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Proof of Proposition 8.1

Proof of Proposition 8.1. First, we recall the notations introduced in [START_REF] Boucheron | Moment inequalities for functions of independent random variables[END_REF]. Let N be a positive integer. Then, I N stands for the family of subsets of {1, . . . , N } of size less than 2. Let T be a set of vectors indexed by I N . In the sequel, T is assumed to be a compact subset of R (N (N +1)/2)+1 . The following lemma states a slightly modified version of the upper bound in remark 7 in [START_REF] Boucheron | Moment inequalities for functions of independent random variables[END_REF]. 

U i U j t {i,j} + N i=1 t {i} + t ∅ ,
where U 1 , . . . , U N are independent Rademacher random variables. Then for any x > 0,

P {T ≥ E[T ] + x} ≤ 4 exp - x 2 L 1 E[D] 2 ∧ x L 2 E , (1) 
where D and E are defined by:

D := sup t∈T sup α: α 2 ≤1 N i=1 U i j =i
α j t {i,j} , E := sup t∈T sup α (1) ,α (2) , α (1) 2≤1 α (2) ≤1 N i=1 j =i t {i,j} α

i α

(2) j

.

Contrary to the original result of [START_REF] Boucheron | Moment inequalities for functions of independent random variables[END_REF], the chaos are not assumed to be homogeneous. Besides, the t {i} are redundant with t ∅ . In fact, we introduced this family in order to emphasize the connection with Gaussian chaos in the next result.

A suitable application of the central limit theorem enables to obtain a corresponding bound for Gaussian chaos of order 2.

Lemma 1.2. Let T be a supremum of Gaussian chaos of order 2.

T := sup t∈T {i,j} t {i,j} Y i Y j + i t i Y 2 i + t ∅ , (2) 
where Y 1 , . . . , Y N are independent standard Gaussian random variable. Then, for any x > 0,

P {T ≥ E[T ] + x} ≤ exp - x 2 E[D] 2 L 1 ∧ x EL 2 , (3) 
where

D := sup t∈T sup α∈R N α 2 ≤1 i,j Y i (1 + δ i,j )α j t {i,j} , E := sup t∈T sup α1, α1 2 ≤1
sup α2, α2 2 ≤1 i,j α 1,i α 2,j t {i,j} (1 + δ i,j ) .

The proof of this Lemma is postponed to the end of this section. To conclude, we derive the result of Proposition 8.1 from this last lemma. For any matrix R ∈ F , we define the vector t R ∈ R nr(nr+1)/2+1 indexed by I nr as follows t R {(i,k),(j,l)} := δ k,l (2δ i,j ) 

R[i,j] n , t R {(i,
Let us now turn the constant

E E = sup t R ∈T sup α 1 , α 2 ∈ R nr α 1 2 ≤ 1, α 2 2 ≤ 1 1≤i,j≤r 1≤k,l≤n (1 + δ ij δ k,l )t R,kl i,j α k 1,i α l 2,j = sup R∈F sup α 1 , α 2 ∈ R nr α 1 2 ≤ 1, α 2 2 ≤ 1 2 n 1≤i,j≤r 1≤k≤n R[i,j]α k 1,i α k 2,j .
From this last expression, it follows that E is a supremum of L 2 operator norms

E = 2 n sup R∈F ϕ max Diag (n) (R) ,
where Diag (n) (R) is the (nr×nr) block diagonal matrix such that each diagonal block is made of the matrix R. Since the largest eigenvalue of Diag (n) (R) is exactly the largest eigenvalue of R, we get

E = 2 n sup R∈F ϕ max (R) . (5) 
Applying Proposition 1.2 and gathering identities (4) and [START_REF] Moran | A Gaussian Markovian process on a square lattice[END_REF] yields

P(Z ≥ E(Z) + t) ≤ exp - t 2 L 1 E(V ) t L 2 B
, where B = E and V = D 2 .

Proof of Lemma 1.1. This result is an extension of Corollary 4 in [START_REF] Boucheron | Moment inequalities for functions of independent random variables[END_REF]. We shall closely follow the sketch of their proof adapting a few arguments. First, we upper bound the moments of (T -E(T )) + . Then, we derive the deviation inequality from it. Here, x + = max(x, 0).

Lemma 1.3. For all real numbers q ≥ 2, (T -E(T )) + q ≤ LqE(D) + LqE , (6) 
where T q q stands for the q-th moment of the random variable T . The quantities D and E are defined in Lemma 1.1.

By Lemma 1.3, for any t ≥ 0 and any q ≥ 2,

P (T ≥ E(T ) + t) ≤ E (T -E(T )) q + t q ≤ √ LqE(D) + LqE t q .
The right-hand side is at most 2 -q if √ LqE(D) ≤ t/4 and LqE ≤ t/4. Let us set

q 0 := t 2 16LE(D) 2 ∧ t 4LE
.

If q 0 ≥ 2, then P (T ≥ E(T ) + t) ≤ 2 -q0
. On the other hand if q 0 < 2, then 4 × 2 -q0 ≥ 1. It follows that

P (T ≥ E(T ) + t) ≤ 4 exp - log(2) 4L t 2 4E(D) 2 ∧ t E .
Proof of Lemma 1.3. This result is based on the entropy method developed in [START_REF] Boucheron | Moment inequalities for functions of independent random variables[END_REF]. Let f : R N → R be a measurable function such that T = f (U 1 , . . . , U N ). In the sequel, U ′ 1 , . . . , U ′ N denote independent copies of U 1 , . . . , U N . The random variable T ′ i and V + are defined by

T ′ i := f (U 1 , . . . , U i-1 , U ′ i , U i+1 , . . . , U N ) , V + := E N i=1 (T -T ′ i ) 2 + |U N 1 ,
where U N 1 refers to the set {U 1 , . . . , U N }. Theorem 2 in [START_REF] Boucheron | Moment inequalities for functions of independent random variables[END_REF] states that for any real q ≥ 2,

(T -E(T )) + q ≤ Lq √ V + q . (7) 
To conclude, we only have bound the moments of √ V + . By definition,

T = sup t∈T {i,j} U i U j t {i,j} + N i=1 t {i} + t ∅ .
Since the set T is compact, this supremum is achieved almost surely at an element t 0 of T . For any 1

≤ i ≤ N , (T -T ′ i ) 2 + ≤ (U i -U ′ i ) j =i U j t 0 {i, j} 2 .
Gathering this bound for any i between 1 and N , we get

V + ≤ N i=1 E   (U i -U ′ i ) j =i U j t 0 {i, j} 2 U N 1   ≤ 2 N i=1 j =i U j t 0 {i, j} 2 ≤ 2 sup α∈R N , α 2 ≤1 N i=1 α i j =i t 0 {i,j} U j 2 ≤ 2 sup t∈T sup α∈R N , α 2 ≤1 N i=1 U i j =i α j t {i,j} 2 = 2D 2 .
Combining this last bound with ( 7) yields

(T -E(T )) + q ≤ Lq √ 2 D q ≤ Lq E(D) + |(D -E(D)) + q . ( 8 
)
Since the random variable D defined in Lemma 1.1 is a measurable function f 2 of the variables U 1 , . . . , U N , we apply again Theorem 2 in [START_REF] Boucheron | Moment inequalities for functions of independent random variables[END_REF].

(D -E(D)) + q ≤ Lq V + 2 q
, where V + 2 is defined by

V + 2 := E N i=1 (D -D ′ i ) 2 + U N i , and 
D ′ i := f 2 (U 1 , . . . , U i-1 , U ′ i , U i+1 , . . . , U N ).
As previously, the supremum in D is achieved at some random parameter (t 0 , α 0 ). We therefore upper bound V + 2 as previously.

