

To appear in Advanced

Engineering Informatics

24 (2010) 167–179

A model-driven approach to multidisciplinary collaborative simulation

for virtual product development

Heming Zhang a,*, Hongwei Wang b, David Chen c, Gregory Zacharewicz c

a
State CIMS Engineering Research Centre, Tsinghua University, Beijing 100084, PR China

b
Engineering Design Centre, Cambridge University Engineering Department, Cambridge CB2 1PZ, UK

c
LAPS-IMS, University Bordeaux 1, 351 Cours de la libération, 33405 Talence cedex, France

.

Abstract:
The design and development of complex artifacts and systems is shifting towards a distributed and collaborative paradigm. The simulation environments

for such a paradigm, therefore, need to take into account the cooperation between design teams, i.e. supporting multidisciplinary simulation in a

distributed environment. However, current simulation tools cannot fulfil this requirement as they have been developed to solve the specific problems from

different disciplines. Although it’s already possible to per- form multidisciplinary simulations by using several tools together, it is very difficult to

implement it when these tools are distributed on the Internet. A solution which can support the integration of distributed simulation models at run-time is

presented, involving a computational infrastructure and a high- level modelling approach. Specifically, the infrastructure is constructed by a novel

combination of two distributed computing techniques to implement the synchronization of distributed models, as well as to ensure the

interoperability at run-time. In addition, a model-driven approach is developed to bridge the high-level model of a simulation system and the

infrastructure which implements this model. The solution is evaluated by making a comparison with other approaches, as well as by developing a prototype

tool. It’s shown in the evaluation that (1) it is viable to develop multidisciplinary simulations in a distributed environment using this solution; (2) the

model-driven approach allows designers to focus only on the high-level structure of a design without getting concerned with the details of the

infrastructure.

1. Introduction

Effective evaluation of design concepts at an early design stage

can help to achieve shorter lead time and reduced costs. With the

advent of inexpensive high-speed computing, it has become feasi-

ble to verify a design based on a virtual prototype, using modelling

and simulation (M&S) technology [1]. Computer-aided engineering

(CAE) tools are now widely used in a wide range of engineering dis-

ciplines, and M&S is further recognized as the primary means of

design validation and verification [2,3]. Nowadays, development

activities of complex artifacts and systems are increasingly under-

taken by Multidisciplinary Design Teams (MDTs) in a virtual and

collaborative environment. Therefore, the M&S environments also

need to support the collaborative development of MDTs in a dis-

tributed environment, to allow developers only focus on their por-

tion of work, as well as to enable the integration of models created

using different tools or languages.

The challenges of fulfilling this requirement include the diver-

sity of the simulation problems encountered during a design

* Corresponding author.

E-mail address: hmz@mail.tsinghua.edu.cn (H. Zhang).

process, the using of different simulation tools, as well as the effi-

cient interactions between models at run-time. Current ap-

proaches are to some extent insufficient in terms of these

challenges. The motivation of this research is to develop a solution

which can support the cooperation of MDTs and the integration of

simulation models distributed on the Internet. Generally, a number

of advantages can be obtained from such a solution as follows:

 It supports the cooperative work of multiple users from MDTs

distributed on the Internet, enabling cross-organization collabo-

ration;

 A variety of simulation applications can be created effortlessly

by users with little expertise on distributed simulation;

 A new simulation iteration can be started with minimal effort

after changes are made to the simulation models;

 Simulation models can be re-used by simulation applications in

the future.

2. Related work

In this section, we review related work on developing collabora-

tive simulation environments. Specifically, approaches based on

mailto:hmz@mail.tsinghua.edu.cn

the integration of simulation tools are reviewed to find a better

means for system implementation. Distributed computing tech-

niques and distributed simulation standards are also surveyed to

explore how an effective infrastructure can be constructed.

2.1. Approaches for building collaborative simulation environments

There are two main means to implementing collaborative sim-

ulation in terms of how simulation tools interoperate with each

other, namely a monolithic approach and a modular approach.

The monolithic approach uses a unified software environment,

i.e. developing a whole simulation system using one single tool.

It has the advantage of the consistent representation of the subsys-

tems and the accurate solving of system equations. Requirements

for choosing appropriate modeling and simulation environments

were specified in [4], e.g. multi-domain scope, modular modeling

and software re-use, reliability and efficiency of numerical integra-

tion, etc. Various modelling methods (e.g. port-based, object-ori-

ented, diagram-based, etc) and simulation environments have

been developed to implement this approach, e.g. VTB (diagram-

based modeling) [5], 20-sim (port-based modeling) [6], NEWMOS

(equation-based modeling) [7], DYMOLA (object-oriented model-

ing) [4], AMESim [8] and the composable simulation environment

[1]. These tools speed up the resolving of simulation problems by

encapsulating technical details of simulation models as building

blocks, and make substantial contribution to the application of

M&S in product development. However, these tools can only be

used to solve a limited scope of engineering simulations. To solve

this problem, a straightforward method is to divide a complex

problem as a number of smaller and less complex problems which

can be solved by tools currently available. The method leveraging

the advantages of several tools is called the modular approach.

The modular approach, with a high level of modularity, allows

using specialized software for each subsystem. Such an approach

can generally be implemented by developing a block in a tool to

communicate with, and access the simulation process of, another

tool. For instance, the interfaces between ADAMS and SIMULINK

have been used to develop multidisciplinary simulation [9]. The

deficiencies of this approach are also obvious: (1) it is only appro-

priate for limited types of simulations; (2) only the popular simu-

lation tools provide interfaces for each other. Another solution for

the modular approach, also called Co-simulation [10], is proposed

to develop an integrated environment which supports using multi-

ple tools together and implements the run-time interactions be-

tween the models created using these tools. Research effort has

been made towards developing Co-simulation and applying it to

engineering problems [10–11]. It’s indicated that the simulation

development should evolve towards applications operating at the

component or subsystem level, rather than just at system blocks

[3]. Some research has also been undertaken to employ distributed

computing technologies to integrate several simulation models

during a simulation process.

2.2. Solutions based on distributed computing technologies

Over the last two decades, there are substantial bodies of re-

search concerned with a more integrated use of information tech-

nology (IT) in the design process in many engineering sectors [12].

