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UNIQUE CONTINUATION ESTIMATES FOR SUMS OF SEMICLASSICAL EIGENFUNCTIONS AND NULL-CONTROLLABILITY FROM CONES

For all sums of eigenfunctions of a semiclassical Schrödinger operator below some given energy level, this paper proves that the ratio of the L 2 norm on R d over the L 2 norm on any given open set is bounded by exp(C/h) for some positive C in the semiclassical limit h tends to 0. Corresponding estimates on a compact manifold are also given. They generalize the unique continuation estimate of Lebeau, with Jerison, Robbiano and Zuazua, on sums of classical eigenfunctions of the Laplacian on a compact manifold below an eigenvalue threshold as this threshold tends to infinity. The main tools are semiclassical Carleman estimates following Lebeau, Robbiano and Burq with a new semiclassical propagation of smallness argument.

For sums of classical Hermite functions, or for sums of classical eigenfunctions of homogeneous polynomial potential wells, similar unique continuation estimates from cones are deduced. They apply to the null-controllability from a cone of the heat semigroups corresponding to these Schrödinger operators, with a sharp cost estimate of fast control, following a new version of the strategy of Lebeau and Robbiano.

1. Introduction 1.1. Main results. We are interested in sums of eigenfunctions of some self-adjoint operators A on a Hilbert space L 2 bounded from below with compact resolvent. The space generated by the eigenfunctions with eigenvalues lower than the real number E will be denoted 1 by 1A<E L 2 (n.b. its elements are sums of eigenfunctions).

We consider a power k ∈ (0, +∞) and a potential well V ∈ C ∞ (R d ) which behaves like |x| 2k at infinity. More precisely, for some R > 0 and all multi-index α,

|∂ α V (x)| C α (1 + |x| 2 ) k and |x| R ⇒ V (x) C R (1 + |x| 2 ) k . (1)
The semiclassical Schrödinger operator P = -h 2 ∆ + V (x) with domain D(P ) = u ∈ H 2 (R d ) | |V u| 2 < ∞ is self-adjoint, bounded from below and has compact resolvent. Indeed we allow P to be a more general semiclassical elliptic operator with second order coefficients and h-dependent lower order terms, cf. section 2.

Theorem 1.1. For any non empty open subset Ω of R d and any energy E 0 , there are positive constants h 0 and C 0 such that ∀h ∈ (0, h 0 ), ∀u ∈ 1P <E0 L 2 (R d ),

R d |u(x)| 2 dx e C0/h Ω |u(x)| 2 dx . (2)
Another consequence of the proof of this theorem is the following unique continuation estimate which generalizes the lower bound for eigenfunctions proved in Date: November 4, 2009. The first version was submitted on November 21, 2008. 2000 Mathematics Subject Classification. 35B37, 35B60, 35P20, 93B07. 1 To denote the spectral projector on this space by 1 A<E is consistent with the functional calculus for self-adjoint operators applied to the characteristic function 1•<E defined on R by 1λ<E = 1 if λ < E and 1λ<E = 0 otherwise. 1 [EZ07, section 7.2] (n.b. although theorems 1.1 and 1.2 give the same estimate of R d |u(x)| 2 dx when P u = Eu, |E| < E 0 , neither follows from the other): Theorem 1.2. For any non empty open Ω ⊂ R d and any energy E 0 , there are positive constants h 0 and C 0 such that for all h ∈ (0, h 0 ) and E(h) ∈ (-E 0 , E 0 ), ∀u ∈ D(P ),

R d |h∇u| 2 + (1 + |x| 2 ) k |u| 2 e C0/h Ω |u| 2 + R d |(P -E(h))u| 2 .
Theorem 1.1 also holds on a smooth connected compact d-dimensional Riemannian manifold M with metric g and boundary ∂M . Let ∆ g denote the Laplace-Beltrami operator (n.b. ∆ g is a negative differential operator with variable coefficients depending on the metric g).

Theorem 1.3. Let V ∈ C ∞ (M ; R). Let P = -h 2 ∆ g + V (x) denote the operator on L 2 (M ) with domain D(P ) = H 1 0 (M ) ∩ H 2 (M ). For any non empty open subset Ω of M and any energy E 0 , there are positive constants h 0 and C 0 such that ∀h ∈ (0, h 0 ), ∀u ∈ 1P <E0 L 2 (M ),

M |u(x)| 2 dx e C0/h Ω |u(x)| 2 dx . (3)
Remark 1.4. The method used to prove theorem 1.3 in section 3.3 also yields theorem 1.2 for P = -h 2 ∆ g + V -E(h) on a compact manifold with smooth V :

∀u ∈ H 1 0 (M ) ∩ H 2 (M ), M |h∇u| 2 + |u| 2 C(h) Ω |u| 2 + 1 h 2 M |P u| 2 , (4) 
with C(h) = e C0/h (when V = 0, it also yields the corresponding corollary 1.7 with exponent 1 instead of 1 + 1 k ). It also yields the same estimate with the integral of |u| 2 over Ω replaced by the integral of the Neumann derivative |h∂ N u| 2 over a given subset of ∂M . N.b. the factor 1/h 2 is meaningless as long as C(h) is exponential and was only kept for the sake of the following discussion in remark 1.5.

The power of h in the factor e C0/h in theorems 1.1, 1.2 and 1.3, and in (4) is already optimal for single eigenfunctions for some Ω. When Ω is a compact set in the classically forbidden region V -1 (E 0 , +∞) this results from semiclassical Agmon estimates (cf. e.g. [DS99, [START_REF] Helffer | Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians[END_REF][START_REF] Evans | Lectures on semiclassical analysis[END_REF]). It results from section 4.2.2 that this is still valid for some larger Ω in the following two cases: (i) when V (x) = |x| 2k , k ∈ N * , in theorems 1.1 and 1.2, for any cone Ω as in remark 1.9; (ii) when M is a sphere and V = 0 in (3) and (4), for any neighborhood M \ Ω of a great circle.

When V = 0 in theorem 1.3 for sums of eigenfunctions the power of h in e C0/h is optimal for any Ω = M in contrast to remark 1.5 (this already results from [JL99, proposition 14.9]). Moreover, in this case the rate in e C0/h was recently bounded from below in [START_REF]A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups[END_REF]theorem 5.1]: C 0 sup y∈M dist(y, Ω).

Remark 1.5. We recall that (4) for P = -h 2 ∆ g -1 on a compact manifold (and therefore (5) for single eigenfunctions instead of sums) is valid with C(h) independent of h (i.e. without the exponential factor) in the following three cases: (i) under the condition of Bardos-Lebeau-Rauch that all generalized geodesics intersect Ω; (ii) if the integral of |u| 2 over Ω is replaced by the integral of the Neumann derivative |h∂ N u| 2 over a given subset of ∂M intersected by all generalized geodesics; (iii) if M is a partially rectangular billard under some condition on Ω weaker than in (i), cf. e.g. [START_REF]Semi-classical estimates for the resolvent in nontrapping geometries[END_REF], [BZ04, (6.8),(6.14)], [START_REF] Marzuola | Eigenfunctions for partially rectangular billiards[END_REF]. It is also valid with a logarithmic factor C(h) instead of exponential (cf. [START_REF]Smoothing effect for Schrödinger boundary value problems[END_REF][START_REF] Burq | Control in the presence of a black box[END_REF][START_REF] Christianson | Semiclassical non-concentration near hyperbolic orbits[END_REF] for more details) in the following two cases: (i) if M ⊂ R d has convex holes which are far away from each other as in Ikawa's scattering result; (ii) if M \ Ω is a neighborhood of a hyperbolic closed geodesic.

We refer to [START_REF] Koch | L p eigenfunction bounds for the Hermite operator[END_REF][START_REF] Koch | Semiclassical L p estimates[END_REF] for recent related L p estimates of eigenfunctions. 1.2. Background and non semiclassical consequences. Taking V = 0, E 0 = 1 and h = 1/µ in theorem 1.3 yields :

∀µ 0, ∀v ∈ 1 -∆g<µ 2 L 2 (M ), M |v(x)| 2 dx Ce Cµ Ω |v(x)| 2 dx . (5)
This estimate was proved in [LZ98, theorem 3] and [JL99, theorem 14.6] by the semiclassical local elliptic Carleman estimates proved in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. It has been generalized to a piecewise smooth g discontinuous across a smooth interface in [LRR]. We refer to [START_REF] Boyer | Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations[END_REF] for discrete versions and to the recent survey [START_REF] Rousseau | Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques[END_REF]. It is already non trivial for trigonometric sums (eigenfunctions of the Dirichlet Laplacian on a segment or a circle).