V + 2 ≤ N i=1 E   (U i -U ′ i ) j =i α 0 j t 0 {i,j} 2 U N 1   ≤ 2 N i=1 j =i α 0 j t 0 {i,j} 2 ≤ 2 sup α (2) ∈R N , α 2≤1 N i=1 α (2) j j =i α 0 i t {i,j} 2 = 2E 2 .
Gathering this upper bound with (8) yields

(T -E(T )) + q ≤ LqE(D) + LqE .
Proof of Lemma 1.2. We shall apply the central limit theorem in order to transfer results for Rademacher chaos to Gaussian chaos. Let f be the unique function satisfying T = f (y 1 , . . . , y N ) for any (y 1 , . . . , y N ) ∈ R N . As the set T is compact, the function f is known to be continuous. Let (U (j) i ) 1≤i≤N,j≥0 an i.i.d. family of Rademacher variables. For any integer n > 0, the random variables Y (n) and T (n) are defined by

Y (n) := n j=1 U (j) 1 √ n , . . . , n j=1 U (j) N √ n , T (n) := f Y (n) .
Clearly, T (n) is a supremum of Rademacher chaos of order 2 with nN variables and a constant term. By the central limit theorem, T (n) converges in distribution towards T as n tends to infinity. Consequently, deviation inequalities for the variables T (n) transfer to T as long as the quantities E D (n) , E (n) , and E[T (n) ] converge.

We first prove that the sequence T (n) converges in expectation towards T . As T (n) converges in distribution, it is sufficient to show that the sequence T (n) is asymptotically uniformly integrable. The set T is compact, thus there exists a positive number t ∞ such that

T (n) ≤ t ∞ i,j |Y (n) i Y (n) j | + 1 ≤ t ∞ 1 + (N + 1)/2 N i=1 Y (n) i 2 .
It follows that

T (n) 2 ≤ t 2 ∞ N + 1 2 2 N + 2 2 1 + N i=1 Y (n) i 4 . (9) 
The sequence Y

(n) i

does not only converge in distribution to a standard normal distribution but also in moments (see for instance [START_REF] Billingsley | Probability and measure[END_REF] p.391). It follows that limE T (n) 2 ≤ ∞ and the sequence f Y (n) is asymptotically uniformly integrable. As a consequence,

lim n→∞ E T (n) = E[T ] .
Let us turn to the limit of E D (n) . As the variable T (n) equals

T (n) = sup t∈T {i,j} t {i,j} 1≤k,l≤n U (k) i U (l) j n + i t i 1≤k≤n U (k) i √ n l =k U (l) i √ n + t ∅ + i t i ,
it follows that

D (n) = sup t∈T sup α∈R nN , α 2 ≤1 1≤i≤N 1≤k≤n U (k) i j =i t {i,j} n 1≤l≤n α (l) j + 2 l =k 2 t {i} n α (l) i ≤ sup t∈T sup α∈R nN , α 2 ≤1 i U (k) i √ n j (1 + δ i,j )t {i,j} 1≤l≤n α (l) j √ n + A (n) , (10) 
where the random variable A (n) is defined by

A (n) := sup t∈T sup α∈R nN , α 2≤1 N i=1 n j=1 t {i} U (j) i n α j i .
Straightforwardly, one upper bounds

A (n) by t ∞ /n N i=1 n j=1 U (j) i 2
and its expectation satisfies

E A (n) ≤ t ∞ N n ,
which goes to 0 when n goes to infinity. Thus, we only have to upper bound the expectation of the first term in (10). Clearly, the supremum is achieved only when for all 1 ≤ j ≤ N , the sequence (α (l) j ) 1≤l≤n is constant. In such a case, the sequence (α

(1) j ) 1≤j≤N satisfies α (1) 2 ≤ 1/ √ n. it follows that E D (n) = E sup t∈T sup α∈R N α 2 ≤1 E i Y (n) i j (1 + δ i,j )α j + O 1 √ n .
Let g be the function defined by

g (y 1 , . . . , y N ) = sup t∈T sup α∈R N α 2 ≤1 i y i j (1 + δ i,j )α j ,
for any (y 1 , . . . , y N ) ∈ R N . The function g(.) is measurable and continuous as the supremum is taken over a compact set. As a consequence, g(Y (n) ) converges in distribution towards g(Y ). As previously, the sequence is asymptotically uniformly integrable since its moment of order 2 is uniformly upper bounded. It follows that lim

E D (n) = E [D].
Third, we compute the limit of E (n) . By definition,

E (n) = sup t∈T sup α1,α2∈R nN , α1 2≤1, α2 2 ≤1 N i=1 n k=1 α k 1,i j =i n l=1 α (l) 2,j t {i,j} n + 2 l =k α (l) 2,i t {i} n = sup t∈T sup α1,α2, α1 2 ≤1, α2 2≤1 N i=1 N j=1 (1 + δ i,j ) t {i,j} n n k=1 n l=1 α (k) 1,i α (l) 2,j + O 1 n .
As for the computation of D (n) , the supremum is achieved when the sequences (α k 1,i ) 1≤k≤n and (α l 2,j ) 1≤l≤n are constant for any i ∈ {1, . . . , N }. Thus, we only have to consider the supremum over the vectors α 1 and α 2 in R N .

E (n) = sup t∈T sup α1,α2∈R N αi 2≤1 N i=1 N j=1 (1 + δ ij )t i,j α 1,i α 2,j + O 1 n .
It follows that E (n) converges towards E when n tends to infinity.

The random variable

T (n) -E(T (n) ) converges in distribution towards T -E(T ).
By Lemma 1.1 ,

P(T -E(T ) ≥ x) ≤ lim exp - x 2 E[D (n) ] 2 L 1 ∧ x E (n) L 2 ,
for any x > 0. Combining this upper bound with the convergence of the sequences D (n) and E (n) allows to conclude.

Proof of Theorem 3.1

Proof of Lemma 8.3. We only consider here the anisotropic case, since the isotropic case is analogous. This result is based on the deviation inequality for suprema of Gaussian chaos of order 2 stated in Proposition 8.1. For any model m ′ belonging to M, we shall upper bound the quantities E(Z m ′ ), B m ′ , and E(W m ′ ) defined in (42) in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF].

1. Let us first consider the expectation of Z m ′ . Let U ′ m,m ′ be the new vector space defined by

U ′ m,m ′ := U m,m ′ √ D Σ p ,
where U m,m ′ is introduced in the proof of Lemma 8.2 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. This new space allows to handle the computation with the canonical inner product in the space of matrices. Let B

(2)

m 2 ,m ′2 be the unit ball of U ′ m,m ′ with respect to the canonical inner product. If R belongs to U m,m ′ , then R H ′ = R √ D Σ /p F ,
where . F stands for the Frobenius norm.