This tendency also provides impetus for the development of a new-

generation engineering infrastructure and product development

systems which will be distributed and collaborative [13–14]. In

terms of the running of multidisciplinary simulation in a distrib-

uted environment, three aspects of work have been studied to

implement the distributed connection: (1) basic networking proto-

col; (2) distributed computing technology; and (3) distributed sim-

ulation standards.

The first aspect emphasizes the realization of connection while

not considering the decoupling of distributed communication and

simulation running. For instance, Nakhimovski implemented Co-

simulation by writing a TCP/IP interface [10]. Shen et al. developed

a cooperative assembly environment which supports distributed

simulation through TCP/IP communication [15–16]. The second as-

pect makes use of advances in the distributed computing domain

to build up an infrastructure [17–18]. Although these approaches

have good distributed computing capability, they are weak in syn-

chronizing a number of simulation models. The last aspect is moti-

vated by this pitfall, and uses distributed simulation standards in

the derived solutions [19].

To support various simulation applications, using specialized

distributed simulation standard can be more beneficial. High-Level

Architecture (HLA) needs to be mentioned in terms of distributed

simulation standard. It was first initiated for tactical simulation,

and afterward was accepted as an IEEE standard for distributed

simulation [20–21]. HLA can support a variety of simulation appli-

cations, e.g. continuous time, discrete event, hybrid time and even

human-in-the-loop simulation. However, the application of HLA-

based simulation platform in [19] is still restricted by the inherent

drawbacks of HLA. First, HLA is hard to understand for users with-

out knowledge about distributed simulation. Second, development

of HLA-based simulation involves comprehensive coding work, and

the developed codes are tightly coupled with simulation models.

Third, implementation of HLA-based application strongly depends

on the Run-Time Infrastructure (RTI, the software implementation

of HLA), and the interoperability between different RTI products is

not good enough [22].

Although it is difficult for HLA to fulfil these objectives, the

advantages of HLA in supporting distributed simulation are still

very manifest. Recently, Web Services technology has begun to be

employed in the development of engineering software tools. Ross-

elo et al. identified a component framework for re-using proprietary

CAE environments based on Web Services [23]. Johansson proposed

a framework to manage simulation models by representing simula-

tion models at a high-level abstraction and encapsulating them as

Web Services [24]. To support collaborative engineering, Schubert

et al. proposed to bridge the gap in the Virtual Organisation (VO)

frameworks identified from the participant’s perspective [25]. Dong

et al. used Web Services to encapsulate and integrate distributed

manufacturing resources [26]. In the review of Bakis et al., they

highlighted the role of XML and Web Services in the development

of product data sharing environments [27]. Web Services and HLA

have been incorporated to supplement each other so that more

capability can be achieved [22].

In summary, distributed computing technologies and simula-

tion standards provide very promising solutions for engineering

applications. However, none of them has been designed just for

this purpose. Therefore, the adaptation and integration of these

technologies is necessary.

3. Developing multidisciplinary simulation in a distributed

environment

3.1. An example of multidisciplinary simulation

To give a simple example of multidisciplinary simulation, the

titling process of an antenna will be illustrated in this section. Orig-

inally, this example was used to demonstrate the development of

multidisciplinary simulation using the programming interfaces

between MSC.ADAMS [28] and SIMULINK [29]. To simulate this

tilting process, two models need to be created, namely the

mechanical model and the control model. Based on this example,

we can acquire the knowledge about developing multidisciplinary

simulations for more complex designs with three or more

subsystems.

As shown in Fig. 1, development of such a simulation starts with

the design requirements. The system design is further divided as

the designs of several subsystems each of which represents a spe-

cific discipline, and can be evaluated by creating simulation mod-

els. The simulation results can be analyzed by experts to give

feedback to a design process to guide decision-makings. The

mechanical model has three components connected to the ground

by a revolute joint, namely azimuth rotor, azimuth reduction gear,

and azimuth plate. Two fixed joints are created to constraint the

motion between the antenna support and the plate, as well as

the motion between the antenna support and the elevation bear-

ings. An antenna is connected to bearings by a revolute joint. The

interactions between the two models creates a closed loop in

which the control inputs from SIMULINK affect the MSC.ADAMS

simulation, whereas the MSC.ADAMS outputs affect the control in-

put levels.

Although this simulation can be performed based on the inter-

faces between SIMULINK and MSC.ADAMS, it is still very necessary

to develop an approach which allows the distributed simulation

models to be integrated at run-time. First, it is difficult to run this

simulation if we add another model, e.g. an electronic model, to this

example. Second, it is hard to access the run-time interaction data

as the simulation is automatically executed by SIMULINK. With this

approach, designers can obtain more insights into the run-time

behaviour of a design by analyzing the detailed interactions be-

tween the subsystems. As simulation evolves, more information

can be communicated to the design process so that design concepts

can be improved by addressing the problems identified during the

simulation process.

3.2. Developing a solution for multidisciplinary simulation

Several requirements need to be taken into account to perform

the illustrated simulation accurately. First, the development of

such a simulation, from the identification of subsystems to the

implementation of each subsystem, can be undertaken by design-

ers from MDTs in a distributed environment. Second, the two mod-

els can run separately and be distributed on the Internet whilst the

run-time interactions can be guaranteed. Third, the two models

need to be updated separately during each design iteration, as well

as to be re-used in new simulations. Therefore, a computational

infrastructure needs to be created to implement the distributed

interactions, as well as to synchronize the two models. High-Level

Architecture (HLA) can be viewed as a potential infrastructure.

HLA was initiated for military training, to promote the interop-

erability between diverse simulators and to improve the reusabil-

ity of legacy models. Essentially it aims to implement the accurate

run-time interactions between any two subsystems (federates) in a

big simulation system (a federation). It consists of three parts in

general: HLA rules, interface specification and Object Model Tem-

plate (OMT). Specifically, the first part defines a set of rules to guar-

antee the accuracy of distributed simulation, for both a federation

and an individual federate. The second part involves a set of inter-

faces that need to be implemented for HLA-based simulation

regardless of what technology will be employed. OMT specifies

how a concrete simulation problem can be modeled to form a

HLA federation, facilitating the re-use of simulations. Data defined

in OMT are categorized as two further types, namely a Federation

Object Model (FOM) and a Simulation Object Model (SOM). The

former defines the possible messages among federates of a federa-

tion while the latter defines the capability of a federate to interact

with others [20–22].

