as in § 3.8.
It is an open problem to obtain an explicit bound on the rate a in (6), e.g. by
complex analysis.

3.7. Reference operator. For any A, the identity operator satisfies the fast con-
trol cost estimate:

‖eTAx‖2
6
MT

T

∫ T

0

‖etAx‖2dt, x ∈ D(A), T ∈ (0, T0),(19)

with MT = supt∈[0,T ]‖etA‖2 6 MT0 <∞. Thus the cost estimate (7) holds for any
exponent β > 0 and rate b > 0 when C0 is the identity operator.

For a system of coupled P.D.E., C0 can be the observation of a single component
as in § 4.2, e.g. the operator CM in [Mil07]: for this reference operator, (5), (6), (7)
are stated in this form in [Mil07, Propositions 4, 3, 2] respectively. The assumptions
(5) and (6) are called [H] in the abstract framework of [Sei08].

3.8. Original example. For A = ∆ the Dirichlet Laplacian on a compact smooth
connected Riemannian manifold M , E = F = L2(M), Eλ the spectral spaces of A
(cf. § 3.6), C0 the identity operator, and C the multiplication by the characteristic
function of an open subset Ω 6= ∅ of M , [LZ98, theorem 3] and [JL99, theorem
14.6] prove the estimate on sums of eigenfunctions (6) with exponent α = 1

2 (always
sharp, cf. [JL99, proposition 14.9]), using the semiclassical local elliptic Carleman
estimates of [LR95].
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In this general setting, the cost upper bound lim supT→0 T lnκT < ∞ is due to
Seidman (it is deduced in [Sei08] from the estimate on sums of eigenfunctions cited
above, and the first such upper bound was proved in [Sei84]) and the cost lower
bound lim infT→0 T lnκT > supy∈M dist(y, Ω)2/2 is due to [Mil04] (the first lower
bound was proved in dimension one in [Güi85]). In the Euclidean case, this upper
bound was proved in [FCZ00] by global Carleman estimates with singular weights

of the Èmanuilov type (with a less precise lower bound). Under the geometrical
optics condition on Ω, a more precise upper bound is deduced in [Mil04] by the con-
trol transmutation method from the observability of the wave group in [BLR92]:
lim supT→0 T lnκT 6 cL2

Ω, where LΩ is the length of the longest generalized geo-

desic in M which does not intersect Ω, and c is determined by a one-dimensional
observability estimate for which c 6 (2 36

37 )2, improved into c 6 3
2 in [TT07].

3.9. “Converse” to the main result. The following lemma is a very partial
converse to theorem 2.2: only for sequences of eigenfunctions of A and C0 = id.

Lemma 3.4. Assume that (A,C) satisfies the observability cost estimate with ex-
ponent β > 0 and rate b > 0

‖eTAx‖2
6 b0e

2b

T β

∫ T

0

‖CetAx‖2dt, x ∈ D(A), T ∈ (0, T0).(20)

Any sequence (en) in D(A) such that −Aen = λnen and limλn = +∞, must satisfy

‖en‖2
6
b0
2λ
e2aλα‖Cen‖2, α =

β

β + 1
, a =

2α(β + 1)

βα
b

1
β+1 , λn large enough.(21)

In particular, if the sequence satisfies for some exponent α > 0 and rate a > 0:

‖en‖2
> a0e

2aλα‖Cen‖2, λn large enough,(22)

then the observability cost in (3) satisfies lim supT→0 T
β lnκT > 0 with β = α

1−α .

Proof. Applying (20) to x = en yields e−2Tλn‖en‖2
6 b0e

2b

T β

∫ T

0

‖Cen‖2e−2tλndt,

hence ‖en‖2
6

b0
2λ
e2h(T )‖Cen‖2, with h(T ) =

b

T β
+ Tλ. Minimizing h yields

h(Tn) = 2α(β+1)
βα b

1
β+1 at Tn =

(

βb
λn

)
1

β+1

with Tn < T0 for λn large enough.

If the observability cost in (3) satisfies lim supT→0 T
β lnκT = 0 with β = α

1−α ,

then (20) holds for any b > 0, hence (21) holds for any a > 0, which refutes (22). �

4. Applications

4.1. Anomalous diffusions. LetM be a smooth connected complete d-dimensional
Riemannian manifold with metric g and boundary ∂M . When ∂M 6= ∅, M denotes
the interior and M = M ∪ ∂M . Let ∆ denote the Laplace-Beltrami operator on
L2(M) with domain D(∆) = H1

0 (M) ∩H2(M) defined by g. N.b. the results are
already interesting when (M, g) is a smooth connected domain of the Euclidean

space Rd, so that ∆ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

.