Z m ′ = sup R∈B H ′ m 2 ,m ′2 1 p 2 tr RD Σ (YY * -I p 2 ) = sup R∈B (2) m 2 ,m ′2 tr R √ D Σ p YY * -I p 2 (11) = Π U ′ m,m ′ √ D Σ p YY * -I p 2 F ,
where Π U ′ m,m ′ refers to the orthogonal projection with respect to the canonical inner product onto the space

U ′ m,m ′ . Let F 1 , . . . , F d m 2 ,m ′2 de- note an orthonormal basis of U ′ m,m ′ . E(Z 2 m ′ ) = d m 2 ,m ′2 i=1 E tr 2 F i D Σ p 2 YY * -I p 2 = d m 2 ,m ′2 i=1 E p 2 j=1 F i [j,j] √ D Σ [j,j] p (YY * [j,j] -1) 2 = d m 2 ,m ′2 i=1 2 np 2 tr(F i D Σ F i ) ≤ d m 2 ,m ′2 i=1 2ϕ max (D Σ ) np 2 = 2d m 2 ,m ′2 ϕ max (Σ) np 2 .
Applying Cauchy-Schwarz inequality, it follows that

E(Z m ′ ) ≤ 2d m 2 ,m ′2 ϕ max (Σ) np 2 . ( 12 
)
2. Using the identity (11), the quantity B m ′ equals

B m ′ = 2 n sup R∈B (2) m 2 ,m ′2 ϕ max R √ D Σ p .
As the operator norm is under-multiplicative and as it dominates the Frobenius norm, we get the following bound

B m ′ ≤ 2 ϕ max (Σ) np . (13) 
3. Let us turn to bounding the quantity E(W m ′ ). Again, by introducing the ball B

(2)

m 2 ,m ′2 , we get W m ′ = 4 n sup R∈B H ′ m 2 ,m ′2 1 p 2 tr RYY * D Σ R ≤ 4ϕ max (Σ) np 2 sup R∈B (2) m 2 ,m ′2 tr RYY * R ≤ 4ϕ max (Σ) np 2 1 + sup R∈B (2) m 2 ,m ′2 tr R YY * -I p 2 R . Let F 1 , . . . F d m 2 ,m ′2 an orthonormal basis of U ′ m,m ′ and let λ be a vector in R d m 2 ,m ′2 . We write λ 2 for its L 2 norm. E sup R∈B (2) m 2 ,m ′2 tr R YY * -I p 2 R 2 = E sup λ 2 ≤1 d m 2 ,m ′2 i,j=1 λ i λ j tr F i F j (YY * /n -I p 2 ) 2 ≤ d m 2 ,m ′2 i,j=1 E tr F i F j (YY * /n -I p 2 ) 2 .
The second inequality is a consequence of Cauchy-Schwarz inequality in

R (d m 2 ,m ′2 ) 2 since the l 2 norm of the vector (λ i λ j ) 1≤i,j≤d m 2 ,m ′2 ∈ R d 2 m 2 ,m ′2
is bounded by 1. Since the matrices F i are diagonal, we get

E sup R∈B (2) m 2 ,m ′2 tr [R(YY * /n -I)R] 2 ≤ 2 n d m 2 ,m ′2 i,j=1 F i F j 2 2 .
It remains to bound the norm of the products F i F j for any i, j between 1 and d m 2 ,m ′2 .

d m 2 ,m ′2 i,j=1 F i F j 2 2 = d m 2 ,m ′2 i,j=1 p 2 k=1 F i [k,k] 2 F j [k,k] 2 = p 2 k=1   d m 2 ,m ′2 i=1 F i [k,k] 2   2 .
For any k ∈ {1, . . . , p 2 },

d m 2 ,m ′2 i=1 F i [k,k] 2 ≤ 1 since (F 1 , . . . , F d m 2 ,m ′2
) form an orthonormal family. Hence, we get

d m 2 ,m ′2 i,j=1 F i F j 2 2 ≤ p 2 k=1 d m 2 ,m ′2 i=1 F i [k,k] 2 = d m 2 ,m ′2 .
All in all, we have proved that

E(W m ′ ) ≤ 4ϕ max (Σ) np 2 1 + 2d m 2 ,m ′2 n . (14) 
Gathering these three bounds and applying Proposition 8.1 allows to obtain the following deviation inequality:

P Z m ′ ≥ 2ϕmax(Σ) n 1 + α/2 d m 2 ,m ′2 + ξ ≤ exp - √ 1+α/2-1 √ d m 2 ,m ′2 +ξ 2 2L1(1+ √ 2d m 2 ,m ′2 /n) √ n √ 1+α/2-1 √ d m 2 ,m ′2 +ξ √ 2L2 ≤ exp - ω 2 m,m ′ 2L1(1+ √ 2d m 2 ,m ′2 /n) √ nω m,m ′ √ 2L2 - ξω m,m ′ L1[1+ √ 2d m 2 ,m ′2 /n] √ nξ √ 2L2
,

where ω m,m ′ = 1 + α/2 -1 d m 2 ,m ′2 .
As n and d m 2 ,m ′2 are larger than one, there exists a universal constant L ′ 2 such that

( 1 + α/2 -1) 2 d m 2 ,m ′2 2L 1 1 + 2d m 2 ,m ′2 /n √ n( 1 + α/2 -1) d m 2 ,m ′2 √ 2L 2 ≥ 4L ′ 2 d m 2 ,m ′2 1 + α/2 -1 2 ∧ 1 + α/2 -1 .
Since the vector space U m,m ′ contains all the matrices D(θ

′ ) with θ ′ belonging to m ′ , d m 2 ,m ′2 is larger than d m ′ . Besides, by concavity of the square root function, it holds that 1 + α/2 -1 ≥ α[4 1 + α/2] -1 . Setting L ′ 1 := [4L 1 (1 + √ 2)] -1 ∧ [ √ 2L 2 ] -1
and arguing as previously leads to

ξ( 1 + α/2 -1) d m 2 ,m ′2 L 1 1 + 2d m 2 ,m ′2 /n √ nξ √ 2L 2 ≥ L ′ 1 ξ α 1 + α/2 ∧ √ n .
Gathering these two inequalities allows us to conclude that

P Z m ′ ≥ 2ϕmax(Σ) n (1 + α/2) d m 2 ,m ′2 + ξ ≤ exp -L ′ 2 d m ′ α 1 + α/2 ∧ α 2 1 + α/2 -L ′ 1 ξ α 1 + α/2 ∧ √ n .
Proof of Lemma 8.4 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. The approach falls in two parts. First, we relate the dimensions d m and d m 2 to the number of nodes of the torus Λ that are closer than r m or 2r m to the origin (0, 0). We recall that the quantity r m is introduced in Definition 2.1 of [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. Second, we compute a nonasymptotic upper bound of the number of points in Z 2 that lie in the disc of radius r. This second step is quite tedious and will only give the main arguments.

Let m be a model of the collection M 1 . By definition, m is the set of points lying in the disc of radius r m centered on (0, 0). Hence,

Θ m = vect {Ψ i,j , (i, j) ∈ m} ,
where the matrices Ψ i,j are defined by Eq. ( 14) in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. As Ψ i,j = Ψ -i,-j , the dimension d m of Θ m is exactly the number of orbits of m under the action of the central symmetry s.

As d m 2 is defined as the dimension of the space U m , it also corresponds to the dimension of the space which is clearly in one to one correspondence with U m . Straightforward computations lead to the following identity:

vect {C(θ), θ ∈ Θ m } + vect C(θ) 2 , θ ∈ Θ m , (15) 
C(Ψ i1,j1 )C(Ψ i2,j2 ) = C(Ψ i1+i2,j1+j2 ) [1 + s i1+i2,j1+j2 ] + C(Ψ i1-i2,j1-j2 ) [1 + s i1-i2,j1-j2 ]) ,
where s x,y is the indicator function of x = -x and y = -y in the torus Λ.

Combining this property with the definition of Θ m , we embed the space (15) in the space vect {C (Ψ i1+i2,j1+j2 ) , (i 1 , j 1 ), (i 2 , j 2 ) ∈ m ∪ {(0, 0)}} , and this last space is in one to one correspondence with

vect {Ψ i1+i2,j1+j2 , (i 1 , j 1 ), (i 2 , j 2 ) ∈ m ∪ {(0, 0)}} . (16) 
In the sequel, N (m) stands for the set

{(i 1 + i 2 , j 1 + j 2 ), (i 1 , j 1 ), (i 2 , j 2 ) ∈ m ∪ {(0, 0)}} .
Thus, the dimension d m 2 is smaller or equal to the number of orbits of N (m) under the action of the symmetry s.