Mechanisms for managing distributed simulation, offered by

HLA, make it a promising candidate for developing a multidisci-

plinary simulation platform [19]. In our opinion, the key advantage

of HLA is a set of time management strategies which are really

effective for the simulations developed during the product devel-

opment processes. However, we argue that a HLA-based platform

can not meet the requirements identified in the proposed distrib-

uted collaborative simulation. First, users of such a platform need

to have the knowledge about how HLA works. Second, it requires

re-collecting and re-adapting all the simulation models during

simulation iterations. Essentially this is due to the inherent prob-

lems of the platform; that is, HLA codes and simulation models

are highly coupled. Departing from this point, we propose a meth-

od to improve the design, by separating simulation codes from HLA

codes. The separated simulation codes can be deployed on the

Internet and be integrated at run-time. In our reviewed work, it

was indicated that Web Services technology is capable of integrat-

ing distributed computing resources effectively and efficiently.

Therefore, we proposed a solution by developing an integrated

framework based on Web Services and HLA.

Elevation bearings
Antenna

Control torque

Antenna support

Azimuth rotor

Plate

Reduction gear

Azimuth position

Rotor velocity

Control model

Mechanical model

Simulation Process

Simulation results

Feedbacks to

System behavior

model

Assembling of

behavior models

Behavior models

of subsystems

design process Design Process Transforming form models
into behavior models

Design

Requirements
System

decomposition

Decomposing system

into subsystems

Form design of

each subsystem

Fig. 1. An example of multidisciplinary simulation and its development process.

3.3. An integrated system framework based on Web Services and HLA

Based on HLA and Web Services, an integrated system frame-

work has been developed, as shown in Fig. 2. There are mainly

two parts in this framework, representing HLA and Web Services

respectively. The HLA side is identified to manage the advance-

ment of the simulation process and to guarantee accurate interac-

tions. As it imposes lots of burden on network traffic to manage a

HLA federation, the required communication is performed in Local

Area Network (LAN) by the Run-Time Infrastructure (RTI). HLA

agents are the software components developed based on the

libraries provided by specific RTI products, which could bridge

the HLA side and the Web Service side.

Web Services technology is utilized in this framework to im-

prove the interoperability of the simulation system. Simulation

models encapsulated as Web Services can be accessed regardless

of their computing platform and their implementation languages.

In the Web Services side, the operation of each model during a

simulation process is abstracted as a behaviour model that con-

sists of a number of computer routines. These routines serve var-

ious purposes, e.g. advancing the simulation process, updating

model data, etc. Any inputs from outside a specific service are ob-

tained via the communication model which exchanges data with

HLA agents.

Several advantages can be highlighted in the integrated frame-

work. First, simulation models do not need to be re-collect and

re-adapted during simulation iterations as only interfaces of the

encapsulated services are needed in the HLA codes. Second, the

simulation application can be extended to WAN so that simula-

tion models can be deployed on the Internet. Third, the source

code of each simulation model can be kept confidential yet inte-

grated at run-time, which is especially suitable for the situation

of collaboration where models can not be released. Fourth,

designers only need to focus on their part of design tasks as each

subsystem is developed separately. More detailed comparison be-

tween the proposed integrated framework with other solutions

will be given in Section 6.

4. A model-driven approach for the integrated framework

The proposed framework can address the problem of perform-

ing simulations in a distributed environment by encapsulating

models as Web Services and managing the simulation process

within an HLA federation. However, this solution can only resolve

the problem at the infrastructure level. Designers without the

knowledge of HLA and Web Services will find it difficult to imple-

ment the simulation, i.e. a method needs to be developed to inter-

face designers with the infrastructure. In this section, we will

discuss the development of a model-driven approach for this

purpose.

4.1. Elements involved in a multidisciplinary simulation

The system perspective of a multidisciplinary simulation is

shown in Fig. 3, with a number of elements interacting with each

other. There are four elements in general, namely simulation

models, infrastructure, high-level description, and work of prepa-

ration. Simulation models are essentially a depository of com-

puter models which are used to evaluate design concepts from

the perspective of a specific discipline. Infrastructure refers to

the techniques utilized in the proposed integrated framework,

allowing multiple simulation models to run together in a distrib-

uted environment. High-level description needs to be specified for

each simulation which is performed by separating a system into

several subsystems. Specifically, a hierarchy tree indicates how

a system is decomposed; and a coupling graph is derived from

the interactions between models each of which is developed for

a specific subsystem.

‘‘Work of preparation” defines a series of tasks that should be

completed before the simulation can be started. First, designers

should work together to identify the requirements of a simulation

problem, and construct a high-level representation for it. Then,

simulation models of different disciplines need to be created and

transformed based on the requirements. At last, software engineers

start to develop codes to make the infrastructure work so that a

distributed simulation can be started. The relationships between

these elements are highlighted in the figure, e.g. simulation models

are connected to the Web Services infrastructure as they are

encapsulated using Web Services.

Ideally, developers of multidisciplinary simulations should not

be concerned with the infrastructure of a simulation environ-

ment. In addition, developers should still be able to create or

re-use models in the same way when the infrastructure is chan-

ged. To fulfil these requirements, an approach needs to be devel-

oped to allow designers to work on system models in a platform-

independent manner. During the run-time of a simulation, the

system models should be mapped to specific codes which can

be used to drive the infrastructure. This concept is similar to

the Model-Driven Architecture (MDA) and we therefore develop

Fig. 2. An integrated framework for multidisciplinary simulation. Fig. 3. Elements involved in a multidisciplinary simulation.

a model-driven approach to bridge the high-level model and the

infrastructure.

4.2. A model-driven approach

As discussed above, specific information concerning the infra-

structure needs to be acquired before a multidisciplinary simula-

tion can be performed. This requires a new mechanism to bridge

the high-level modeling and the underlying infrastructure. MDA

of the Object Management Group (OMG) is a good framework in

terms of separating system model from platform technology [30].