Similarly, the following corollary with k = 1 is already a non trivial result on sums of Hermite functions (eigenfunctions of the harmonic oscillator). By the scaling in section 4.1, theorem 1.1 with the homogeneous polynomial and radial potential well V (x) = |x| 2k , k ∈ N * , yields the following unique continuation estimate from cones (a.k.a. observability estimate of sums of eigenfunctions from Γ) :

Corollary 1.6. Let A = -∆ + |x| 2k with k ∈ N * . For any non empty open cone Γ = x ∈ R d | |x| > r 0 , x/|x| ∈ Ω 0 , where r 0 0 and Ω 0 is an open subset of the unit sphere, there is a C > 0 such that ∀µ 0, ∀v ∈ 1 A<µ 2 L 2 (R d ), R d |v(x)| 2 dx Ce Cµ 1+1/k Γ |v(x)| 2 dx . (6)
By the same scaling, the following observability resolvent estimate (remark 1.13 gives some background) is deduced from theorem 2.6 in section 4.1: Corollary 1.7. Let A = -∆ + |x| 2k with k ∈ N * . For any non empty open cone Γ as in corollary 1.6, there is a C > 0 such that, for all λ ∈ C and v ∈ D(A),

R d |∇v| 2 + (1 + |x| 2 ) k |v| 2 Ce C( √ λ) 1+1/k Γ |v| 2 + R d |(A -λ)v| 2 , (7)
where the square root is defined as

√ λ = (max {Re λ, 0}) 1/2 .
Remark 1.8. Both corollaries still hold if |x| 2k is replaced by any smooth potential well V which satisfies (1) and is positively homogeneous of degree 2k, cf. (24).

Remark 1.9. Although the potential well "compactifies infinity", note the loss of 1 k in the power of µ when comparing (6) to (5). It is proved in section 4.2 that the powers 1 + 1 k in corollaries 1.6 and 1.7 are both sharp even for single eigenfunctions instead of sums, and even if ∇ and |x| are omitted in (7), at least when d 3 and there is a vector space Π of dimension d -1 such that Γ ∩ Π ⊂ {0} (more precisely, if there is a vector space of dimension 2 in R d not intersecting Ω 0 ). Moreover, when k = 1, the power in corollary 1.6 is sharp for any d and Γ due to theorem 1.10.

When Γ is a bounded set instead of a cone, it is also proved in section 4.2 that both corollaries fail even for single eigenfunctions instead of sums by at least an extra logarithmic factor in the exponentials. Whether the estimate (6) holds with µ 1+ 1 k replaced by µ 1+ 1 k ln µ when Γ is bounded remains open.

1.3. Null-controllability of parabolic semigroups in unbounded domains.

Recall k ∈ N * , V (x) = |x| 2k , A = -∆ + V , D(A) = u ∈ H 2 (R d ) | |V u| 2 < ∞ .
Let χ denote the multiplication by the characteristic function of some set Γ in R d . Consider the parabolic equation with input function u ∈ L 2 ([0, T ]; L 2 (R d ))

∂ t φ -∆φ + V φ = χu, with initial state φ(0) = φ 0 ∈ L 2 (R d ) . (8)
Null-controllability at time T holds if for all φ 0 there is a u such that the solution φ ∈ C([0, T ]; L 2 (R d )) of (8) satisfies φ(T ) = 0. This property is equivalent to the following unique continuation estimate known as final-observability at time T :

∃κ T > 0, ∀v ∈ L 2 (R d ), e -T A v 2 κ T T 0 χe -tA v 2 dt . (9)
Theorem 1.10. Let Γ be any open cone as in corollary 1.6.

The potential well (with power twice k ∈ N * ) satisfies k > 1 if and only if null-controllability holds at all times T . Moreover the controllability cost κ T in (9) satisfies:

κ = lim sup T →0 T β ln κ T < ∞ with β = 1 + 2/(k -1).
If there is a vector space of dimension 2 in R d which does not intersect the closure Ω 0 of the subset Ω 0 of the unit sphere defining the cone Γ then κ = 0.

If k = 1 (harmonic oscillator) and Γ is (inside) a half-space then null-controllability does not hold at any time T .

The negative part of theorem 1.10 is proved in section 4.3. Corollary 1.6 and [Mil06, theorem 1] prove (even in the setting of remark 1.8) the positive part of theorem 1.10, but only prove the upper bound of κ for any exponent greater than β. The cost properties of κ stated in theorem 1.10, i.e. the exponent β is valid and sharp, were deduced from corollary 1.6 and section 4.2.2 recently in [START_REF]A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups[END_REF] (when Γ is a bounded set instead of a cone, κ = +∞ was deduced from section 4.2.3).

Remark 1.11. These null-controllability results in R d complement those obtained for parabolic equations on various unbounded domain [START_REF] Micu | On the lack of null-controllability of the heat equation on the half-line[END_REF][START_REF] Cabanillas | Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms[END_REF][START_REF]Unique continuation estimates for the Laplacian and the heat equation on non-compact manifolds[END_REF][START_REF] González-Burgos | Some results on controllability for linear and nonlinear heat equations in unbounded domains[END_REF] by saying roughly that, although null-controllability from cones Γ does not hold with the quadratic potential well V (x) = |x| 2 or in the flat case V = 0 (cf. [START_REF]On the controllability of the heat equation in unbounded domains[END_REF]), it does hold for more confining potentials V (x) = |x| 2k with k > 1. Whether null-controllability from bounded sets Γ holds for k > 1 remains open.

We refer to [ Èma95, FCZ00, VZ08] for null-controllability results for the heat semigroup with potentials on bounded domains motivated by nonlinear problems.

Remark 1.12. The criterion k > 1 in theorem 1.10 is reminiscent of the one found for the contractivity properties of the semigroup e -tA ([DS84]): it is intrinsically ultracontractive if k > 1, intrinsically hypercontractive but not supercontractive if k = 1, and not even intrinsically hypercontractive if k < 1. But we would like to point out that there are no direct proofs of final-observability for a parabolic semigroup based on its kernel even when the kernel is explicitly known.

Although not used here, we recall that for k > 1 this contractivity property together with the ground state estimate

∃C 0 > 0, ∀x ∈ R d , C -1 0 φ 0 (x) (1 + |x|) -(k+d-1)/2 exp -|x| 1+k /(1 + k) C 0 φ 0 (x) ([ Dav89 
, Corollary 4.5.8]), entail the properties: decay of eigenfunctions ([Dav89, theorem 4.2.4]) Aφ = λφ ⇒ ∃C λ > 0, |φ| C λ φ 0 ; kernel estimate for large time ([Dav89, theorem 4.2.5]) ∀ε > 0, ∃T > 0, t > T ⇒ (1ε)e -tλ0 φ 0 (x)φ 0 (y) e -tA (x, y) (1 + ε)e -tλ0 φ 0 (x)φ 0 (y); kernel estimate for small time ([Dav89, corollary 4.5.5] and [START_REF] Metafune | Kernel estimates for a class of Schrödinger semigroups[END_REF] for the limit exponent)

∃C > 0, ∀x, y ∈ R d , 0 < t 1 ⇒ 0 e -tA (x, y) C exp C/t 1+2/(k-1) φ 0 (x)φ 0 (y).
Remark 1.13. When Γ is a cone for which corollary 1.7 is sharp as in remark 1.9, the Hautus test [START_REF] Miller | Controllability cost of conservative systems: resolvent condition and transmutation[END_REF]theorem 5.1] for exact controllability of the Schrödinger group generated by iA prove that exact controllability of the Schrödinger equation i∂ t φ -∆φ + V φ = χu does not hold at any time T , which means (due to the group property) :

∀T , ∀φ T ∈ L 2 (R d ), ∃φ 0 ∈ L 2 (R d ), ∀u ∈ L 2 ([0, T ]; L 2 (R d )), φ(0) = φ 0 ⇒ φ(T ) = φ T .
Omitting ∇ and |x| in the observability resolvent estimate (7) yields

∀λ ∈ C, ∀v ∈ D(A), v 2 Ce C( √ λ) α χv 2 + (A -λ)v 2 , ( 10 
)
with α = 1 + 1/k. This still makes sense when A is any positive self-adjoint operator on a Hilbert space X and χ is any bounded operator from X to another Hilbert space Y . One may wonder under which additional assumption (10) with α ∈ (0, 2) implies the null-controllability of the semigroup generated by -A. About the converse, Thomas Duyckaerts noted that null-controllability at time T implies (10) with α = 2 (this can be proved by mainly changing i into -1 in [Mil05a, lemma 5.2]), cf. [START_REF] Duyckaerts | Resolvent conditions for the controllability of parabolic semigroups[END_REF].

1.4. Main ideas, plan and notations. The main results are proved in sections 2 and 3 by a fully semiclassical version of the strategy introduced in [LZ98, JL99] for sums of classical eigenfunctions. The main tools are semiclassical Carleman estimates in the spirit of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF][START_REF]Lower bounds for shape resonances widths of long range Schrödinger operators[END_REF] with three new features. The first feature deals with ellipticity at infinity by building a global phase function which fulfills Hörmander's hypoellipticity condition in an unbounded region (the exterior of a ball, cf. sections 2.1 and 2.2). We first use this phase in section 2.3 to prove a global unique continuation estimate for P . We also use it in section 3.1 to prove a similar continuation estimate from the boundary {t = 0} for h 2 ∂ 2 t + P where t appears as an artificial elliptic variable following the strategy of [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF][START_REF] Jerison | Nodal sets of sums of eigenfunctions, Harmonic analysis and partial differential equations[END_REF].