To conclude, we have to compare the number of orbits in m and the number of orbits in N (m). We distinguish two cases depending whether 2r m + 1 ≤ p or 2r m + 1 > p. First, we assume that 2r m + 1 ≤ p. For such values the disc of radius r m centered on the points (0, 0) in not overlapping itself on the torus except on a set of null Lebesgue measure. In the sequel, ⌊x⌋ refers to the largest integer smaller than x. We represent the orbit space of m as in Figure 1. To any of these points, we associate a square of size 1. If we add 2 + 2⌊r m ⌋ squares to the d m first squares, we remark that the half disc centered on (0, 0) and with length r m is contained in the reunion of these squares. Then, we get

d m + 2 + 2⌊r m ⌋ ≥ πr 2 m 2 . ( 17 
)
The points in N (m) are closer than 2r m from the origin. Consequently, all the squares associated to representants of N (m) are included in the disc of radius 2r m + √ 2.

d m 2 + 2 + 2⌊2r m ⌋ ≤ π 2 2r m + √ 2 2 .
Combining these two inequalities, we are able to upper bound

d m 2 2 + 2⌊2r m ⌋ + d m 2 ≤ 4 1 + √ 2 2r m 2 (d m + 1 + 2⌊r m ⌋) , d m 2 ≤ 4 1 + √ 2 2r m 2 d m + 4 1 + √ 2 2r m 2 (1 + 2⌊r m ⌋) .
Applying again inequality (17), we upper bound r m :

r m ≤ 2 π 1 + 1 + π 2 (1 + d m ) .
Gathering these two last bounds yields

d m 2 ≤ 4 1 + √ 2 2r m 2 1 + 1 d m 1 + 4 π 1 + 1 + π 2 (1 + d m ) d m .
This upper bound is equivalent to 4d m , when d m goes to infinity. Computing the ratio d m 2 /d m for every model m of small dimension allows to conclude.

Let us turn to the case 2r m + 1 > p. Suppose that p is larger or equal to 9. The lower bound (17) does not necessarily hold anymore. Indeed, the disc is overlapping with itself because of toroidal effects. Nevertheless, we obtain a similar lower bound by replacing r m by (p -1)/2:

d m + 2 + 2⌊ p -1 2 ⌋ ≥ π(p -1) 2 8 .
The number of orbits of Λ under the action of the symmetry s is (

p 2 + 1)/2 if p is odd and [(p + 1) 2 -1]/2 if p is even. It follows that d m 2 ≤ [(p + 1) 2 -1]/2.
Gathering these two bounds, we get

d m 2 d m ≤ (p + 1) 2 π(p -1) 2 /4 -2(p + 1)
.

This last quantity is smaller than 4 for any p ≥ 9. An exhaustive computation of the ratios when p < 9 allows to conclude. Let us turn to the isotropic case. Arguing as previously, we observe that the dimension d iso m is the number of orbits of the set m under the action of the group G introduced in in [6] Sect.1.1 whereas d m 2 is smaller or equal to the number of orbits of N iso (m) under the action of G. As for anisotropic models, we choose represent these orbits on the torus and associate squares of size 1 (see Figure 2). Assuming that r m < (p -1)/2, we bound d m and d m 2 .

d m + 1 ≥ 1 8 πr 2 m + 1 2 ⌊ √ 2r m 2 ⌋ , d m 2 ≤ 4 1 + √ 2 2r m 2 1 8 πr 2 m + 1 2 ⌊ √ 2r m ⌋ .
Gathering these two inequalities, we get

d m 2 ≤ 4 1 + √ 2 2r m 2 d m .
As a consequence, d m 2 is smaller than 4d m when d m goes to infinity. As previously, computing the ratio d m 2 /d m for models m of small dimension allows to conclude. The case r m > (p -1)/2 is handled as for the anisotropic case.

Proofs of the minimax bounds

Proof of Lemma 8.5 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. This lower bound is based on an application of Fano's approach. See [START_REF] Yu | Assouad, Fano, and Le Cam[END_REF] for a review of this method and comparisons with Le Cam's and Assouad's Lemma. The proof follows three main steps: First, we upper bound the Kullback-Leibler entropy between distributions corresponding to θ 1 and θ 2 in the hypercube. Second, we find a set of points in the hypercube well separated with respect to the Hamming distance. Finally, we conclude by applying Birgé's version of Fano's lemma.

Lemma 3.1. The Kullback-Leibler entropy between two mean zero-Gaussian vectors of size p 2 with precision matrices

I p 2 -C(θ 1 ) /σ 2 and I p 2 -C(θ 2 ) /σ 2 equals K(θ 1 , θ 2 ) = 1/2 log |I p 2 -C(θ 1 )| |I p 2 -C(θ 2 )| + tr I p 2 -C(θ 2 ) I p 2 -C(θ 1 ) -1 -p 2 ,
where for any square matrix A, |A| refers to the determinant of A.

This statement is classical and its proof is omitted. The matrices (I p 2 -C(θ 1 )) and (I p 2 -C(θ 2 )) are diagonalizable in the same basis since they are symmetric block circulant (Lemma A.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]). Transforming vectors of size p 2 into p × p matrices, we respectively define λ 1 and λ 2 as the p × p matrices of eigenvalues of (I p 2 -C(θ 1 )) and (I p 2 -C(θ 2 )). It follows that

K(θ 1 , θ 2 ) = 1/2 1≤i,j≤p λ 2 [i,j] λ 1 [i,j] -log λ 2 [i,j] λ 1 [i,j] -1 .
For any x > 0, the following inequality holds

x -1 -log(x) ≤ 9 64 x - 1 x 2 .
It is easy to establish by studying the derivative of corresponding functions. As a consequence,

λ 2 [i,j] λ 1 [i,j] -log λ 2 [i,j] λ 1 [i,j] -1 ≤ 9 64 λ 2 [i,j] λ 1 [i,j] - λ 1 [i,j] λ 2 [i,j] 2 ≤ 9 64 1 λ 1 [i,j] + 1 λ 2 [i,j] 2 (λ 1 [i,j] -λ 2 [i,j]) 2 . ( 18 
)
Let us first consider the anisotropic case. Let m be a model in M 1 and let θ ′ belong Θ m ∩ B 1 (0 p , 1). We also consider a positive radius r such that (1θ ′ 1 -2rd m ) is positive. For any θ 1 , θ 2 in C m (θ ′ , r) the matrices (I p 2 -C(θ 1 )) and (I p 2 -C(θ 2 )) are diagonally dominant and their eigenvalues λ 1 [i,j] and λ 2 [i,j] are larger than 1

-θ ′ 1 -2rd m . K(θ 1 , θ 2 ) ≤ 9 16(1 -θ ′ 1 -2rd m ) 2 1≤i,j≤p (λ 1 [i,j] -λ 2 [i,j]) 2 ≤ 9 16(1 -θ ′ 1 -2rd m ) 2 C(θ 1 ) -C(θ 2 ) 2 F ≤ 9d m r 2 p 2 8(1 -θ ′ 1 -2rd m ) 2 . ( 19 
)
We recall that . F refers to the Frobenius norm in the space of matrices.