MDA has been applied in industry to address the interoperability

between computer systems [31]. In our solution, some concepts

from MDA, e.g. the Platform-Independent Model (PIM) and the

Platform Specific Model (PSM), are used. However, we do not use

the unified modeling language (UML) as our modeling language

as we developed a multi-view modeling paradigm to support the

collaborative work of designers. Apart from the advantage of better

collaboration, we argue that the proposed multi-view modeling

paradigm is more straightforward and easy to understand for

designers and simulation engineers.

As shown in Fig. 4, the MDA-based approach consists of four

parts: user’s operations, a multi-view modeling paradigm, model

transformation, and infrastructure. Specifically, users’ operations

involve a set of operations on the high-level model, e.g. models cre-

ation, model re-use, model definition and model deployment. The

high-level model can be viewed, updated, validated, and shared

by users geographically distributed as the representation of the

model can be understood by the computers. The system model is

further transformed to generate the object models for HLA and

Web Services, until all the information for the simulation has been

acquired. The model representation is platform-independent,

allowing models to be re-used even if the underlying platforms will

be changed later (e.g. we use JavaBeans instead of Web Services).

4.3. A multi-view modeling paradigm

A multi-view modeling paradigm is essentially a process of

acquiring necessary information for a simulation. This process

involves several views each of which represent different stages of

the development, as well as different roles of the developers. It

aims to supporting the gradual refinement of the system model

whilst allowing the users to only focus on a specific view. As shown

in Fig. 5, there are four views identified to represent different con-

tents of the high-level model according to the information

acquired at different stages:

 Decomposition view describes the process of decomposing a

system into subsystems. The output of this view is the hier-

archy tree of a simulation system.

 In realization view, each subsystem needs to be specified

about how it is implemented, either by re-using legacy mod-

els or by creating a new model.

 Composition view represents the aggregation of subsystems

where the inputs and outputs of each subsystem are speci-

fied. The output of this view is a coupling graph.

 Deployment view continues to add information to the system

model, describing how each subsystem is deployed as Web

Services or HLA federates.

The four views are essentially divided from a holistic process,

representing different perspectives of the high-level model. The

advantages for such a division are many-fold. First, collaborative

Fig. 4. A model-driven approach for the integrated framework.

Fig. 5. A multi-view modeling paradigm.

work of users is supported by allowing them to focus only on their

own portion of work. Second, model validation can be performed

within a specific view so that problems can be easily identified

and correlated to a specific view. Last but not least, once the infor-

mation of a specific view needs to be modified, the information

acquired in other views will not be affected.

4.4. MDA/HLA methodology

The proposed MDA-based approach aims to bridge the high-le-

vel modeling and the infrastructure by transforming high-level

model information into information necessary for the infrastruc-

ture. Although some of the transformation work can be done by

the computer, a process still needs to be identified to guide the

resolving of complex simulations. HLA has a standard development

process called the Federation development and execution process

(FEDEP) which is not designed to be compatible with MDA or the

Model-Driven Integration (MDI). This section presents the outline

of a methodology for the development of complex simulation

applications where automatic generation can not fulfil the require-

ments [32–33]. The methodology aims to support the combined

use of FEDEP and MDA. It is based on the life cycle which is pro-

posed to standardize the steps to implement simulation from a

conceptual model, as depicted in Fig. 6. The need of interoperabil-

ity between models and simulation tools is also considered in this

methodology.

Phase 1: The objectives of the federation need to be defined in

the first step. The common goal of all federations created by this

methodology is to define a federation of interoperating models.

In addition, as described in the second step of FEDEP, a conceptual

model is required. In our case, this model contains various domain

models represented as entities and actions that represent external

information exchanging.

Phase 2: In the second step, the mapping of domain models into

HLA federates is realized. In detail, the way models handle received

information and how they send information to the federation is ad-

dressed, these mechanisms can conform to the synchronization

Fig. 6. HLA/MDA integration methodology.

algorithm proposed in [33]. We pay here special attention to the

re-use of already existing domain models. In addition, we address

in this step what information are to be exchanged, in others terms,

what is the structure of the distributed ontology. This level is to

consider the problem at the MDA/PIM level.

Phase 3: In the third step, the methodology maps domain inter-

operating connections between models into HLA interactions and

objects. Then, these data are structured to generate the associated

FOM. The strategy concerning the confidentiality of data is also

explicitly addressed in this step. In addition, to respect time causal-

ity, interactions among federates are defined with a ‘Time Stamped

Order’. They are emitted with a timestamp related to local logical

time of the supplier federate so that the Run-Time Infrastructure

(RTI) can handle the interactions based on the sequence of the log-

ical time.

Phase 4: The results obtained by simulation are used for the val-

idation of the models by testing and analyzing; in case it does not

fulfil the specification, the methodology must allow doing feedback

correction as described in the last step of FEDEP.

At the end, the domain model federates generated by this meth-

odology can be re-used and interfaced with heterogeneous HLA-

compliant models. For instance, ‘client models’ federates can be

upstream connected to federates and ‘subcontractors’ federates

can be downstream connected.

5. Model representation and transformation

5.1. A model representation schema

Model representation is a technique to store high-level model

information, as well as to present this information to both human

users and computers in a structured way. In our solution, the mod-

el representation schema is implemented using the eXtensible

Markup Language (XML). The benefits of using XML have been

illustrated in literature, see for example [23–24,27]. The particular

advantage of using XML in our solution is that we can transmit the

contents of the schema through Web Services, which is especially

effective for finding reusable models. A segment is extracted from

the model representation schema of the antenna model, as shown

in Fig. 7.

This segment describes a simulation which encompasses two

models, namely the control model and the dynamics model. The

tree structure of a XML document can be used to represent the

hierarchy tree of a simulation application. The elements of <in-

puts> and <outputs> represent the interactions between models,

which can be read by computers to construct the coupling graph.

The <service> element and <hla> element are highlighted in

dashed circles, representing the information for invoking services

and initializing HLA federation respectively. Such a schema in

our approach is generated automatically by computers once after

the multi-view modeling process is completed. Information con-

tained in the representation schema can then be utilized by com-

puters to drive the infrastructure. For instance, the information

will be loaded by the transformation engine, a routine which

implements the model transformation mechanisms for HLA and

Web Services.

5.2. Model transformation mechanisms for HLA and Web Services

A methodology is introduced above to bridge HLA and MDA so

that a standard process of developing complex simulations using

our approach can be identified. In our approach, computers can

help to generate the object models useful to the infrastructure.