The second feature could be be coined semiclassical propagation of smallness, i.e. combining a cascade of semiclassical unique continuation estimates into a single more global one. Whereas Lebeau and Robbiano first optimize these semiclassical estimates with respect to h to obtain interpolation inequalities and then propagate, we show how to propagate these semiclassical estimates directly by choosing each new Carleman phase steep enough with respect to the previous one (taking advantage of the "convexity parameter" β, cf. sections 3.2 and 3.3). The last feature simplifies the strategy of [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF][START_REF] Jerison | Nodal sets of sums of eigenfunctions, Harmonic analysis and partial differential equations[END_REF] in order to keep the variable h in the final results (for later scaling in section 4.1). Indeed we circumvent the interpolation inequalities altogether (cf. section 3.1). Another way to circumvent interpolation inequalities to prove (5) when M is a bounded domain is introduced in [LR07, sect. 3.A] and [START_REF] Boyer | Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations[END_REF], based on a global Carleman estimate from the boundary for ∂ 2 t + ∆ g . Whether such elliptic or directly parabolic global Carleman estimates in the spirit of [ Èma95] allow to generalize theorem 1.1 and corollary 1.6 to a wider class of potentials and to semilinear parabolic equations remains open.

The non semiclassical results are all proved in section 4 under the stronger hypothesis on the potential well that it is a homogeneous polynomial. This allows scaling in section 4.1. Sharpness of the exponents in the observability estimates are proved by exhibiting some radial eigenfunctions: eigenfunctions concentrating at some "equator" saturate the estimates, semiclassical Agmon estimates with respect to the radial coordinate refute the estimates when observing from bounded sets. Non-controllability for k = 1 is proved using the explicit Mehler formula for the Hermite kernel.

Unless mentioned otherwise, the norm • and the hermitian scalar product

•, • are in L 2 . The Poisson bracket is denoted {•, •} and the operator commutation bracket is denoted [•, •]. The transpose of a vector ξ is denoted t ξ. The notation U ⋐ H means U is an open set such that its closure U is included in the set H.
Acknowledgement. This work was partially supported by Grant JCJC06-137283 of the Agence Nationale de la Recherche. I am grateful to Jérôme Le Rousseau and Luc Robbiano for pointing out the related independent works [LR07, sect. 3.A] and [START_REF] Vanvalkenburgh | Exponential lower bounds for quasimodes of semiclassical Schrödinger operators[END_REF] as they browsed the first draft of this paper. The already submitted paper of Michael VanValkenburgh considers theorem 1.3 on M ⊂ R d with a Riemannian metric for semiclassical quasimodes instead of sums of eigenfunctions (i.e. u is an eigenfunction up to an exponentially small error with respect to h). In this context, (4) is a slightly more general statement of its results. In order to piece together two Carleman estimates, it uses two weights with a certain compatibility condition following [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF].

Semiclassical Carleman estimates

The results and notations for semiclassical analysis used in this section can be found in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] (cf. [EZ07, section 7.2] for a nice introduction to semiclassical Carleman estimates). In this context it is more natural to prove theorem 1.1 for the following more general Schrödinger operators P .

In this section, P = p(x, hD, h) is a semiclassical differential operator with semiclassical symbol p(x, ξ, h) = q(x, ξ) + l(x, h).ξ + v(x, h) + V (x), where V satisfies (1), q is a uniformly positive quadratic form given by q(x, ξ) = t ξA(x)ξ q 0 |ξ| 2 , all the derivatives with respect to x of the real valued functions A, l, v are uniformly bounded with respect to (x, h) ∈ R d × (0, h 0 ]. From now on, the notations won't mention the fact that p may depend on h thus p is a principal symbol (N.b. the setting in [START_REF]Lower bounds for shape resonances widths of long range Schrödinger operators[END_REF] is similar with this major discrepancy: P is a long range perturbation of the semiclassical Laplace operator, i.e. V = 0 and A -Id, l and v are O(|x| -α ) as |x| → ∞ for some α > 0.)

As usual in the proof of Carleman estimates, we introduce the conjugate of P with a real smooth phase function ϕ (the multiplication by the function e ϕ/h is denoted by the same symbol):

P ϕ := e ϕ/h • P • e -ϕ/h with principal symbol p ϕ (x, ξ) = p(x, ξ + iϕ ′ (x)) , so that Re p ϕ = q(ξ) -q(ϕ ′ ) + l.ξ + v + V and Im p ϕ = (2 t ξA + l)ϕ ′ .
The key to Carleman estimates is Hörmander's hypoellipticity condition :

p ϕ = 0 ⇒ {Re p ϕ , Im p ϕ } > 0 . (11)
The operator P is elliptic near infinity, i.e. in some region x ∈ R d | |x| > r for r ≫ R. Without loss of generality (translating Ω and taking R larger) we may assume that Ω contains the following ball

x ∈ R d | |x| R 1 ⊂ Ω with 0 < R 1 < R . ( 12 
)
The less usual feature here is that (11) shall be be satisfied in the unbounded set

H = x ∈ R d | |x| > R 0 with 0 < R 0 < R 1 . (13) 
In the next subsection a global phase function is build in the usual form ϕ = e βψ (cf. [Hör63, LR95, Bur98, Bur02a]). A global semiclassical Carleman estimate with this phase is proved in subsection 2.2 using a global Gårding inequality. Then a global semiclassical unique continuation estimate is deduced in subsection 2.3 using the properties of the phase.

2.1. Phase for the Carleman weights. This section defines a global phase function ϕ(x) = e βψ(x) where β 1 shall be chosen large enough at the end of the section and ψ is the following radial smooth function on

R d . For R 2 > R to be given in the next lemma, ψ(x) = R 2 -|x| for |x| R 1 , ψ(x) = R 2 for |x| R 0 /2, ψ(x) decreases with |x| for R 0 /2 |x| R 1 and has a single inflexion point at |x| = R 0 .
In particular:

|ψ ′ | 1 on H and |ψ ′ (x)| = 1 for |x| R 1 . ( 14 
)
Since ψ is bounded from above and ψ ′ , ψ ′′ are bounded, for any given β the functions ϕ, ϕ ′ and ϕ ′′ are bounded (and ϕ varies with |x| from e βR2 to 0 without increasing).

We set λ(x) = βe βψ(x) so that

ϕ ′ = λψ ′ , λ ′ = βλψ ′ , Re p ϕ = p -λ 2 q(ψ ′ ) and Im p ϕ = λ Im p ψ . Lemma 2.1. ∃R 2 > R, ∀β 1, ∀x, ξ ∈ R d , Re p ϕ (x, ξ) = 0 ⇒ λ(x) 1, ξ = O(λ(x)) and (1 + |x| 2 ) k = O(λ 2 (x)) .
Proof. First note that Re p ϕ (x, ξ) = 0 implies

q 0 |ξ| 2 q(ξ) = λ 2 q(ψ ′ ) -l.ξ -v -V M (λ 2 + |ξ| + 1) with M = sup|q(ψ ′ )| + sup|l| + sup|v| -min {0, inf V }, which implies ξ = O(1 + λ). Secondly λ 2 |ψ ′ | 2 sup x A λ 2 q(ψ ′ ) l.ξ + v + V V -C(1 + λ), so that Re p ϕ (x, ξ) = 0, |x| R 2 ⇒ λ 2 |ψ ′ | 2 sup x A C R (1 + |x| 2 ) k -C 1 + 1+λ 2 2 ⇒ λ 2 C R (1 + |x| 2 ) k -3C/2 sup x A + C/2 = C ′ R (1 + |x| 2 ) k -C ′ .
We take R 2 R large enough for this last function to be greater than

C ′ R (1 + |x| 2 ) k /2 for all |x| R 2 and for C ′ R (1 + R 2 2 ) k /2 to be greater than 1. Thus Re p ϕ (x, ξ) = 0 and |x| R 2 imply λ(x) 1 and (1 + |x| 2 ) k = O(λ 2 ). More- over by mere definition of ψ, |x| R 2 ⇒ ψ(x) 0 ⇒ λ(x)
1. Therefore the estimates in the lemma hold.

From now on, R 2 is fixed as in the previous lemma.