Let us state Birgé's version of Fano's lemma [START_REF] Birgé | A new lower bound for multiple hypothesis testing[END_REF] and a combinatorial argument known under the name of Varshamov-Gilbert's lemma. These two lemma are taken from [START_REF] Massart | Concentration inequalities and model selection[END_REF] and respectively correspond to Corollary 2.18 and Lemma 4.7.

Lemma 3.2. (Birgé's lemma) Let (S, d) be some pseudo-metric space and {P s , s ∈ S} be some statistical model. Let κ denote some absolute constant smaller than one. Then for any estimator s and any finite subset T of S, setting δ = min s,t∈T,s =t d(s, t), provided that max s,t∈T K(P s , P t ) ≤ κ log |T |, the following lower bound holds for every p ≥ 1, 

sup s∈S E s [d p (s, s)] ≥ 2 -p δ p (1 -κ) .
E θ d H θ, θ ≥ d m 8 (1 -κ) , (20) 
provided that

9d m r 2 p 2 n 8(1 -θ ′ 1 -2rd m ) 2 ≤ κd m 8 . (21) 
Let us express (20) in terms of the Frobenius . F norm.

sup

θ∈Cm(θ ′ ,r) E θ C( θ) -C(θ) 2 F ≥ d m r 2 p 2 4 (1 -κ) .
Since for every θ in the hypercube, σ -2 (I p 2 -C(θ)) is diagonally dominant, its largest eigenvalue is smaller than 2σ -2 . The loss function l( θ, θ) equals 

σ 2 /p 2 tr{[C( θ) -C(θ)](I -C(θ)) -1 [C( θ) -C(θ)]}. It follows that sup θ∈Cm(θ ′ ,r) E θ l θ, θ ≥ σ 2 d m r 2 8 (1 -κ) . (22) Condition (21) is equivalent to r 2 (1 -θ ′ 1 -2rd m ) -2 ≤ κ/(9p 2 n). If we assume that r 2 ≤ κ (1 -θ ′ 1 ) 2 18p 2 n , ( 23 
) then 1-θ ′ 1 -2rd m ≥ (1 -θ ′ 1 ) 1 -2d m κ/(18np
E θ l θ, θ ≥ inf θ sup θ∈Cm θ ′ ,r∧(1-θ ′ 1) κ 18p 2 n E θ l θ, θ ≥ L r 2 ∧ (1 -θ ′ 1 ) 2 np 2 d m σ 2 .
One handles models of dimension d m between 1.5( √ 2 -1) np 2 /κ and √ np by changing the constant L in the last lower bound.

Let us turn to sets of isotropic GMRFs. The proof is similar to the nonisotropic case, except for a few arguments. Let m belongs to the collection M 1 and let θ ′ be an element of Θ iso m ∩ B 1 (0 p , 1). Let r be such that 1θ ′ 1 -8d iso m is positive. If θ 1 and θ 2 belong to the hypercube C iso m (θ ′ , r), then

K(θ 1 , θ 2 ) ≤ 9d m r 2 p 2 2(1 -θ ′ 1 -8rd iso m ) 2 .
Applying Lemma 3.2 and 3.3, it follows that

inf θ sup θ∈C iso m (θ ′ ,r) E θ d H θ, θ ≥ d iso m 8 (1 -κ) , provided that 4.5d m r 2 p 2 n(1 -θ ′ 1 -8rd iso m ) -2 ≤ κd iso m /8. As a consequence, inf θ sup θ∈C iso m (θ ′ ,r) E θ l θ, θ ≥ d iso m r 2 8 (1 -κ) , if r 2 1 -θ ′ 1 -8rd iso m -2 ≤ κ(36p 2 n) -1
. We conclude by arguing as in the isotropic case.

Proof of lemma 8.6 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. Let m be a model in M 1 , r be a positive number smaller than 1/(4d m ), and θ be an element of the convex hull of C m (0 p , r).

The covariance matrix of the vector

X v is Σ = σ 2 [I -C(θ)] -1 .
Since the field X is stationary, Var θ (X[0,0]) equals any diagonal element of Σ. In particular, Var θ (X[0,0]) corresponds to the mean of the eigenvalues of Σ. The matrix (I -C(θ)) is block circulant. As in the proof of Lemma 20, we note λ the p × p matrix of the eigenvalues of (I p 2 -C(θ)). By Lemma A.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF],

λ[i,j] = 1 + (k,l)∈Λ θ[k,l] cos 2π ik p + jl p ,
for any 1 ≤ i, j ≤ p. Since θ belongs to the convex hull of

C m (0 p , r), θ[k,l] is zero if (k, l) / ∈ m and |θ[k,l]| ≤ r if (k, l) ∈ m. Thus (k,l)∈Λ |θ[k,l]
| is smaller than 1/2. Applying Taylor-Lagrange inequality, we get

1 1 + x ≤ 1 -x + x 2 (1 -|x|) 3 ,
for any x between -1 and 1. It follows that

λ[i,j] -1 ≤ 1 - k,l∈Λ θ[k,l] cos 2π ik p + jl p + 8    k,l∈Λ θ[k,l] cos 2π ik p + jl p    2 .
Summing this inequality for all (i, j) ∈ {1, . . . , p} 2 , the first order term turns out to be tr[C(θ)]/p 2 which is zero whereas the second term equals 8tr[C(θ) 2 ]/p 2 . Since there are less than 2d m non-zero terms on each line of the matrix C(θ), its Frobenius norm is smaller than 2d m p 2 r 2 . Consequently, we obtain

Var θ (X[0,0]) ≤ σ 2 1 + 16d m r 2 .
Proof of Lemma 8.7 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. This property seems straightforward but the proof is a bit tedious. Let i be a positive integer smaller than Card(M 1 ). By definition of the radius r m in Equation ( 10) in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF], the model m i+1 is the set of nodes in Λ\{(0, 0)} at a distance smaller or equal to r mi+1 from (0, 0), whereas the model m i only contains the points in Λ \ {(0, 0)} at a distance strictly smaller than r mi+1 from the origin.

Let us first assume that 2r mi+1 ≤ p. In such a case, the disc centered on (0, 0) with radius r mi+1 does not overlap with itself on the torus Λ. To any node in the neighborhood m i+1 and to the node (0, 0), we associate the square of size 1 centered on it. All these squares do not overlap and are included in the disc of radius r mi+1 + √ 2/2. Hence, we get the upper bound 2d mi+1 + 1 ≤ π(r mi+1 + √ 2/2) 2 . Similarly, the disc of radius r mi+1 -√ 2/2 is included in the union of the squares associated to the nodes m i ∪ {0, 0}. It follows that 2d mi + 1 is larger or equal to π r mi+1 -√ 2/2 2 . Gathering these two inequalities, we obtain

d mi+1 d mi ≤ r mi+1 + √ 2/2 2 -1 r mi+1 - √ 2/2 2 -1 , if r mi+1 is larger than 1 + √ 2/2.
If r mi+1 larger than 5, this upper bound is smaller than two. An exhaustive computation for models of small dimension allows to conclude.

If 2r mi+1 ≥ p and 2r mi < p, then the preceding lower bound of d mi and the preceding upper bound of d mi+1 still hold. Finally, let us assume that 2r mi ≥ p. Arguing as previously, we conclude that 2d mi + 1 ≥ π(p/2 -√ 2/2) 2 . The largest dimension of a model m ∈ M 1 is (p 2 -1)/2 if p is odd and ((p + 1) 2 -3)/2 if p is even. Thus, d mi+1 ≤ [(p + 1) 2 -3]/2. Gathering these two bounds yields

d mi+1 d mi ≤ 4 (p + 1) 2 -3 p - √ 2 2 ,
which is smaller than 2 if p is larger than 10. Exhaustive computations for small p allow to conclude.