For instance, the FOM and SOM information required by HLA can

be generated based on the multi-view model. FOM represents a

</ouputs>
client client

<variables>

….. Federate Federate

</variables>

<service name = “serviceA” >

SOM

HLA agent
SOM

<operation name = “a”

Fig. 7. A segment of the model representation schema.

set of objects (including ObjectClass and InteractionClass) that can

be shared within a federation while SOM describes the ability of a

federate to share data with counterparts. Specifically, the SOM of a

federate encompasses the objects that it subscribes from others, as

well as the objects it publishes to be used by others. Furthermore,

the deployment of Web Services requires the information about

how a service interacts with its client, as well as what data need

to be transferred. At the run-time of a simulation, a mapping and

transferring of information will be performed between the repre-

sentation schema and object models of the infrastructure, as

shown in Fig. 8.

The representation schema of the antenna simulation is shown

on the left side of the figure while elements required by, and iden-

tified in the integrated framework are shown on the right. The

dashed line with arrow means that an element is transformed into

another element. The solid line with arrow indicates information

flow between two elements. As shown in the figure, the elements

of <outputs>, <inputs>, <variables>, <services> in the representa-

tion schema can be used to generate the necessary object models

for HLA and Web Services. The representation schema is obtained

from a high-level modeling process, the generation of object mod-

els for HLA and Web Services is then driven by the high-level mod-

<models>

<model name = “modelA”>

<inputs>

<input name = “a” /input>

<input name = “b” /input>

</inputs>

<ouputs>

…..

Web Services

Operations

Requests Responses

Service

Web Services

Operations

Requests Responses

Service

</operation>

…..

</service>

</model>

</models>

<hla name=“hla”>

…...

Federation

management

Data distribution

management

(FOM)

Object

management

Declaration

management

Time

management

Ownership

management

</hla> Run-time infrastructure

Transformed into Information flow

FOM: Federation object model

SOM: Simulation object model

Fig. 8. Model transformation mechanisms for HLA and Web Services.

els. In this way, the advantages of HLA and Web Services are re-

tained whilst designers only need to focus on the high-level mod-

els of a simulation.

5.3. Code generation and system deployment

Development of the mechanisms mentioned above aims to

make computers to complete as much work as possible during

the preparation of a simulation. However, the automatic genera-

tion of object models can only provide the static information re-

quired to start a simulation. In our research, we find that the

further generation of codes can reduce the work load of developers.

For instance, each HLA federate has the same behaviour during the

running of a simulation. We therefore develop a generic federate

class which can be used as a template to generate customized indi-

vidual federates. Specifically, the customization involves specifying

a set of parameters regarding objects and interactions exchanged

within a HLA federation, local simulation time and advancement

step, as well as the commands to start or stop simulations. It’s sim-

pler to generate codes for Web Services as such codes mainly deal

with run-time interactions. In our implementation, a standard Java

class is generated with a set of functions to initialize a model, ad-

vance the simulation, exchange simulation data, etc. Web Services

created with other techniques can also be developed by following

this method. For those tasks which can not be performed by the

generated codes, software engineers can make further develop-

ment as the supplement of these codes. In this way, designers only

need to develop codes to control a simulation tool and obtain sim-

ulation data.

6. Evaluation of the solution

To evaluate our approach, a comparison was made between

different methods for constructing distributed simulations. A

prototype was developed based on the model-driven approach

proposed above, leading users through the solution of a simulation

problem. To test the accuracy of a simulation, the antenna simula-

tion described above was run using the prototype, and the results

obtained were compared with those acquired by performing the

same simulation based on interfaces between simulation tools. A

discussion is given based on the comparison and the case study.

6.1. A comparison of different approaches

Although collaborative design has been studied for a long time,

there is only a little research on performing simulations in a dis-

tributed and collaborative manner. Our motivation is to develop

an approach to perform multidisciplinary simulation by integrat-

ing a number of distributed simulation models, as well as to

provide a virtual environment where users only need to focus on

a specific aspect of the whole problem. We therefore made a com-

parison between previous approaches for distributed collaborative

simulation to evaluate how the proposed approach can fulfil the

requirements, as well as to highlight key factors influencing the

development of such a simulation environment.

The criteria we selected for the comparison are interoperability,

efficiency of simulation development, types and scales of simula-

tion supported, degree of encapsulation, and the complexity of

developing such an environment. Approaches compared are those

reviewed in the related works section. The comparison is shown in

Table 1. ‘‘Interoperability” defines the degree to which individual

models can interact with each other. The approach based on inter-

faces between simulation tools is not good regarding this criterion

as interoperation can only take place between models created with

tools that have interfaces. HLA-based simulation only allows feder-

ates in a LAN to interact with each other, meaning that its interop-

erability is constrained to a single LAN.

Solving an engineering problem generally involves many itera-

tions where parameters of specific models in the simulation need

to be updated. Therefore, ‘‘efficiency of simulation development”

refers to how easily a simulation can be created or updated. An

interface-based approach requires a copy of every model to be

manually to be collected into a single computer for each iteration,

so its efficiency is low. Approaches with a medium efficiency re-

quire the codes controlling the simulation to be rewritten if models

are updated, e.g. HLA-based approach, VR-based approach, and the

integrated approach. Web Service-based approach is efficient as it

requires only the services to be changed. The model-driven ap-

proach addresses this problem by using a high-level model which

is independent of the infrastructure, which is therefore very

efficient.

‘‘Types” and ‘‘scales of simulation supported” evaluate how an

approach supports various simulation applications. Approaches

using HLA support a variety of types of simulation, e.g. continuous

time, discrete time, human-in-the-loop simulation, etc. The VR-

based and Web Services based approaches can only deal with some

kinds of simulations. Regarding the scales of simulation, approaches

based on several models can share the computational burden be-

tween multiple computers on the network. However, as a simula-

tion scales up, the simulation modelling overhead will definitely

increase; so we argue that among the approaches in the compari-

son, only those using HLA can hopefully have better performance.