Lemma 2.2. ∀β 1, p ϕ (x, ξ) = 0 ⇒ {Re p ϕ , Im p ϕ } = 4βλ 3 q(ψ ′ ) 2 + O(β -1 ) . Proof. The previous lemma, Re p ϕ = 0 ⇒ V ′ = O(λ 2 ) and Im p ϕ = 0 ⇒ Im p ψ = 0 yield that p ϕ (x, ξ) = 0 implies: ∂ x Re p ϕ = ∂ x p -λ 2 ∂ x (q(ψ ′ )) -2λλ ′ q(ψ ′ ) = -2λλ ′ q(ψ ′ ) + O(λ 2 ) ∂ x Im p ϕ = λ ′ Im p ψ + λ∂ x Im p ψ = λ∂ x Im p ψ = O(λ(1 + |ξ|)) = O(λ 2 ) .
Plugging these equations in {Re p ϕ , Im p ϕ } = 2( t ξA + l)∂ x Im p ϕ -2λ t ψ ′ A∂ x Re p ϕ yields that p ϕ = 0 implies {Re p ϕ , Im p ϕ } = -2λ t ψ ′ A[-2λλ ′ q(ψ ′ )] + O(λ 3 ). Plugging λ ′ = βλψ ′ in this equation yields the lemma. Now (14) yields x ∈ H ⇒ q(ψ ′ ) 2 +O(β -1 ) q 0 2 /4 for β large enough. Therefore, the lemmas yield that Hörmander's hypoellipticity condition holds uniformly on H:

∃β 0 1, ∀β β 0 , ∀x ∈ H, p ϕ = 0 ⇒ {Re p ϕ , Im p ϕ } βq 0 > 0 . ( 15 
)
From now on, we assume β β 0 . 2.2. Global Carleman estimate. For ϕ defined above, this section proves

Proposition 2.3. ∀U ⋐ H, ∃c 0 > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀u ∈ C ∞ 0 (U), R d |P ϕ u| 2 c 0 h R d |h∇u| 2 + (1 + |x| 2 ) k |u| 2 .
Note that the integral on the right hand side can be written as M 1/2 u 2 (squared L 2 norm) with the notations

m(x, ξ) = |ξ| 2 + (1 + |x| 2 ) k and M = m(x, hD) = M * I .
The proof of proposition 2.3 is based on the following Gårding's elliptic inequality (simpler than the sharp version for m = 1 in [DS99, theorem 7.12] e.g.).

Proposition 2.4. If the symbol a ∈ S(m) (with weight m) satisfies the lower bound ∃α > 0, ∀(x, ξ) ∈ H × R d , a(x, ξ) αm(x, ξ), then any semiclassical operator A h = a(x, hD) + hr a (x, hD) (with principal symbol a and remainder r a ∈ S(m)) satisfies the lower bound: ∀U ⋐ H, ∀ε > 0, ∃h 0 > 0, ∀h ∈ (0,

h 0 ], ∀u ∈ C ∞ 0 (U), Re R d uA h u (α -ε) M 1/2 u 2 Proof. Choose χ ∈ S(1) on R d such that χ = 1 on U and supp χ ⊂ H (e.g. χ ∈ C ∞ (R d ) such that χ = 0 in a compact neighborhood of R d \ H contained in R d \ U and χ = 1 outside a larger such neighborhood). Set β = α -ε/2 and b = χ √ a -βm ∈ S(m 1/2 ) (well defined since a -βm (ε/2)m ε/2 > 0 on supp χ × R d ). The symbolic calculus in [DS99, Chapter 7] yields χ#a#χ = βχ#m#χ + b#b + hr b with r b ∈ S(m). For any u ∈ C ∞ 0 (U), we compute the L 2 hermitian product A h u, u = β M 1/2 (χu) 2 + b(x, hD) 2 + h r(x, hD)u, u with r = r a + r b ∈ S(m).
We may write r(x, hD)u, u = R 0 u 0 , u 0 with R 0 = M -1/2 r(x, hD)M -1/2 and u 0 = M 1/2 u. Since M -1/2 is a pseudo-differential operator with symbol in S(m -1/2 ) (cf. theorem A.1 in the appendix), R 0 is a pseudo-differential operator with symbol in S(1), so that (cf. [DS99, Thm 7.11]) R 0 is bounded on L 2 by some constant ρ > 0. Therefore

| r(x, hD)u, u | ρ M 1/2 u 2 . Hence Re A h u, u β M 1/2 (χu) 2 -hρ M 1/2 u 2 . Setting h 0 = ε 2ρ completes the proof: for all h h 0 , Re A h u, u (β -h 0 ρ) M 1/2 u 2 = (α -ε) M 1/2 u 2 .
To apply Gårding's inequality, we shall need the following lower bound.

Lemma 2.5. ∃γ > 0, ∃α > 0, ∀x ∈ H, ∀ξ ∈ R d , γ |Re p ϕ | 2 m + |Im p ϕ | 2 + {Re p ϕ , Im p ϕ } αm . Proof. Recall Re p ϕ -V = q(ξ) -q(ϕ ′ ) + l.ξ + v q 0 |ξ| 2 -q 1 (1 + |ξ|)
where q 2 = sup(|l| + |v| + |A|) is bounded by assumption on p and q 1 = q 2 (1 + sup|ϕ ′ | 2 ) is bounded (for β given) by definition of ϕ. For all ρ > 0 and κ ∈ (0, q 0 ), there exists δ large enough so that the previous quadratic polynomial in the variable |ξ| is bounded from below by κ|ξ| 2 +ρ for |ξ| δ.

Setting ρ = sup |x| R V +C R (1+|R| 2 ) k , (1) implies V + ρ C R (1 + |x| 2 ) k for all x ∈ R d . The corresponding δ satisfy: ∀x ∈ R d , ∀ξ ∈ R d , |ξ| δ ⇒ Re p ϕ κ|ξ| 2 + C R (1 + |x| 2 ) k .
Similarly, |x| R and |ξ| δ imply Re p ϕ q 0 |ξ| 2 -q 1 (1+δ)+C R (1+|x| 2 ) k . For all ρ ′ > 0 and κ ′ ∈ (0, C R ), there exists δ ′ large enough so that

C R (1 + |x| 2 ) k -ρ ′ > κ ′ (1 + |x| 2 ) k for |x| δ ′ . Taking δ ′ > R corresponding to ρ ′ = (1 + δ)q 1 yields : ∀x ∈ R d , ∀ξ ∈ R d , |x| δ ′ and |ξ| δ ⇒ Re p ϕ q 0 |ξ| 2 + κ ′ (1 + |x| 2 ) k .
Therefore in both cases, |ξ| δ or |x| δ ′ , the symbol Re p ϕ is bounded from below by a positive multiple of m. Since {Re p ϕ , Im p ϕ } ∈ S(m), there exists γ > 0 such that: 

∀x ∈ R d , ∀ξ ∈ R d , |x| δ ′ or |ξ| δ ⇒ γ |Re p ϕ | 2 m + |Im p ϕ | 2 + {Re p ϕ , Im p ϕ } m .
P ϕ u 2 = Au 2 + Bu 2 + h Cu, u = Re (A 2 + B 2 + hC)u, u .
The Gårding inequality in proposition 2.4 applies to E = γ (M -1/2 A) 2 + B 2 + C, thanks to the estimate of its principal symbol in lemma 2.5. With

c 0 = α -ε, it is Re Eu, u = γ M -1/2 Au 2 + Bu 2 + Re Cu, u c 0 M 1/2 u 2 . Now M -1/2 1, so that Re Cu, u c 0 M 1/2 u 2 -γ Au 2 + Bu 2 . Hence P ϕ u 2 (1 -γh) Au 2 + Bu 2 + c 0 h M 1/2 u 2 .
Setting h 0 = 1/γ completes the proof of the proposition.

2.3. Unique continuation estimate. This section proves the following generalized version of theorem 1.2.

Theorem 2.6. For any non empty open

Ω ⊂ R d , ∃C 0 > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ), ∀u ∈ C ∞ 0 (R d ), R d |h∇u| 2 + (1 + |x| 2 ) k |u| 2 e C0/h Ω |u| 2 + R d |P u| 2 .
The main step in the proof is the following proposition where ϕ = e βψ was defined in section 2.1.

Proposition 2.7. ∀β > β 0 , ∃C 1 > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀u ∈ C ∞ 0 (R d ), h R d U C 1 e 2(ϕ(R0)-ϕ(R1))/h h |x| R1 U + R d |P u| 2 , with the abbreviation U (x) = |h∇u(x)| 2 + (1 + |x| 2 ) k |u(x)| 2 and ϕ(|x|) = ϕ(x). Proof. Choose χ ∈ C ∞ (R d ) such that χ = 1 for |x| R 1 and supp χ ⊂ H. There is a U ⋐ H such that supp χ ⊂ U. According to prop. 2.3, ∃c 0 > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀f ∈ C ∞ 0 (R d ), R d |P ϕ (χf )| 2 c 0 h M 1/2 (χf ) 2 . ( 16 
)
For any u ∈ C ∞ 0 (U), we consider f = e ϕ/h u. Note that h∇u = (h∇ff ∇ϕ)e -ϕ/h implies e 2ϕ/h |h∇u| 2 2(|h∇f

| 2 + |f | 2 )(1 + sup|∇ϕ| 2 ) so that e 2ϕ(R1)/h |x| R1 U (3 + 2 sup|∇ϕ| 2 ) |x| R1 |h∇f | 2 + (1 + |x| 2 ) k |f | 2 (3 + 2 sup|∇ϕ| 2 ) M 1/2 (χf ) 2 .
Using (16) and P ϕ (χf ) = e ϕ/h P (χu), we deduce, setting

c 1 = c 0 /(3 + 2 sup|∇ϕ| 2 ) R d |P (χu)| 2 e 2ϕ/h c 1 he 2ϕ(R1)/h |x| R1 U . (17) Now χ = 0 for |x| R 0 and χ = 1 for |x| R 1 imply        |χP u| 2 e 2ϕ/h e 2ϕ(R0)/h sup|χ| 2 |P u| 2 |[χ, P ]u| 2 e 2ϕ/h he 2ϕ(R0)/h R0 |x| R1 U ,
so that, for some c 2 > 0 which depends only on h 0 , ϕ and χ,

R d |P (χu)| 2 e 2ϕ/h c 2 e 2ϕ(R0)/h h |x| R1 U + |P u| 2
Plugging this in (17) completes the proof the proposition with

C 1 = h 0 + c 2 /c 1 .
Proof of theorem 2.6. Since p(x, ξ) q 0 |ξ| 2 /2 for |ξ| large enough, P is elliptic. Therefore (12) implies for h 0 small enough:

∃C 2 > 0, ∀h ∈ (0, h 0 ], ∀u ∈ C ∞ 0 (R d ), |x| R1 U C 2 Ω |u| 2 + Ω |P u| 2 .
Plugging this in prop. 2.7, taking C 0 > 2(ϕ(R 0 )ϕ(R 1 )) > 0 and h 0 small enough completes the proof.