Proof of Proposition 6.7 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. This result derives from the upper bound of the risk of θ ρ1 stated in Theorem 3.1 and the minimax lower bound stated in Proposition 6.6 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF].

Let E(a) be a pseudo-ellipsoid that satisfies Assumption (H a ) and such that a 2 1 ≥ 1/(np 2 ). For any θ in E(a) ∩ B 1 (0 p , 1) ∩ U(ρ 2 ), the penalty term satisfies pen(m) = Kσ 2 ρ 2 1 ρ 2 d m /np 2 is larger than Kd m ϕ max (Σ)/np 2 . Applying Theo-rem3.1, we upper bound the risk θ ρ1

E θ l θ ρ1 , θ ≤ L 1 (K) inf m∈M1 [l(θ m,ρ1 , θ) + pen(m)] + L 2 (K)ρ 2 σ 2 np 2 , for any θ ∈ E(a) ∩ B 1 (0 p , 1) ∩ U(ρ 2 ). It follows that sup θ∈E(a)∩B1(0p,1)∩U (ρ2) E θ l θ ρ1 , θ ≤ L(K) inf m∈M1 , dm>0 l(θ m,ρ1 , θ) + ρ 2 1 ρ 2 σ 2 d m np 2 .
Let i be a positive integer smaller or equal than Card(M 1 ). We know from Section 4.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF] that the bias l(θ mi , θ) of the model m i equals Var(X[0,0]|X mi )σ 2 . Since θ belongs to the set E(a) ∩ B 1 (0 p , 1), the bias term is smaller or equal to a 2 i+1 with the convention a 2 Card(M1)+1 = 0. Hence , the previous upper bound becomes

E θ l θ ρ1 , θ ≤ L(K) inf 1≤i≤Card(M1) a 2 i+1 + ρ 2 1 ρ 2 σ 2 d mi np 2 ≤ L(K, ρ 1 , ρ 2 ) inf 1≤i≤Card(M1) a 2 i+1 + σ 2 d mi np 2 . ( 24 
)
Applying Proposition 6.6 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF] to the set

E(a) ∩ B 1 (0 p , 1) ∩ U(2), we get inf θ sup θ∈E(a)∩B1(0p,1)∩U (ρ2) E θ l θ, θ ≥ inf θ sup θ∈E(a)∩B1(0p,1)∩U (2) E θ l θ, θ ≥ L sup 1≤i≤Card(M1) a 2 i ∧ σ 2 d mi np 2 .
Let us define i * by

i * := sup 1 ≤ i ≤ Card(M 1 ) , a 2 i ≥ σ 2 d mi np 2 ,
with the convention sup ∅ = 0. Since a 2 1 ≥ σ 2 /np 2 , i * is larger or equal to one. It follows that inf

θ sup θ∈E(a)∩B1(0p,η) E θ l θ, θ ≥ L 2 a 2 i * +1 ∨ σ 2 d m i * np 2 .
Meanwhile, the upper bound (24) on the risk of θ ρ1 becomes

E θ l θ ρ1 , θ ≤ L(K, ρ 1 , ρ 2 ) a 2 i * +1 + σ 2 d m i * np 2 ≤ 2L(K, ρ 1 , ρ 2 ) a 2 i * +1 ∨ σ 2 d m i * np 2 ,
which allows to conclude.

Proof of the asymptotic risks bounds

Proof of Corollary 4.6 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. For the sake of simplicity, we assume that for any node (i, j) ∈ m, the nodes (i, j) and (-i, -j) are different in Λ. If this is not the case, we only have to slightly modify the proof in order to take account that Ψ i,j

2

F may equal one. The matrix V is the covariance of the vector of size

d m X i1,j1 + X -i1,-j1 , . . . , X i dm ,j dm + X -i dm ,-j dm . (25) 
Since the matrix Σ of X v is positive, V is also positive. Moreover, its largest eigenvalue is larger than 2ϕ max (Σ).

Let us assume first the θ belongs to Θ + m and that Assumption (H 1 ) is fulfilled. By the first result of Proposition 4.4 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF],

lim n→+∞ np 2 E l θ m,ρ1 , θ = 2σ 4 tr IL m V -1 ≥ σ 4 ϕ max (Σ) tr[IL m ] = 2σ 4 d m ϕ max (Σ) ,
which corresponds to the first lower bound (30) in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF].

Let us turn to the second result. We now assume that θ satisfies Assumption (H 2 ). By the identity (28) of Proposition 4.4 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF], we only have to lower bound the quantity tr V W -1 .

tr V -1 W ≥ ϕ max (V ) -1 tr [W ] ≥ 1 2ϕ max (Σ) tr[W ] . Since the matrix Σ -1 = σ -2 I p 2 -C(θ) is diagonally dominant, its smallest eigenvalue is larger than σ -2 (1-θ 1 ). The matrix I p 2 -C(θ m,ρ1 ) 2 I p 2 -C(θ)
is symmetric positive. It follows that W is also symmetric positive definite. Hence, we get

tr V -1 W (26) ≥ σ -2 2 [1 -θ 1 ] dm k=1 tr C(Ψ i k ,j k ) 2 I p 2 -C(θ m,ρ1 ) 2 I p 2 -C(θ) -2 p 2 .
The largest eigenvalue of I p 2 -C(θ) is smaller than 2 and the smallest eigenvalue of

I p 2 -C(θ m,ρ1
) is larger than 1-θ m,ρ1 1 . By Lemma A.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF], these two matrices are jointly diagonalizable and the smallest eigenvalue of

I p 2 -C(θ m,ρ1 ) 2 I p 2 -C(θ) -2
is therefore larger than (1θ m,ρ1 1 ) 2 /4. Gathering this lower bound with (26) yields

tr V -1 W ≥ d m σ -2 2 [1 -θ 1 ] [1 -θ m,ρ1 1 ] 2 .
Lemma 4.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF] states that θ m,ρ1 1 ≤ θ 1 . Combining these two lower bounds enables to conclude.

Proof of Example 4.8 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF].

Lemma 4.1. For any θ is the space Θ +,iso m1 , the asymptotic variance term of θ iso m1,ρ1 equals lim n→+∞ np 2 E θ l θ iso m1,ρ1 , θ = 2σ 4 tr H 2 tr (H 2 Σ) .

If θ belongs to Θ +,iso and also satisfies (H 2 ), then

lim n→+∞ np 2 E θ l θ iso m1,ρ1 , θ iso m1,ρ1 = 2 tr (I -θ iso m1,ρ1 [1, 0]H)HΣ 2 tr(H 2 Σ) , (27) 
where the p 2 × p 2 matrix H is defined as H := C Ψ iso 1,0 . Proof of Lemma 4.1. Apply Proposition 4.4 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF] noting that V = tr[HΣH]/p 2 and

W = tr (I -θ m iso 1 [1,0]H )HΣ 2 σ 4 p 2 .
To prove the second result, we observe that Θ +,iso m1 equals Θ +,iso m1,2 . It is stated for instance in Table 2 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF].