In our opinion, collaborative development depends strongly on

two factors: (1) the effectiveness of the communication between

developers; and (2) the degree to which a single developer can fo-

cus on a specific part of the whole design, without being concerned

with others’ work. ‘‘degree of encapsulation” corresponds to the

second aspect, since we believe that an effective division of tasks

can improve collaboration. An interface-based approach requires

designers to know how other models are developed, and therefore

imposes many loads on developers. In HLA-based and VR-based

approaches, models are coupled with infrastructure, so more effort

is needed to change a model. The model-driven and Web Service-

based approaches have a clear division of tasks, helping designers

to perform collaborative work.

The ‘‘complexity of development” refers to the difficulty of

implementing an approach. In our opinion, the interface-based ap-

Table 1

A comparison of different approaches.

Approaches Interoperability Efficiency of

simulation

development

Types of simulation

supported

Scales of

simulation

supported

Degree of

encapsulation

Complexity of

development

Interface-based simulation [9] Restricted to some tools Low Restricted to some tools Medium High Low

HLA-based approach [19] Local area network Medium Many Large Medium High

VR-based approach [15–16] Cross platforms Medium Some Medium Medium High

Approach using Web Services [23–24] Cross platforms High Some Medium Low Medium

Integrated approach [22] Cross platforms Medium Many Large Medium High

Model-driven approach (this paper) Cross platforms High Many Large Low High

proach requires no infrastructure to be constructed, and is there-

fore the least complicated. On the other hand, approaches involv-

ing HLA or VR are complex in general as significant infrastructure

must be put in place. A Web Services based approach is of moder-

ate complexity as only few codes for managing a simulation need

to be developed.

Besides the criteria used in the comparison, other criteria, e.g.

accuracy of simulation and loads imposed on the network connec-

tion, can also be applied to evaluate distributed simulation ap-

proaches. As the interface-based approach makes use of interfaces

provided by vendors, we assume it has the best accuracy. In the fol-

lowing sections, the accuracy of the model-driven approach will be

compared with the interface-based approach, and a comprehensive

analysis will be given.

6.2. Prototype implementation

A software prototype was developed to test the proposed mod-

el-driven approach. It is designed to support designers through a

simulation process, from the high-level modeling to the execution

of a simulation. Some objectives are identified during the develop-

ment of this prototype. First, it should support multiple users for

creating a high-level description of a simulation. Second, it should

transform a representation obtained from the multi-view modeling

process into object models for HLA and Web Services, and should

also generate necessary codes for them. Third, it should provide

interfaces for users to control a simulation process. The prototype

is implemented as a Web-based application which can support

geographically distributed users. It is implemented in Java, being

integrated with the middleware to implement HLA and Web Ser-

vices. The prototype can be deployed on any computing platform.

A set of Graphical User Interfaces (GUIs) were developed to lead

designers through the development process which consists of

three stages. In this section, screenshots are taken from the case

study of the antenna simulation.

In Stage 1, a high-level model of the simulation needs to be cre-

ated. Each member of the development team logs on to the proto-

type and completes a multi-view modeling process, as shown in

Fig. 9. The system is first decomposed into two subsystems in

the decomposition view by the simulation engineers. Then, two

designers work in the realization view to specify how each subsys-

tem should be implemented. The prototype software allows

designers to re-use models from a set of existing models. In our

case, the existing fuzzy control model is not suitable for the anten-

na simulation, so the two subsystems will be implemented by cre-

ating two new models. After that, the two designers work in the

composition view, specifying the interactions between the two

subsystems. Finally, a software engineer starts to work in the

deployment view, defining how each subsystem model should be

deployed. The prototype tool provides an interface for sending

messages to team members to facilitate their communication dur-

ing the development process.

In Stage 2, preparation work for the simulation should be com-

pleted. First, the high-level model of the antenna simulation ob-

tained in Stage 1 is transferred in the format of the representation

schema described in Section 5.1. A transformation engine then

transforms the representation schema into object models for HLA

and Web Services as shown in Fig. 10, and also generates necessary

codes. After that, the software engineer needs to complete all the

tasks to make the infrastructure work, based on the models and

Fig. 9. Collaborative modeling based on the prototype.

codes generated by the tool. Finally, since the two models are not in

the repository, the software engineers should work together with

the designers to encapsulate the developed simulation models as

Web Services.

In Stage 3, designers and simulation engineers execute the sim-

ulation and analyze the results obtained from the simulation. A

multidisciplinary simulation can be started from the GUI when

the necessary information for infrastructure is acquired in Stage

2. Simulation engineers can monitor a simulation run by obtaining

run-time messages from the tool. During each design iteration, the

parameters of the simulation can be modified, allowing a wide

range of design concepts to be evaluated. The results obtained dur-

ing each simulation can be shown. For instance, the run-time data

of the azimuth position and the control torque in the antenna sim-

ulation are shown in Fig. 11. Developers are able to query the value

of a specific parameter at any time in the simulation process.

6.3. Running the antenna simulation

As mentioned above, the accuracy of simulations is also an

important criterion for evaluating the performance of a multidisci-

plinary simulation system. We believe that results obtained using

the interface-based approach to be the most accurate because

the interfaces have been validated by the vendors before being re-

leased. Therefore, the antenna simulation is run in our prototype

tool and compared with the results obtained using the interface-

based approach to evaluate the accuracy of our approach as well

as demonstrating its functionality. As shown in Table 2, we set

the simulation steps of the two models as 0.0125 s and 0.0294 s

respectively. This is a deliberate setting because we want to test

the simulation in an extreme case when the two steps are com-

pletely not in match. A quadratic interpolation algorithm is used

to find the results at the end of federation simulation step.

The simulation is developed using the prototype, and the pro-

posed process is followed by the designers. This example is quite

simple and the simulation can be constructed very quickly. Once

the high-level modeling and model encapsulation are completed,

simulation engineers can start and monitor a simulation process.

They can start, pause and stop a simulation at any time. As evi-

denced in our experiment, the simulation can be performed as if

all the models are running in a single computer, although they

are actually distributed on the network.

Simulation engineers can easily find problems with the design

since they can check the data of any parameter at any time of a

simulation. They can modify parameter values until the best

trade-off is applied. In our experiment, we did not perform this be-

cause the models of the antenna simulation have been verified and

our objective is to test the accuracy of our approach. In total there

are three design variables in the antenna simulation, namely con-

trol torque, rotor velocity, and azimuth position. The simulation re-

sults for all of them are shown in Figs. 12–14. The curves in dashed

lines are obtained from our prototype tool while those in solid lines

are obtained from simulations based on the interfaces between

MSC.ADAMS and Matlab. As shown in the figures, curves obtained

in both cases follow a similar trajectory, although small differences

appear at some points in the simulation process. In both cases, the

azimuth position of the antenna converges to three degrees. There-

fore the model-driven approach has a comparable simulation accu-

racy to the interface-based approach for the antenna simulation.