In this application, the state and input spaces are E = F = L2(M), the growth
spaces are the spectral spaces of § 3.6, the reference operator C0 is the identity
operator and the observation operator C is the multiplication by the characteristic
function χΩ of an open subset Ω 6= ∅ of M , i.e. it truncates the input function
outside the control region Ω. If M is not compact, assume that Ω is the exterior of
a compact set K such that K ∩ Ω ∩ ∂M = ∅.
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For A = ∆, (6) holds with exponent α = 1
2 , cf. § 3.8 for compact M , and [Mil05]

otherwise. Hence for A = −(−∆)γ , (6) holds with exponent α = 1
2γ . Applying

theorem 2.2 improves on [Mil06c, theorem 2]:

Theorem 4.1. For all γ > 1/2, the anomalous diffusion:

∂tφ+ (−∆)γφ = χΩu, φ(0) = φ0 ∈ L2(M), u ∈ L2([0, T ] ×M),

is null-controllable in any time T > 0. Moreover the cost κT (cf. § 3.2) satisfies
lim supT→0 T

β lnκT <∞ with β = 1
2γ−1 .

The fractional Laplacian −(−∆)γ with γ ∈ (0, 1] generates the rotationally in-
variant 2γ-stable Lévy process. For γ = 1 this process is the Brownian motion Bt

on Rd, and for γ < 1 it is subordinated to Bt by a strictly γ-stable subordinator
Tt, so that it writes BTt

. The convolution kernels of the corresponding semigroups
are the rotationally invariant Lévy stable probability distributions, in particular
the Gaussian distribution for γ = 1 and the Cauchy distribution for γ = 1/2. For
γ < 1 these distributions have “heavy tails”, i.e. far away they decrease like a
power as opposed to the exponential decrease found in the Gaussian, which ac-
counts for the “superdiffusive” behavior of the semigroup. The more restrictive
range γ ∈ (1/2, 1) is the most widely used to model anomalously fast diffusions,
and it turns out that the controllability result theorem 4.1 applies to this range of
fractional superdiffusions only.

When the manifold is a domain of the Euclidean space Rd, the Markov process
generated by the fractional Dirichlet Laplacian −(−∆)γ with γ ∈ (0, 1] can be
obtained by killing the Brownian motion on Rd upon exiting the domain then
subordinating the killed Brownian motion by the subordinator Tt introduced above.

4.2. Structural damping. Let A be a positive self-adjoint and boundedly invert-
ible operator on another Hilbert space H (with norm still denoted ‖·‖). Let D(A)
denote its domain with the norm ζ 7→ ‖Aζ‖. Let Hλ, λ > 0, denote the spectral
spaces of A corresponding to {z ∈ σ(A) | Re z < λ} (cf. § 3.6). We consider two
observation operators C0 and C in L(D(A),F) satisfying relative observability:

‖C0z‖2
6 d0e

2dλδ‖Cz‖2, z ∈ Hλ, λ > 0,(23)

and a control operator B = C∗ ∈ L(F ,D(A∗)′) (A∗ denotes the adjoint of A and
D(A∗)′ denotes the dual space of D(A∗) in H).

To give a precise meaning to the solution of the structurally damped system

ζ̈(t) + ρA2γ ζ̇(t) + A2ζ(t) = Bu(t),
ζ(0) = ζ0 ∈ D(A), ζ̇(0) = ζ1 ∈ H, u ∈ L2([0, T ],F),

(24)

we write it as a first order system.
The state space is E = D(A) ×H. The semigroup generator A is

A =

(

0 I
−A2 −ρA2γ

)

, D(A) =
{

(z0, z1) ∈ E | Az0 + ρA2γ−1z1 ∈ D(A)
}

.

It inherits from −A the necessary and sufficient properties of Lumer-Phillips for
generating a contraction semigroup.

The observation and control operators are the projection C0 : E → H defined by
C0(z0, z1) = z1, C = CC0, and B defined in § 3.2. We assume that C is admissible
for the semigroup generated by A, i.e. (2). It results from [AL03] that (7) holds
for any β > 0 and b > 0.