Since the matrix θ belongs to Θ +,iso m1 , we may apply the second result of Lemma 4.1. Straightforward computations lead to tr(H 2 ) = C Ψ iso 1,0 2

F = 4p 2 and tr(H 2 Σ) = 4p 2 [Var(X[0,0]) + 2cov θ (X[0,0], X[1,1]) + cov θ (X[0,0], X[2,0])] .
Since the field X is an isotropic GMRF with four nearest neighbors,

X[0,0] = θ[1,0] (X[1,0] + X[-1,0] + X[0,1] + X[0,-1]) + ǫ[0,0] ,
where ǫ[0,0] is independent from every variable X[i,j] with (i, j) = 0. Multiplying this identity by X[1,0] and taking the expectation yields

cov θ (X[0,0], X[1,0]) = θ[1,0] [Var (X[0,0]) + 2cov θ (X[0,0], X[1,1]) + cov θ (X[0,0], X[2,0])] .
Hence, we obtain tr H 2 Σ = 4cov θ (X[0,0], X[1,0])/θ [START_REF] Billingsley | Probability and measure[END_REF]0] and

tr(H 2 ) tr(H 2 Σ) = θ[1,0] cov θ (X[0,0], X[1,0]) ,
which concludes the first part of the proof.

This second part is based on the spectral representation of the field X and follows arguments which come back to Moran [START_REF] Moran | A Gaussian Markovian process on a square lattice[END_REF]. We shall compute the limit of cov θ (X[0,0], X[1,0]) when the size of Λ goes to infinity. As the field X is stationary on Λ, we may diagonalize its covariance matrix Σ applying Lemma A.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. We note D Σ the corresponding diagonal matrix defined by Applying Lemma A.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF] to the matrix Σ -1 and noting that θ ∈ Θ iso,+ allows to get another expression of the eigenvalues of Σ

D Σ [(i-1)p+j,(i-1)p+j] = σ 2 1 -2θ[1,0] cos 2πi p + cos 2πj p .
We then combine these expression. By symmetry between i and j we get dxdy .

cov θ (X[0,0], X[1,0]) = σ 2
This last elliptic integral is asymptotically equivalent to log 16[4(1 -4θ[1,0])] -1 when θ[1,0] → 1/4 as observed for instance by Moran [START_REF] Moran | A Gaussian Markovian process on a square lattice[END_REF]. We conclude by substituting this limit in expression (33) in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF].

Proof of Example 4.9 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. First, we compute [θ (p) ] iso m1 [START_REF] Billingsley | Probability and measure[END_REF]0]. By Lemma 4.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF], it minimizes the function γ(.) defined in (19) in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF] over the whole space Θ m iso 1 . We therefore obtain

[θ (p) ] iso m1 [1,0] = tr [ΣH] tr [ΣH 2 ] .
Once again, we apply Lemma A.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF] to simultaneously diagonalize the matrices H and Σ -1 . As previously, we note D Σ the corresponding diagonal matrix of Σ.

D Σ [(i-1)p+j,(i-1)p+j] = σ 2 1 -2α cos 2π pi 4p + pj 4p + cos 2π -pi 4p + pj 4p = σ 2 1 -4α cos π i 2 cos π j 2 .
Analogously, we compute the diagonal matrix D Ψ iso 1,0 .

As each term of this sum is non-negative, we may only consider the coefficients i and j which are congruent to 0 modulo 4.

tr(H 

np 2 R θ (p) θ (p) iso,ρ1 m1 , [θ (p) ] iso m1 ≥ Lσ 2 1 -4α . 

Miscellaneous

Proof of Lemma 1.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. Let θ be a p × p matrix that satisfies condition (3) in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. For any 1 ≤ i 1 , i 2 ≤ p, we define the p × p submatrix C i1,i2 as

C i1,i2 [j1,j2] := C(θ)[(i1-1)p+j1,(i2-1)p+j2] ,
for any 1 ≤ j 1 , j 2 ≤ p. For the sake of simplicity, the subscripts (i 1 , i 2 ) are taken modulo p. By definition of C(θ), it holds that C i1,i2 = C 0,i2-i1 for any 1 ≤ i 1 , i 2 ≤ p. Besides, the matrices C 0,i are circulant for any 1 ≤ i ≤ p. In short, the matrix C(θ) is of the form

C(θ) =    C 0,1 C 0,2 • • • C 0,p . . . . . . . . . . . . C 0,p C 0,1 • • • C 0,p-1    ,
where the matrices C 0,i are circulant. Let (i 1 , i 2 , j 1 , j 2 ) be in {1, . . . , p} 4 . By definition,

C(θ)[(i1-1)p+j1,(i2-1)p+j2] = θ[i2-i1,j2-j1] .
Since the matrix θ satisfies condition (3) in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF], θ[i2-i1,j2-j1] = θ[i1-i2,j1-j2]. As a consequence, C(θ)[(i1-1)p+j1,(i2-1)p+j2] = C(θ)[(i2-1)p+j2,(i1-1)p+j1] and C(θ) is symmetric.

Conversely, let B be a p 2 × p 2 symmetric block circulant matrix. Let us define the matrix θ of size p by

θ[i,j] := B[1,(i-1)p+j] ,
for any 1 ≤ i, j ≤ p. Since the matrix B is block circulant, it follows that

C(θ) = B. By definition, θ[i,j] = C(θ)[1,(i-1)p+j] and θ[-i,-j] = C(θ)[(i-1)p+j,1] for any integers 1 ≤ i, j ≤ p. Since the matrix B is symmetric, we conclude that θ[i,j] = θ[-i,-j].
Proof of Lemma 2.2 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. For any θ ′ ∈ Θ + , γ n,p (θ ′ ) is defined as

γ n,p (θ ′ ) = 1 p 2 tr (I p 2 -C(θ ′ ))X v X v * (I p 2 -C(θ ′ )) .
Applying Lemma A.1 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF], there exists an orthogonal matrix P that simultaneously diagonalizes Σ and any matrix C(θ ′ ). Let us define Y i := √ Σ -1 X i and D Σ := P ΣP * . Gathering these new notations yields

γ n,p (θ ′ ) = 1 p 2 tr I p 2 -D(θ ′ ) D Σ YY * I p 2 -D(θ ′ ) ,
where the vectors Y i are independent standard Gaussian random vectors. Except YY * , every matrix involved in this last expression is diagonal. Besides, the diagonal matrix D Σ is positive since Σ is non-singular. Thus,

tr (I p 2 -D(θ ′ ))D Σ YY * (I p 2 -D(θ ′ ))
is almost surely a positive quadratic form on the vector space generated by I p 2 and D(Θ + ). Since the function D(.) is injective and linear on Θ + , it follows that γ n,p (.) is almost surely strictly convex on Θ + .

Proof of Lemma 4.1 and Corollary 4.2 in [START_REF] Verzelen | Adaptive estimation of stationary Gaussian Markov random fields[END_REF]. The proof only uses the stationarity of the field X on Λ and the l 1 norm of θ. However, the computations are a bit cumbersome. Let θ be an element of Θ + . By standard Gaussian properties, the expectation of X[0,0] given the remaining covariates is

E θ X[0,0]|X -{0,0} = (i,j)∈Λ\(0,0) θ[i,j]X[i,j] .
By assumption (H 2 ), the l 1 norm of θ is smaller than one. We shall prove by backward induction that for any subset A of Λ\{(0, 0)} the matrix θ A uniquely defined by E θ (X[0,0]|X A ) = (i,j)∈A θ A [i,j]X [i,j] and θ A [i,j] = 0 for any (i, j) / ∈ A satisfies θ A 1 ≤ θ 1 . The property is clearly true if A = Λ\{(0, 0)}. Suppose we have proved it for any set of cardinality q larger than one. Let A be a subset of Λ\{(0, 0)} of cardinality q -1 and (i, j) be an element of Λ\(A ∪ {(0, 0)}). Let us derive the expectation of X[0,0] conditionally to X A from the expectation of X[0,0] conditionally to X A∪{(i,j)} .