Sums of eigenfunctions

In this section M denotes either R d or a compact manifold as in theorem 1.3. Thus (2) writes exactly as (3). We introduce a time variable t, space-time manifolds

M t = (-t, t) × M for any t > 0, M ∞ = R t × M and M 0 = {t = 0} × M .
When M = R d , the operator P is the same as in the previous section. When M is a compact manifold, P denotes an operator with Dirichlet boundary condition which is locally the same as in the previous section.

3.1. Reduction to a unique continuation estimate with an extra elliptic variable. In this section, we assume that P is self-adjoint. The main results on sums of eigenfunctions of P reduces to the following estimate on the space time semiclassical Schrödinger operator -h 2 ∂ 2 t + P (where t is an extra elliptic variable).

Proposition 3.1. Theorems 1.1 (where M = R d ) and 1.3 (where M is compact manifold) follow from: for any non empty open subset

Ω of M 0 , ∃T 1 > 0, ∃T 2 > 0, ∀γ > 0, ∃C > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀f ∈ C ∞ 0 (M ∞ ) such that f (0, •) = 0, MT 1 F Ce C/h Ω | ḟ0 | 2 + MT 2 |(-h 2 ∂ 2 t + P )f | 2 + Ce -γ/h MT 2 F , (18) 
with the abbreviations ḟ0 (x) = h∂ t f (0, x) and

F = |h∂ t f | 2 +|h∇ x f | 2 +(1+|x| 2 ) k |f | 2 (n.b. when M is a compact manifold the weight (1 + |x| 2 ) k is withdrawn from F ).
Proof. Since p and P are bounded from below, adding a constant without loss of generality for theorems 1.1 and 1.3, we assume that their lower bound is positive.

Let E > 0, φ ∈ C ∞ 0 (M ) and u = 1P <E φ. Since C ∞ 0 (M ) is dense in L 2 (M )
, it is enough to prove (3) for such u.

Let dE λ denote the projection valued measure associated to the positive selfadjoint operator √ P . The cardinal hyperbolic sine function is shc ∈ C ∞ (R) defined by: shc(0) = 1 and shc(t) = (e te -t )/(2t) for t = 0.

Let

F E (t, λ) = t shc(tλ) 1 λ< √ E . For all j and k in N, λ j ∂ k t F E ∈ C(R t ; L ∞ (R λ )
). Therefore the function f defined by:

f (t, x) = F E (t/h, √ P )φ = k∈N (t/h) 2k+1 (2k + 1)! P k u , satisfies f ∈ H j (M T ) for all j ∈ N and T > 0. Moreover, since φ ∈ D(( √ P ) j ) for all j ∈ N, we have f (t, •) ∈ ∩ j∈N D(( √ P ) j ) ⊂ H 1 0 (M ) for all t. Since F E (0, λ) = 0 ⇒ f (0, •) = 0 and f (t, •) ∈ H 1 0 (M ) ⇒ f (t, x) = 0 for x ∈ ∂M , we may approximate f by functions in C ∞ 0 (M ∞
) such that f (0, •) = 0 so that the hypothesis of proposition 3.1 still applies to this f . Due to the ellipticity of -h 2 ∂ 2 t + P , we have

MT 2 F c ε MT 2 +ε |(-h 2 ∂ 2 t + P )f | 2 + |f | 2
for any ε > 0. Therefore (18) still holds with F replaced by |f | 2 . The resulting equation writes,

since ∂ 2 t F E = λ 2 F E ⇒ h 2 ∂ 2 t f = P f and (t shc(t)) ′ ⌉t=0 = cosh(0) = 1 ⇒ ḟ0 = u: MT 1 |f | 2 Ce C/h Ω |u| 2 + Ce -γ/h MT 2 |f | 2 . ( 19 
)
Now shc 1, t shc(tλ) e t(1+λ) /2 for t 0 and λ 0, and

MT |f | 2 = T -T |F E ( t h , λ)| 2 d(E λ φ, φ) dt = 2h T h 0 √ E 0 |t shc(tλ)| 2 d(E λ φ, φ) dt , imply 2 h 2 T 3 3 M |u| 2 MT |f | 2 T e 2T (1+ √ E)/h M |u| 2 . Therefore (19) implies 2 3 T 3 1 -T 2 Ch 2 e (2T2(1+ √ E)-γ)/h M |u| 2 Ch 2 e C/h Ω |u| 2 .
Taking γ > 2T 2 (1 + √ E), C large enough and h 0 small enough yields (3).

3.2. First case: compact potential well. In this section we prove theorem 1.1. Indeed, we shall prove that the hypothesis of proposition 3.1 still holds for all T 2 > T 1 > 0. More precisely, we shall prove the estimate (18) by combining two estimates with the same structure stated in the following lemmas. Let T > T 2 . We introduce a space time semiclassical Schrödinger operator

Q = -h 2 ∂ 2 t + W (t) + P where W ∈ C ∞ (R) satisfies W (t) = 0 for |t| T 2 and W (t) = (1+|t| 2 ) k for |t| > T large enough. Note that Q satisfies (1) on M ∞ = R d+1 .
We still denote by ϕ = e βψ the corresponding phase on M ∞ defined in section 2.1 with 0 < R 0 < R 1 < T 1 . A slight modification of the proof of proposition 2.7 yields:

∀β > β 0 , ∃C 0 > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀f ∈ C ∞ 0 (M ∞ ), hC 0 MT 1 F e 2D(β)/h BR 1 F + MT 2 |Qf | 2 + e -2δ(β)/h MT 2 \MT 1 F , ( 20 
)
where

B R1 = {y ∈ M ∞ | |y| R 1 }, D(β) = ϕ(R 0 ) -ϕ(R 1 ) = e βψ(R0
)e βψ(R1) and δ(β) = ϕ(R 1 )ϕ(T 1 ) = e βψ(R1)e βψ(T1) are positive functions increasing to infinity. Indeed, it is enough to modify χ in the proof as follows. As before, choose

χ 1 ∈ C ∞ (M ∞ ) such that χ 1 = 1 out of B R1 and supp χ 1 ⊂ H. Now choose χ 2 ∈ C ∞ (R) such that χ 2 = 1 on [-T 1 , T 1 ] and supp χ 2 ⊂ (-T 2 , T 2 ). Defining χ(t, x) = χ 1 (t, x)χ 2 (t), the proof is easily completed.
For any γ > 0, take β such that 2δ(β) γ, then take C max {C 0 , 2D(β)}. Thus (20) proves this lemma where

Q = -h 2 ∂ 2 t + P since W = 0 on M T2 : Lemma 3.2. ∀γ > 0, ∃C > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀f ∈ C ∞ 0 (M ∞ ), MT 1 F Ce C/h BR 1 |f | 2 + MT 2 |Qf | 2 + Ce -γ/h MT 2 F . ( 21 
)
Let 0 < T 0 < R1 < R2 < R3 and consider the closed balls Bi with center y 0 = (t 0 , x 0 ) = (-T 0 , 0) and radii Ri , i ∈ {1, 2, 3}. Let B+ 1 = B1 ∩ {t > 0} and B0 3 = B3 ∩ {t = 0}. The semiclassical Carleman estimate with boundary of [LR95] proves this lemma with the abbreviations of proposition 3.1:

Lemma 3.3. ∀γ > 0, ∃ C > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀f ∈ C ∞ 0 (M ∞ ), such that f (0, •) = 0, B+ 1 F Ce C/h B0 3 | ḟ0 | 2 + B3 |Qf | 2 + Ce -γ/h B3\ B1 F . (22) x = 0 t = 0 t = T 0 t = T 2 t = -T 0 B1 B0 B 1 Ω t = -T 2 B3 Figure 1
Proof. Let K = B3 ∩{t 0}. Define the phase φ(y) = e β( R3-|y-y0|) for β > β 0 > 0. It satisfies ∂ t φ = 0 on K. As in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], for β 0 large enough this phase satisfies Hörmander's hypoellipticity condition (11) for Q on K ×R d+1 . Thus proposition 3.1 in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] proves:

∀β > β 0 , ∃c 0 > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀f ∈ C ∞ 0 ( B3 ), such that f (0, •) = 0, hc 0 K F e 2 φ/h h B0 3 | ḟ0 | 2 e 2 φ/h + K |Qf | 2 e 2 φ/h . (23) Choose χ ∈ C ∞ 0 ( B3 ) such that χ = 1 on B2 ⊃ B+ 1 . Replacing f in (23) by χf for any f ∈ C ∞ 0 (M ∞ ) such that f (0, •) = 0 yields as in proposition 2.7 hC 0 e 2 h e β( R3 -R1 ) B+ 1 F e 2 h e β R3 B0 3 | ḟ0 | 2 + B3 |Qf | 2 + e 2 h e β( R3 -R2 ) B3 \ B2 F .
Now the proof can be completed as for lemma 3.2 by taking β large enough.