We extend the action of the orthogonal projection Hλ on Hλ from H to E accord-
ing to Hλ(z0, z1) = (Hλz0, Hλz1). The growth condition (5) is proved in [Mil06a,
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Proposition 1] for the growth spaces Eλ = Hµ(E) with λ = min
{

ρ
2 ,

1
ρ

}

µ2 min{γ,1−γ},

using [CT90]. For this choice of growth spaces, (23) implies the relative observabil-
ity (6) with exponent α = δ

2 min{γ,1−γ} and rate a = d

min{ ρ
2 , 1

ρ}α .

Applying theorem 2.2 and corollary 2.3(ii) improves on [Mil06a, theorem 1]:

Theorem 4.2. Recall that δ and d are the exponent and rate in the main assump-
tion (23). For all ρ > 0 and γ ∈ (δ/2, 1 − δ/2), for all ζ0 and ζ1, there is an input

u such that the solution ζ of (24) satisfies ζ(T ) = ζ̇(T ) = 0 and the cost estimate :
∫ T

0

‖u(t)‖2dt 6 b0 exp

(

2b

T β

)

(

‖Aζ0‖2 + ‖ζ1‖2
)

, ζ0 ∈ D(A), ζ1 ∈ H, T small,

with β =

(

2

δ
min {γ, 1 − γ} − 1

)−1

, and any b >
dβ+1

min
{

ρ
2 ,

1
ρ

}β

(β + 1)β(β+1)

ββ2 .

We refer to [CR82, LT98] for the motivation of the abstract model (24). The
main application is to the plate equation with square root damping and interior
control in Ω with hinged boundary conditions on a manifold M , in the framework
of § 4.1:

ζ̈ − ρ∆ζ̇ + ∆2ζ = χΩu on [0, T ] ×M, ζ = ∆ζ = 0 on [0, T ] × ∂M,

ζ(0) = ζ0 ∈ H2(M) ∩H1
0 (M), ζ̇(0) = ζ1 ∈ L2(M), u ∈ L2([0, T ] ×M).

(25)

Applying theorem 4.2 instead of [Mil06a, theorem 1] to A = −∆ with δ = γ = 1
2

improves on the value of β in the first part of [Mil06a, theorem 2] (cf. also [AC07]).
Under the geometrical optics condition in [BLR92] that the length LΩ of the longest
generalized geodesic in M which does not intersect Ω is not ∞, the second part of
[Mil06a, theorem 2] estimates the cost rate: for all ρ ∈ (0, 2), the control cost of
(25) satisfies the estimate in theorem 4.2 with β = 1 and any b > b1L

2
Ω for some b0

and b1 which do not depend on Ω and ρ (cf. [Mil06a, note added in proof]), hence
e.g. (cf. [LZZ00], [ET06, Appendix]) the minimal null-control input u converges to
the minimal null-control input for the undamped plate equation as ρ→ 0.

4.3. Diffusion in a potential well. We consider a power k ∈ N∗ and the poten-
tial well V (x) = |x|2k, x ∈ Rd. The Schrödinger operator A = ∆ − V with domain
D(A) =

{

φ ∈ H2(Rd) |
∫

|V φ|2 <∞
}

is negative self-adjoint and has compact re-
solvent. Let χΓ denote the multiplication by the characteristic function of any non
empty open cone Γ =

{

x ∈ Rd | |x| > r0, x/|x| ∈ Ω0

}

, where r0 > 0 and Ω0 is an
open subset of the unit sphere.

In this application, the state and input spaces are E = F = L2(Rd), the growth
spaces are the spectral spaces of § 3.6, the reference operator C0 is the identity
operator and the observation operator C is the multiplication by χΓ as in § 4.1, i.e.
it truncates the input function outside the control region Γ.

In [Mil08], (6) with exponent α = 1
2 (1 + 1

k ) is proved and some radial eigen-
functions concentrating at some “equator” such that (22) holds are exhibited (cf.
[Mil08, § 4.2.2]) allowing to deduce from theorem 2.2 and lemma 3.4:

Theorem 4.3. For all k > 1, the diffusion in the potential well V (x) = |x|2k:

∂tφ− ∆φ+ V φ = χΓu, φ(0) = φ0 ∈ L2(Rd), u ∈ L2([0, T ] × R
d),

is null-controllable in any time T > 0. Moreover the cost κT (cf. § 3.2) satisfies:
κ = lim supT→0 T

β lnκT <∞ with β = 1 + 2
k−1 .

If there is a vector space of dimension 2 in Rd which does not intersect the closure
Ω0 of the subset Ω0 of the unit sphere defining the cone Γ then κ 6= 0.
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As in § 4.1, the semigroup considered here is a well known model of diffusion. It
can be interpreted as a Brownian diffusion on Rd killed at the rate V .
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