6.4. Discussion

As evidenced in the prototype implementation and the case

study, the proposed integrated framework and the model-driven

approach can be used to perform multidisciplinary simulations in

a distributed environment. The advantages of the approach have

<models>

<model name = “Dynmodel”>

<inputs>

<input name = “torque” type = “double” value =

“Conmodel.torque” /input>

</inputs>

<ouputs>

<output name = “velocity” type = “double” /output>

<output name = “position” type = “double” /output>

</ouputs>

<variables >

<variable name = “” type = “double” /variable >

…..

</variables>

<service name = “Dynservice” >

<address value = “serviceaddress” /address>

<operation name = “opname” value = “opvalue”>

</service>

</model>

<model name = “Conmodel”>

…..

</model>

</models>

<hla name=“hla”>

<address value =“hlaaddress” /address>

…...

</hla>

…...

- <objectClass name="CoSimMember" sharing="Neither">

<attribute name="Name" dataType="HLAunicodeString" />

<attribute name="IpAddress" dataType="HLAunicodeString" />

<attribute name="JoinTime" dataType="HLAunicodeString" />

</objectClass >

- <objectClass name="MatlabOutput" sharing="Neither">

<attribute name="control_torque" dataType="HLAunicodeString" />

</objectClass>

- <objectClass name=" AdamsOutput " sharing="Neither">

<attribute name="rotor_vel" dataType="HLAunicodeString" />

<attribute name="azi_pos" dataType="HLAunicodeString" />

</objectClass>

</objectClass>

</objects>

- <interactions>

- <interactionClass name="HLAinteractionRoot" sharing="Neither" />

- <interactionClass name="SimStopInteraction" sharing="Publish“/>

<parameter name="Reason" dataType="HLAunicodeString" />

</interactionClass>

- <wsdl:portType name="coSim">

<wsdl:operation name="initialize" parameterOrder="timeStep endTime

matlabIn matlabOut adamsIn adamsOut pMatlab pAdams">

<wsdl:input message="impl:initializeRequest" name=" initializeRequest"/>

<wsdl:output message="impl:initializeResponse " name=" initializeResponse"/>

</wsdl:operation>

- <wsdl:operation name="runMatlab" parameterOrder="init">

<wsdl:input message="impl:runMatlabRequest" name=" runMatlabRequest"/>

< wsdl:output message="impl:runMatlabResponse" name=" runMatlabResponse"/>

</wsdl:operation>

- <wsdl:operation name="runAdams" parameterOrder="init">

<wsdl:input message="impl:runAdamsRequest" name="runAdamsRequest"/>

<wsdl:output message="impl:runAdamsResponse" name="runAdamsResponse"/>

</wsdl:operation>

</wsdl:portType>

Fig. 10. Object models of Web Services and HLA generated by the prototype system.

Fig. 11. Simulation results shown in the GUI of the prototype.

been discussed in the comparison. In our opinion, there is scope for

further discussion of the usability of the approach. First, a model-

centred view of a simulation application can improve the manage-

ment and re-use of simulation models, and is useful to the system

implementation. Second, encapsulating models as Web Services

enable them to be kept confidential yet integrated during run-

time. It is particularly useful when models cannot be shared be-

Table 2

Parameters of the distributed simulation.

Parameter name Parameter value

Total simulation steps 50

Simulation time 0s, 0.25s

Step size of the federation 0.05s

Step size of dynamics model 0.0125s

Step size of control model 0.0294s

Fig. 12. Control torque over the simulation time.

Algorithm for interpolation

and extrapolation

Quadratic interpolation algorithm

Fig. 13. Rotor velocity over the simulation time.

Fig. 14. Azimuth position over the simulation time.

tween participants involved in a collaborative development pro-

ject. Third, the network load for performing simulations is not sig-

nificant, since only simulation results are transferred over the

Internet while simulation management (within a HLA federation)

can be performed in LAN or on a server. However, the system is

not suitable for some applications. For instance, simulations which

have strict requirements on the run-time, e.g. real-time simula-

tions, cannot be performed in our prototype tool. In addition, prob-

lems whose sub-problems are highly coupled during numerical

calculation may not be solvable in our prototype as our approach

is based on multiple solves, and may not be accurate enough for

that situation.

7. Conclusion

Collaborative product development is being widely studied in

both academia and industry. However, most research focuses on

collaborative work for creating designs while little attention has

been given to collaborative work for evaluating designs. Our re-

search is motivated by this situation, aiming to develop an ap-

proach to support simulations performed by multidisciplinary

teams in a distributed environment.

Specifically, we propose an integrated infrastructure based on

HLA and Web Services to connect distributed simulations. How-

ever, it is difficult for designers to acquire the knowledge to use

these technologies although applying them for distributed simula-

tion has been justified in previous research. To resolve this prob-

lem, a model-driven approach is developed to enable designers

to focus on the high-level structure of a design. The high-level

model is independent of any technology, and is therefore stable en-

ough to be stored and re-used even if the infrastructure is changed.

Our approach is evaluated by comparing it with existing ap-

proaches and running an engineering simulation. As evidenced in

our experiment, the proposed framework and approach are viable

for developing multidisciplinary simulations. In addition, this ap-

proach has certain advantages compared with existing ones. Such

a solution could be adapted to any other engineering system which

aims to manage and integrate distributed computing resources.

In our future work, we will explore the factors influencing the

accuracy of a multidisciplinary simulation, and study how to im-

prove the convergence of simulation problems. In addition, we will

develop more functionality for the prototype software tool, to al-

low more complex engineering simulations to be performed.

Acknowledgements

This paper is supported by the National Natural Science Foun-

dation of China (Grant No.60674079) and the Key Laboratory of

Beijing Simulation Centre (Grant No. B0420060524). The authors

are grateful to the anonymous reviewers for their valuable sugges-

tions and to David Wyatt for proofreading this paper.