In this last step, called "semiclassical propagation of smallness" in the introduction, we combine the two lemmas to prove (18).

We first adjust the geometry. Translating f if needed, lemma 3.2 still holds with B R1 replaced by the ball B 1 with center (T 0 , 0) and radius R 1 < T 0 . We ensure that (cf. figure 1)

B0 3 ⊂ Ω, B 1 ⊂ B+ 1 , B3 ⊂ M T2 .
The first inclusion is obtained by translating f along M and taking R3 small enough, the second by taking 2T 0 + R1 > R 1 and the last by taking T 2 > R3 + T 0 .

With these inclusions, (22) implies

B1 F Ce C/h Ω | ḟ0 | 2 + MT 2 |Qf | 2 + Ce -γ/h MT 2 F .
Plugging this in (21) with B R1 replaced by B 1 yields

MT 1 F Ce C/h 1 + Ce C/h Ω | ḟ0 | 2 + MT 2 |Qf | 2 + C Ce -(γ-C)/h + e -γ/h MT 2 F .
To complete the proof of (18) we note that the last parenthesis can be made an arbitrary exponentially small factor by choosing γ first, then γ depending on C.

3.3.

Second case: compact manifold. In this section we prove theorem 1.3. As in the previous section, we shall prove that the hypothesis of proposition 3.1 still holds for all T 2 > T 1 > 0. The "semiclassical propagation of smallness" introduced above allows to prove the global estimate (18) by combining local estimates with the same structure.

The needed local estimates are all obtained from [LR95, sect. 3 (40)] by choosing β large enough as in the proof lemma 3.2 above so that γ is arbitrarily large. The geometry is the same as in [LR95, sect. 3]. The propagation of smallness from Ω is initiated by a time boundary estimate as in lemma 3.3 and ends with spatial boundary estimates (cf. [LR95, last page]). We now concentrate our explanation on the interior propagation using the geometrical setting of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]p. 354].

We recall there are balls B n , n = 0, . . . , N , with a common radius r such that B n+1 is included in the ball 3B n with same center as B n but radius 3r. A semiclassical Carleman estimate with "radial" phase (-ψ is the distance from the center of B n , cf. [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]) yields, as in lemma 3.2, with

F = |h∂ t f | 2 + |h∇ x f | 2 + |f | 2 , ∀γ n > 0, ∃C n > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀f ∈ C ∞ 0 (M ∞ ), Bn+1 F 3Bn F C n e Cn/h Bn F + MT 2 |Qf | 2 + C n e -γn/h MT 2 F . Setting α n = Bn |F | 2 , A = MT 2 |Qf | 2 and B = MT 2 F , we have to deduce ∀γ > 0, ∃C > 0, ∃h 0 > 0, ∀h ∈ (0, h 0 ], ∀f ∈ C ∞ 0 (M ∞ ), α N Ce C/h (α 0 + A) + Ce -γ/h B. N.b. this deduction is a substitute for [LR95, lemma 3.4].
Reasoning by recurrence, it is enough to prove it for N = 2. The hypothesis writes

α 1 C 0 e C0/h (α 0 + A) + C 0 e -γ0/h B and α 2 C 1 e C1/h (α 1 + A) + C 1 e -γ1/h B . It implies α 2 C 0 C 1 e (C0+C1)/h (α 0 + A) + C 0 C 1 e -(γ0-C1)/h + C 1 e -γ1/h B. The conclusion is obtained by choosing γ 1 > γ first, then γ 0 > γ + C 1 and finally C > (C 0 + 1)(C 0 + C 1 ).
4. Homogeneous potentials: sharpness and non-controllability 4.1. Semiclassical reduction by scaling. In this section, we consider a smooth potential well V which satisfies (1) and is positively homogeneous of degree 2k, i.e.

∀ε > 0, V (εx) = ε 2k V (x) , (24) 
and prove that corollaries 1.6 and 1.7 are still valid for the operator A = -∆+V (cf. remark 1.8). They reduce to theorems 1.1 and 2.6 which concern the semiclassical

operator P = -h 2 ∆ + V by some change of variable u(x) = v(x/ε) with ε > 0. Since (P u -λu)(x) = -h ε 2 ∆v + ε 2k V v -λv (x/ε), the scale ε must satisfy h ε 2 = ε 2k = 1 µ 2 . ( 25 
)
Indeed, setting 1/h = µ 1+1/k and defining the operator D ε of dilation with scale

ε = µ -1/k by (D ε u)(x) = u(εx) yields D ε (P -λ)u = µ -2 (A -µ 2 λ)v, for v(x) = u(εx) . In particular u ∈ 1P <E L 2 (R d ) is equivalent to v ∈ 1 A<µ 2 E L 2 (R d ).
To prove corollary 1.6, we take E 0 = 1, V (x) = |x| 2k and Ω ⊂ Γ in theorem 1.1. We may assume h 0 < 1 and let

h 0 = ε k+1 0 = µ -(1+1/k) 0
. Performing the change of variable in the estimate (2), and dividing by ε d , yields

∀µ µ 0 , ∀v ∈ 1 A<µ 2 L 2 (R d ), R d |v(x)| 2 dx Ce Cµ 1+1/k ε -1 Ω |v(x)| 2 dx .
Since ε 0 < 1, εx ∈ Ω implies x ∈ Γ, so that the last integral is bounded by the same integral over Γ. Increasing C, this proves (6) for all µ µ 0 . Increasing again C to C exp(Cµ 1+1/k 0 ) completes the proof of corollary 1.6. To prove corollary 1.7, we take P = -h 2 ∆ + |x| 2k -1 in theorem 2.6. Scaling as before so that D ε P u = µ -2 (Aµ 2 )v and using (25) yields ∀µ µ 0 , ∀v ∈ D(A),

R d 1 µ 2 |∇v| 2 + (1 + 1 µ 2 |x| 2k )|v| 2 Ce Cµ 1+1/k Γ |v| 2 + 1 µ 4 R d |(A -µ 2 )v| 2 dx .
Increasing C, this proves (7) for λ µ 2 0 . For λ -µ 2 0 < 0, (7) without Γ |v| 2 is a standard elliptic estimate. Since (Aλ)v 2 = (A -Re λ)v 2 + (Im λ)v 2 (A -Re λ)v 2 , we are left with proving (7) for λ ∈ R, |λ| < µ 2 0 . Arguing by contradiction, we consider sequences (v n ) in D(A) and (λ n ) in (-µ 2 0 , µ 2 0 ) such that

Γ |v n | 2 + R d |(A -λ n )v n | 2 = o(1) and R d |∇v n | 2 + (1 + |x| 2k )|v n | 2 = 1 . Since [-µ 2 0 , µ 2 0 ] is compact and v ∈ L 2 (R d ) | R d |∇v| 2 + (1 + |x| 2k
)|v| 2 1 is compact for the L 2 topology, passing to subsequences if needed, we may assume that

λ n → λ and R d |v n -v| 2 → 0. Now Γ |v| 2 = lim Γ |v n | 2 = 0 and (A -λ)v = lim(A -λ n )v n =
0 in the distributions topology. Hence v = 0 by unique continuation for second order elliptic operators. Integrating by parts yields the contradiction

1 = R d |∇v n | 2 + (1 + |x| 2k )|v n | 2 = R d vn (A -λ n )v n + (1 + λ n ) R d |v n | 2 = o(1) .
4.2. Radial eigenfunctions and sharpness. This section proves remark 1.9 regarding the sharpness of corollaries 1.6 and 1.7 for some sequence (v n ) of eigenfunctions of A = -∆ + |x| 2k (k ∈ N * ) with eigenvalues (λ n ) tending to infinity. With v = v n (n large enough) and omitting ∇ and |x|, (6) and (7) are the same:

R d |v n (x)| 2 dx Ce C( √ λn) 1+1/k Γ |v n (x)| 2 dx . ( 26 
)
We write A in polar coordinates:

A = -∂ 2 r -d-1 r ∂ r -1 r 2 ∆ S d-1 + r 2k
, where ∆ S d-1 is the Laplace-Beltrami operator on the unit sphere S d-1 . We denote by P n a homogeneous polynomial of degree n which is harmonic (i.e. ∆P n = 0) and by p n its restriction to S d-1 , so that p n is a spherical harmonic with eigenvalue σn = n(n+d-2), i.e. -∆ S d-1 p n = σn p n . We seek a sequence (v n ) of eigenfunctions of A which are radial, i.e. v n (rω) = p n (ω)q n (r) with r ∈ R + and ω ∈ S d-1 . In order to have v n ∈ L 2 (R d ), the function w n (r) = r d-1 2 q n (r) must be in L 2 (R + ).