E θ (X[0,0]|X A ) = E θ E(X[0,0]|X A )|X A∪{(i,j)} = (k,l)∈A θ A∪{(i,j)} [k,l]X [k,l] + θ A∪{(i,j)} [i,j]E θ [X[i,j]|X A ] . ( 28 
)
Let us take the conditional expectation of X[i,j] with respect to X A∪{(0,0)} . Since the field X is stationary on Λ and by the induction hypothesis, the unique matrix θ A∪{(0,0)} (i,j)

defined by since θ A∪{i,j} [i,j]θ i,j A∪{0,0} [0,0] < 1. Then, we upper bound the l 1 norm of θ A using that θ A∪{(i,j)} 1 and θ A∪{(0,0)} (i,j)

1 are smaller or equal to θ 1 . 1θ A∪{(i,j)} [i,j]θ A∪{(0,0)} (i,j) [0,0] ≤ θ 1 + θ A∪{(i,j)} [i,j] (k,l)∈A∪{(0,0)} θ A∪{(0,0)} (i,j)

[k,l] -1θ A∪{(0,0)} (i,j) [0,0] 1θ A∪{(i,j)} [i,j]θ A∪{(0,0)} i,j [0,0] ≤ θ 1 1 + θ A∪{(i,j)} [i,j]θ A∪{(i,j)} [i,j] 1 + θ A∪{(0,0)} i,j [0,0] 1θ A∪{(i,j)} [i,j]θ A∪{(0,0)} (i,j) [0,0] ≤ θ + θ A∪{(i,j)} [i,j] ( θ 1 -1) 1 + θ A∪{(0,0)} (i,j) [0,0] 1θ A∪{(i,j)} [i,j]θ A∪{(0,0)} (i,j) [0,0]

.

Since θ 1 is smaller than one, it follows that θ A 1 ≤ θ 1 .

Let m be a model in the collection M 1 . Since m stands for a set of neighbors of (0, 0), we may define θ m as above. It follows that θ m 1 ≤ θ 1 . Since the field X is stationary on the torus, X follows the same distribution as the field X s defined by X s [i,j] = X[-i,-j]. By uniqueness of θ m , we obtain that θ m [i,j] = θ m [-i,-j]. Thus, θ m belongs to the space Θ m . Moreover, θ m minimizes the function γ(.) on Θ m . Since the l 1 norm of θ m is smaller than one, θ m belongs to Θ + m,2 . The matrices θ m and θ m,ρ1 are therefore equal, which concludes the proof in the non-isotropic case.

Let us now turn to the isotropic case. Let θ belong to Θ iso,+ and let m be a model in M 1 . As previously, the matrix θ m satisfies θ m 1 ≤ θ 1 . Since the distribution of X is invariant under the action of the group G, θ m belongs to Θ iso m . Since θ m 1 ≤ θ 1 , θ m lies in Θ +,iso m,2 . It follows that θ m = θ iso m,ρ1 .

Proof of Corollary 4.3 in [6]. Let θ be a matrix in Θ + such that (H 2 ) holds and let m be a model in M 1 . We decompose γ( θ m,ρ1 ) using the conditional

Lemma 1 . 1 .

 11 Let T be a supremum of Rademacher chaos indexed by I N of the form T := sup t∈T {i,j}

( 1 +

 1 k)} := R[i,i] n , and t R ∅ := -tr(R) , where δ i,j is the indicator function of i = j. In order to apply Lemma 1.2 with N = nr and T = t R |R ∈ F , we have to work out the quantities D and E. δ i,j δ k,l )α l j Y * R * ) .

Figure 1 .

 1 Figure 1. The black dots represent the orbit space of m and the white dots represent the remaining points of the orbit space of N (m).

Figure 2 .

 2 Figure 2. The black dots represent the orbit space of m under the action of G and the white dots represent the remaining points of the orbit space of N iso (m).

Lemma 3 . 3 .

 33 (Varshamov-Gilbert's lemma) Let {0, 1} d be equipped with Hamming distance d H . There exists some subset Φ of {0, 1} d with the following properties d H (φ, φ ′ ) > d/4 for every (φ, φ ′ ) ∈ Φ 2 with φ = φ ′ and log |Φ| ≥ d 8 . Applying Lemma 3.2 with Hamming distance d H and the set Φ introduced in Lemma 3.3 yields sup θ∈Cm(θ ′ ,r)

D

  Σ [(i-1)p+j,(i-1)p+j] = p k=1 p l=1 cov θ (X[0,0], X[k,l]) cos 2π ki p + lj p , for any 1 ≤ i, j ≤ p. Straightforwardly, we express cov θ (X[0,0], X[1,0]) as a linear combination of the eigenvalues cov θ (X[0,0], X[1,0]) (i-1)p+j,(i-1)p+j] .

. 1 -

 1 If we let p go to infinity, this sum converges to the following integral limp→+∞ cov θ (X[0,0], X[1,0]) 2θ[1,0] [cos(x) + cos(y)]

E

  θ X[i,j]|X A∪{(0,0)} = l] = 0 for any (k, l) / ∈ A ∪ {(0, 0)} satisfies θ A∪{(0,0)} (i,j) 1 ≤ θ 1 .Taking the expectation conditionally to X A of this previous expression leads toE θ (X[i,j]|X A ) = (k,l)∈A θ A∪{(0,0)} (i,j) [k,l]X [k,l] + θ A∪{(0,0)} (i,j) [0,0]E (X[0,0]|X A ) . (29)Gathering identities (28) and (29) yieldsE θ (X[0,0]|X A ) = (k,l)∈A θ A∪{i,j} [k,l] + θ A∪{(i,j)} [i,j]θ A∪{0,0} (i,j) [k,l] 1θ A∪{(i,j)} [i,j]θ A∪{0,0} (i,j) [0,0] X[k,l] ,

θ A 1 ≤

 1 (k,l)∈A θ A∪{j+1} [k,l] + (k,l)∈A θ A∪{(i,j)} [i,j]θ

.

  Let us split this sum in 16 parts depending on the congruence of i and j modulo 4. As each if of these 16 sums is shown to be zero, we conclude that tr(HΣ) =

	First, we lower bound the numerator
	tr(H 4 Σ 2 ) = σ 4	p i=1	p j=1	2 cos 2π i p + cos 2π j p 1 -4α cos π i 2 2 cos π j	2	4
	D Ψ iso 1,0 [(i-1)p+j,(i-1)p+j] = 2 cos 2π i p + cos 2π j p	.
	Combining these two last expressions, we obtain
	tr(HΣ) =	p i=1	p j=1	σ 2	2 cos 2π i p + cos 2π j p 1 -4α cos π i 2 cos π j 2
	[θ (p) ] iso m1 [1,0] = 0. By Lemma 4.1, the asymptotic risk of θ (p)	iso,ρ1 m1	therefore equals
	lim n→+∞	np 2 E θ (p) l θ (p)	iso,ρ1 m1 , [θ (p) ] iso m1	=	tr(H 4 Σ 2 ) tr(H 2 Σ)	.

  4 Σ 2 ) ≥ σ 4

					p/4-1 i=0	p/4-1 j=0	16 cos 2π i p/4 + cos 2π j p/4 (1 -4α) 2	4	.
	If we let go p to infinity, we get the lower bound
	lim p→+∞	tr(H 4 Σ 2 ) p 2	≥	σ 4 (1 -4α) 2		0	1	0	1	[cos(2πx) + cos(2πy)] 4 dxdy .
	Similarly, we upper bound tr(H 2 Σ) and let p go to infinity
	lim p→+∞	tr(H 2 Σ) p 2	≤	4σ 2 1 -4α	0	1	0	1	[cos(2πx) + cos(2πy)] 2 dxdy .
	Combining these two bounds allows to conclude
		lim p→+∞	lim n→+∞