References

[1] A. Diaz-Calderon, A composable simulation environment to support the design

of mechatronic systems, Ph.D. thesis, Department of Electrical and Computer

Engineering, Carnegie Mellon University, 2000.

[2] M.S. Shephard, M.W. Beall, R.M. O’Bara, B.E. Webster, Toward simulation-based

design, Finite Elements in Analysis and Design 40 (12) (2004) 1575–1598.

[3] R. Sinha, V. Liang, C.J.J. Paredis, P.K. Khosla, Modeling and simulation methods

for design of engineering systems, Journal of Computing and Information

Science in Engineering 1 (1) (2001) 84–91.

[4] G. Ferretti, G. Magnani, P. Rocco, Virtual prototyping of mechatronic systems,

Annual Reviews in Control 28 (2) (2004) 193–206.

[5] L.U. Gokdere, K. Benlyazid, R.A. Dougal, E. Santi, C.W. Brice, A virtual prototype

for a hybrid electric vehicle, Mechatronics 12 (4) (2002) 575–593.

[6] J.V. Amerongen, P. Breedveld, Modelling of physical systems for the design and

control of mechatronic systems, Annual Reviews in Control 27 (1) (2003) 87–

117.

[7] A. Rukgauer, W. Schiehlen, Simulation of modular mechatronic systems with

application to vehicle dynamics, Acta Mechanica 125 (1–4) (1997) 183–196.

[8] W. Marquis-Favre, E. Bideaux, S. Scavarda, A planar mechanical library in the

AMESim simulation software. Part II:Library composition and illustrative

example, Simulation Modelling Practice and Theory 14 (2) (2006) 95–111.

[9] T. Makkonen, K. Nevala, R. Heikkilä, A 3D model based control of an excavator,

Automation in Construction 15 (5) (2006) 571–577.

[10] I. Nakhimovski, Contributions to the modeling and simulation of mechanical

systems with detailed contact analyses, Ph.D. thesis, Department of Computer

and Information Science, Linköpings University, 2006.

[11] M.M. Da Silva, O. Bruls, B. Paijmans, et al., Concurrent simulation of

mechatronic systems with variable mechanical configuration, in:

Proceedings of the ISMA 2006, 2006, pp.69–79.

[12] N. Bakis, G. Aouad, M. Kagioglou, Towards distributed product data sharing

environments-progress so far and future challenges, Automation in

Construction 16 (5) (2007) 586–595.

[13] W.D. Li, A web-based service for distributed process planning optimization,

Computers in Industry 56 (3) (2005) 272–288.

[14] S. Szykman, R.D. Sariram, Design and implementation of the Web-enabled

NIST design repository, ACM Transactions on Internet Technology 6 (1) (2006)

85–116.

[15] Q. Shen, J. Gausemeier, J. Bauch, R. Radkowski, A cooperative virtual

prototyping system for mechatronic solution elements based assembly,

Advanced Engineering Informatics 19 (2) (2005) 169–177.

[16] Q. Shen, M. Grafe, To support multidisciplinary communication in VR-based

virtual prototyping of mechatronic systems, Advanced Engineering

Informatics 21 (2) (2007) 201–209.

[17] F. Pahng, N. Senin, D. Wallace, Distribution modeling and evaluation of product

design problems, Computer-Aided Design 30 (6) (1998) 411–423.

[18] Y.D. Wang, W. Shen, H. Ghenniwa, WebBlow:a web/agent-based

multidisciplinary design optimization environment, Computer in Industry 52

(1) (2003) 17–28.

[19] J. Jian, H. Zhang, B. Guo, et al., HLA-based collaborative simulation platform for

complex product design, in: Proceedings of the 8th CSCWD International

Conference, IEEE Computer Society, Xiamen, China, 2004, pp. 462–466.

[20] IEEE Std1516-2000. IEEE Standard for Modeling and Simulation (M&S) High

Level Architecture (HLA) – Framework and Rules, IEEE, 2000.

[21] IEEE Std1516.1-2000. IEEE Standard for Modeling and Simulation (M&S) High

Level Architecture (HLA) – Federate Interface Specification, IEEE, 2000.

[22] H. Wang, H. Zhang, An integrated and collaborative approach for complex

product development in distributed heterogeneous environment, International

Journal of Production Research 46 (9) (2008) 2345–2361.

[23] E.G. Roselló, M.J. Lado, J.G. Dacosta, M.P. Cota, A component framework for

reusing a proprietary computer-aided engineering environment, Advances in

Engineering Software 38 (4) (2007) 256–266.

[24] B. Johansson, Model management for computational system design, Ph.D.

thesis, Department of Mechanical Engineering, Linköpings University, 2003.

[25] L. Schubert, A. Kipp, B. Koller, Supporting collaborative engineering using an

intelligent web service middleware, Advanced Engineering Informatics 22 (4)

(2008) 431–437.

[26] B. Dong, G. Qi, X. Gu, X. Wei, Web service-oriented manufacturing resource

applications for networked product development, Advanced Engineering

Informatics 22 (3) (2008) 282–295.

[27] N. Bakis, G. Aouad, M. Kagioglou,Towards distributed product data sharing

environments-Progress so far and future challenges, Automation in

Construction 16 (5) (2007) 586–595.

[28] Matlab, the Mathworks. Available from: <http://www.mathworks.com/>.

[29] MSC.ADAMS, the MSC software. Available from: <http://www.mscsoftware.com/>.

[30] Model driven architecture, the Object Management Group. Available from:

<http://www.omg.org/mda/>.

[31] R. Jardim-Goncalves, A. Grilo, A. Steiger-Garcao, Challenging the

interoperability between computers in industry with MDA and SOA,

Computers in Industry 57 (8–9) (2006) 679–689.

[32] G. Zacharewicz, D. Chen, B. Vallespir, HLA supported, federation oriented enterprise

interoperability, in: Proceedings of the MOSIM 2008, 2008, Paris, France.

[33] G. Zacharewicz, N. Giambiasi, C. Frydman, Improving the lookahead

computation in G-DEVS/HLA environment, in: Proceedings of the DS-RT

2005, 2005, pp. 273–282.

http://www.mathworks.com/
http://www.mscsoftware.com/
http://www.omg.org/mda/