Semiclassical analysis of eigenvalues. The eigenequation bears on w

n since (A -λ n )v n = (-∂ 2 r + W n -λ n )w n , with W n (r) = r 2k + σ n r 2 ,
where σ n = σn + (d-1)(d-3)

4

. By the change of variable w n (r) = √ ε n u n (ε n r), we shall reduce it to (Qρ n )u n = 0 for a semiclassical operator Q = -h 2 n ∂ 2 r + U with semiclassical parameter h n → 0 + , potential U independent of n and eigenvalue ρ n .

We omit the index n in the following computations for the sake of brevity. Since (-

∂ 2 r w + W w -λw)(r) = √ ε(-ε 2 ∂ 2 r u + W ε u -λu)(εr) with W ε (r) = W ( r ε ) = r 2k ε 2k + ε 2 σ r 2 , the scale ε must satisfy 1 ε 2k = ε 2 σ, then h 2 = 1 σ and ρ = λ ε 2 σ . Indeed, setting ε = σ -1 2(k+1) , h = 1 √ σ and ρ = λσ -k k+1 , the eigenequation writes 0 = (Q -ρ)u = -h 2 ∂ 2 r u + U u -ρ, with U (r) = r 2k + 1 r 2 .
The potential U has a unique non degenerate minimum at r 0 = k -1 2(k+1) :

U 0 = inf U = U (r 0 ) = 1 + 1 k r 2 0 = 1 + 1 k k 1 2(k+1)
1.

From now on, we consider a sequence of eigenvalues (ρ n ) of Q which converges to U 0 (i.e. ρ → U 0 as h → 0) and the corresponding eigenvalues of A:

λ n = ρ n σ k k+1 n ∼ n U 0 n 2k k+1 . (27) 
Its existence results from the following harmonic approximation argument (cf. e.g. [DS99, theorem 4.23], [HN05, section 12.2]). The function ũ ∈ L 2 (R + ) defined by

ũ(r 0 + r) = χ(r)h -1 4 exp -r 2 E0 2h
, with E 0 = U ′′ (r0) 2 and χ ∈ C ∞ 0 ((-r 0 , +∞)) equal to 1 near 0, is an approximate eigenfunction in the sense that it satisfies

(Q -U 0 -hE 0 )ũ = ũ O(h 3 2 ). According to the basic spectral resolvent estimate (Q -ρ) -1 (dist(ρ, σ(Q))) -1 , this implies: ∃ρ ∈ σ(Q), ρ = U 0 + hE 0 + O(h 3 
2 ).

4.2.2. Sharpness of exponents for cones. For a cone Γ as in corollary 1.6, (26) writes

S d-1 |p n | 2 Ce C( √ λn) 1+1/k Ω0 |p n | 2 , since Γ |v n | 2 = Ω0 |p n | 2 R |w n | 2 .
In this paragraph we assume that there is a vector space Π of dimension 2 in R d (d 3) such that Ω 0 ∩ Π = ∅. By a rotation of coordinates without loss of generality, Π = ∩ d j=3 {x j = 0} and there is an ε ∈ (0, 1) small enough such that the conic neighborhood Π

ε = x ∈ R d | d j=3 x 2 j ε|x| 2 of Π does not intersect Ω 0 .
Hence it is enough to consider the cone Γ

ε = x ∈ R d | x 2 1 + x 2 2 (1 -ε)|x| 2 ⊃ Γ. Now we choose the harmonic polynomial P n (x) = r n p n (ω) = (x 1 + ix 2 ) n so that |p n | 2 (1-ε) n on Ω ε 0 = S d-1 ∩Γ ε (i.e
. the spherical eigenfunctions (p n ) concentrate on the intersection of the plane Π with the sphere S d-1 ), and estimate the integrals:

∃α d > 0, Ω ε 0 |p n | 2 (1 -ε) n S d-1 1 = α d (1 -ε) n ∀δ ∈ (0, 1), ∃β d > 0, S d-1 |p n | 2 B d (x 2 1 + x 2 2 ) n = B 2 (x 2 1 + x 2 2 ) n (1 -x 2 1 -x 2 2 ) d-3 2 B d-3 1 = 1 0 r 2n (1 -r 2 ) d-3 2 2πrdr B d-3 1 β d (1 -δ) n .
Therefore, taking δ ∈ (0, ε) and plugging ( 27), (v n ) satisfies the reverse of (26):

∃C > 0, ∀n, R d |v n | 2 β d α d 1 -δ 1 -ε n Γε |v n | 2 Ce C( √ λn) 1+1/k Γε |v n | 2 .
This completes the proof that the powers in corollaries 1.6 and 1.7 are both sharp.

4.2.3. Failure of the estimates for bounded sets. In the last part of this section, we examine how much (26) fails when Γ is bounded. Without loss of generality, we assume that Γ = B r0 := x ∈ R d | |x| r 0 for some r 0 > 0. Using the scaling of section 4.2.1 and setting δ n = ε n r 0 , (26) writes:

R+ |u n | 2 Ce C hn ( √ ρn) 1+1/k δn 0 |u n | 2 , since Γ |v n | 2 = S d-1 |p n | 2 r0 0 |w n | 2 . ( 28 
)
Since ρ n → U 0 , the converse of this inequality for fixed δ n is a typical exponential decay estimate in the classically forbidden region (cf. e.g. [EZ07, Theorem 7.3]). To disprove (28), we shall take advantage of δ n → 0 using a semiclassical Agmon estimates (cf. e.g. [DS99, Chapter 6], [HN05, Chapter 13]).

We omit the index n in the following computations for the sake of brevity. As in [DS99, Section 6.a]), the energy equality

R+ |h∇(e Φ/h f )| 2 + R+ (U -ρ -|Φ ′ | 2 )|e Φ/h f | 2 = Re R+ e 2Φ/h Qf f ,
holds for all f ∈ D(Q) and Φ real valued Lipschitz continuous and constant outside some compact set of (0, +∞). It implies that the second integral is nonpositive for

f = u. In particular, if U -ρ -|Φ ′ | 2 1 2 outside some compact K ⊂ (0, +∞) then R+\K |e Φ/h u| 2 2 K |U -ρ -|Φ ′ | 2 ||e Φ/h u| 2 . ( 29 
)
The Agmon distance d(r) from r 0 to r is the integral of √ U -U 0 over the segment joining r 0 to r. Note that d ∈ C 1 ((0, +∞)) and d(r) ∼ln r as r → 0, since

- √ U 0 U (r) -U 0 -1 r 0 for r 1 √ U0 r 0 1. As in the proof of [DS99, Theorem 6.4]), we take Φ(r) = Φ R (r) = χ R ( 1 2 d(r)) with χ R (r) = Rχ( r R ) and χ(r) = r for r ∈ [0, 1] and χ(r) = 1 for r 1, so that 4|Φ ′ R | 2 |d ′ (r)| 2 = U -U 0 and U -|Φ ′ R | 2 3 4 (U -U 0 ) + U 0 . Moreover we take K = {r ∈ R + | U (r) U 0 + 1} so that U -ρ -|Φ ′ R | 2 1 2 + ( 1 4 + U 0 -ρ) on R + \ K, and take h small enough so that |U 0 -ρ| 1 4 and ]0, δ] ∩ K = ∅. Using that Φ R is nonincreasing on [0, r 0 ] and that |U -ρ -|Φ ′ R | 2 | 5 4 (U -U 0 ) + 1 4 and Φ R (r) 1 2 d(r) are bounded on K by some C K > 0 independent of R, (29) implies e 2ΦR(δ)/h δ 0 |u| 2 δ 0 |e Φ/h u| 2 2 K C K |e CK /h u| 2 2C K e 2CK /h R+ |u| 2 . As R → +∞, 2Φ R (δ) → d(δ), and -d(δ) ∼ ln δ ∼ ln ε ∼ 1
k+1 ln h as h → 0, so that (28) fails by a ln 1 hn in the numerator, i.e. in terms of eigenfunctions of A: ∃C 0 > 0, which disproves (26) and proves that corollaries 1.6 and 1.7 fail by at least an extra logarithmic factor in the exponentials when Γ is bounded.

4.3.

Non-controllability for quadratic potential. In this section we prove the negative part of theorem 1.10 for k = 1. We have to disprove (9) which we rewrite:

∃κ T > 0, ∀v ∈ L 2 (R d ), |e -T A v| 2 κ T T 0 Γ
|e -tA v| 2 dt. (30)

The first Hermite function φ 0 (x) = e -|x| 2 /2 /π d/4 is the normalized eigenfunction of A = -∆ + |x| 2 corresponding to the smallest eigenvalue λ 0 = d. Let T > 0, t 0 > 0 and y ∈ R d . We consider the initial condition v(x) = e -t0A (x, y) so that e -tA v 0 (x) = e -(t+t0)A (x, y) by the semigroup property. Let T 0 = t 0 + T . Writing the semigroup in a Hilbert basis of eigenfunctions yields |e -T A v| 2 e -2T0λ0 |φ 0 (y)| 2 = C 0 e -|y| 2 . (31) 4.3.1. Non-controllability from a half-space. In this section Γ is a half-space. Since A is the sum of d operators of the same form but in one dimension each, we may assume without loss of generality that d = 1 and Γ = (-∞, x 0 ) for some x 0 ∈ R. Mehler's explicit formula for the Hermite kernel is (cf. e.g. [Dav89, prop 4.3.1]): e -tA (x, y) = e -t π(1e -4t ))

exp -(1 + e -4t )(x 2 + y 2 ) -4e -2t xy 2(1e -4t )

The function a(t) = 1+e -4t 1-e -4t is decreasing for t > 0, hence a(T 0 ) > lim ∞ a = 1 and ∀x ∈ Γ, y ∈ R + , t > t 0 , |e -tA (x, y)| 2 1 π(1e -4t0 ) e -a(t0)(x 2 +y 2 )+4|x0|y/(1-e -4t 0 ) . The combination of (31) and (32) as y → +∞ proves that the null-controllability inequality (30) does not hold for any T . 4.3.2. Non-controllability from any cone. Now we do not assume that Γ is included in a half-space anymore. Indeed we consider the exterior of the revolution cone with vertex x 0 = 0, half-axis D = {λx 0 | λ > 1} and aperture angle θ ∈ (0, π/2), i.e. Γ θ is the set of x ∈ R d such that xx 0 and x 0 make an angle greater than θ. For any y ∈ D, we define R = |yx 0 | sin θ, so that Γ θ does not intersect the ball B y,R centered on y with radius R. Here we merely use that the kernel of e -tA is bounded from above by the heat kernel since A = -∆ + |x| 2 -∆: 2 sin 2 θ. Taking t 0 > 0 small enough, this proves that the nullcontrollability inequality (30) does not hold for any T < 1 2 sin 2 θ.

This implies ∃C

Proposition 8.3] (which is still valid with a parameter t as long as all the estimates are uniform with respect to t) implies that Op h (q t ) -1 = Op h (q t ) with qt ∈ S(1) uniformly with respect to t 0. Since the definition of q t as symbolic product also writes Op h (q t ) = R -1 t Op h ((p + t) -1 ), we deduce R t = Op h ((p + t) -1 ) Op h (q t ) -1 = Op h (r t ) with r t = (p+t) -1 # h qt ∈ S((m+t) -1 ) uniformly with respect to t 0.

Combining (34) and (33) with λ = p yields ∀s ∈ (-1, 0), P s -Op h (p s ) = c s +∞ 0 Op h (r t ) Op h (1q t )t s dt .

By proposition A.2, we deduce P s -Op h (p s ) = h 2 Op h (r) with r = c s +∞ 0 a t t s dt and a t = h -2 r t # h (1q t ) ∈ S((m + t) -1 ) uniformly with respect to t 0. But +∞ 0

|∂ α a t |t s dt < ∞ since (m + t) -1

(1 + t) -1 and s ∈ (-1, 0). Hence differentiating r under the integral sign and (33) with λ = m prove r ∈ S(m s ), which completes the proof of theorem A.1 for s ∈ (-1, 0).

  Now there is an open neighborhood N of {p ϕ = 0} ∩ H such that {Re p ϕ , Im p ϕ } κq 0 /2 on N , according to the uniform hypoellipticity condition (15). Since the complementary set K = {|ξ| δ, |x| δ ′ } ∩ H is compact, α 1 = min x∈K κq 0 /(2m) and α 2 = min x∈K\N γ|p ϕ | 2 /m 2 are positive. Setting α = min {1, α 1 , α 2 } completes the proof of the lemma. Proof of proposition 2.3. Let A = (P ϕ + P * ϕ )/2 and B = (P ϕ -P * ϕ )/(2i) so that P ϕ = A + iB, A = A * and B = B * . Setting C = i h [A, B] yields

  R d |v n (x)| 2 dx C 0 e C0( √ λn) 1+1/k ln λn Γ |v n (x)| 2 dx ,

  1 ∈ (1, a(T 0 )), ∃C 2 > 0, ∀x ∈ Γ, y ∈ R + , t ∈ [t 0 , T 0 ], |e -tA (x, y)| 2 C 2 e -C2x 2 -C1y 2 . Therefore, setting C 3 = T C 2 x0 -∞ e -C2x 2 dx yields ∃C 1 > 1, ∃C 3 > 0, ∀y ∈ R + , v| 2 dt C 3 e -C1y 2 (32)

e

  -tA (x, y) 1 (4πt) d/2 exp -|x -y| 2 4t . Since by definition Γ θ ⊂ R d \ B y,R , this implies: ∃C 1 > 0, ∀R > 1, 2 /(2t) r d-1 dr dt (4πt) d C 1 R d-1 e -R 2 /(2T0) .Plugging this upper bound and the lower bound (31) into the null-controllability inequality (30) yields:∀R > 1, R 2 /(2T 0 ) -(d -1) ln R -|y| 2 ln(C 1 /C 0 ), where |y| = Rsin θ + |x 0 |. Since |y| 2 ∼ |yx 0 | 2 = R 2 sin -2 θ as R → ∞, this implies T + t 0 = T 0 1

Appendix A. Fractional powers of semiclassical PDOs

For the sake of completeness, this appendix provides a proof of a semiclassical analysis result used in the proof of proposition 2.4 for which we do not know any exact reference. Although the chapter on functional calculus in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] does not apply directly to fractional powers, we adapt it in this manner: we replace the Hellfer-Sjöstrand formula [DS99, Theorem 8.1] by the Balakrishnan-type formula (34) following [HN05, section 4.4] and [HN04, Appendix A], and we replace the estimate in [DS99, Proposition 8.6] of the symbol of the resolvent by the estimate in proposition A.2. in a symbol class depending on the spectral parameter.

We denote the semiclassical Weyl quantization of the symbol p by Op h (p).

Theorem A.1. Let m 1 be an order function on R 2d and let P = Op h (p) with (i) p ∈ S(m) real valued and elliptic, i.e. p(x, ξ; h) c 0 m(x, ξ) c 0 > 0, (ii) P uniformly positive, i.e. ∃c 1 > 0, ∀h ∈ (0, 1), P c 1 I. Then ∀s ∈ R, ∃r ∈ S(m s ), P s = Op h (p s ) + h 2 Op h (r), hence P s is a pseudodifferential operator with symbol in S(m s ) for any semiclassical quantization rule.

The last implication results from [DS99, exercise p.83].

Under assumption (i), [DS99, pp 100-101] proves that, for all h ∈ (0, h 0 ] and some sufficiently small h 0 , Op h (p -1 )P is invertible, P -1 ∈ Op h (S( 1 m )) and P is selfadjoint with domain P -1 (L 2 (R d )). Hence the symbolic calculus and the formula

As in [HN05, section 4.4], the symbolic calculus now reduces the problem to s in any open interval of R, and from now on we only consider s ∈ (-1, 0) to take advantage of the change of variable formula

with c s = ( +∞ 0

(1 + t) -1 t s dt) -1 > 0 (indeed c s = -π -1 sin(sπ) by a standard computation of one residue). Using assumption (ii) and the spectral theorem, it allows to write the fractional powers of P in terms of its resolvent:

The next proposition describes a symbol class relevant to R t . We say that a nonnegative function m t on R 2d with parameter t is an order function uniformly with respect to t when ∃C

, where X = 1 + |X| 2 . We say that the symbol p t ∈ C ∞ (R 2d ) with parameter t is in the class S(m t ) uniformly with respect to t when ∀α

Proposition A.2. Under the assumptions of theorem A.1, the symbolic product q t = (p + t)# h (p + t) -1 satisfies h -2 (1q t ) ∈ S(1) uniformly with respect to t 0. Moreover there exists r t ∈ S((m + t) -1 ) uniformly with respect to t 0 such that R t = Op h (r t ) for all t 0 and h ∈ (0, h 0 ], for some h 0 > 0 independent of t.

Proof. Uniformly with respect to t 0, m + t is an oder function, p + t ∈ S(m + t) and (p + t) -1 ∈ S((m + t) -1 ). By the continuity of the symbolic product in [DS99, Proposition 7.7], we deduce q t ∈ S(1) uniformly with respect to t 0. But the first two terms of the asymptotic expansion of q t are (p + t)(p + t) -1 = 1 and h 2 p + t, (p + t) -1 = 0. Hence h -2 (1q t ) ∈ S(1) uniformly with respect to t 0.

We deduce that Op h (q t ) = I -h 2 Op h (h -2 (1-q t )) is invertible as an L 2 bounded operator for all t 0 and h ∈ (0, h 0 ), for some h 0 > 0 independent of t. As in the proof of [DS99, (8.10)], the semiclassical Beal's characterization in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]