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Abstract: This paper describes optimal instrumental variable methods for identifying discrete-
time transfer function models when the system operates in closed-loop. Several noise models
required for the design of optimal prefilters and instruments are analyzed and different
approaches are developed according to whether the controller is known or not. Moreover, a
new optimal refined instrumental variable technique is developed to handle the identification
of a linear (ARX) predictor combined with an ARMA noise model in a closed-loop framework.
The proposed refined instrumental variable algorithm achieves minimum variance estimation
of the process model parameters. The performance of the proposed approaches is evaluated by
Monte-Carlo analysis in comparison with other alternative closed-loop estimation methods.
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1. INTRODUCTION

Feedback is present in a variety of practical situations due
to safety and/or economic restrictions. In the last two
decades, various attempts have been made to handle linear
system identification in the presence of feedback. Indeed,
closed-loop system identification leads to several difficul-
ties due to the correlation between the disturbances and
the control signal induced by the loop. Several methods
have therefore been developed to cope with this problem
either for discrete-time transfer function model identifica-
tion (see e.g. Söderström and Stoica [1989], Van den Hof
[1998], Forssell and Chou [1998], Forssell and Ljung [1999],
Zheng [2003], Gevers [2005]) or for continuous-time TF
model identification (see e.g. Gilson et al. [2008]). This
paper focusses more specifically on instrumental variable
(IV) techniques which present the major advantage of
being able to consistently identify plant models in closed-
loop while relying on simple linear-like (“pseudo-linear
regression”) algorithms and not relying on linearity nor
knowledge of the controller. For closed-loop identifica-
tion, a basic IV estimator was first suggested by Young
[1970]; the topic was later discussed in more detail by
Söderström et al. [1987]. More recently a so-called “tailor-
made IV algorithm” was proposed Gilson and Van den
Hof [2001], where the closed-loop plant is parameterized
using the (open-loop) plant parameters. Then, an optimal
(minimal) variance result was developed in the closed-loop
extended IV identification case, revealing consequences for
the choice of weights, filters and instruments Gilson and

Van den Hof [2005].
This paper aims at presenting several solutions according
to the chosen model structure. Therefore, after a quick
review of two available solutions (for ARX and ARARX
models), a new optimal IV-based technique is presented
which is based on the identification of a more realistic
Box-Jenkins (BJ) model, where the plant and the noise
models are not constrained to have common polynomials.
The identification problem is rewritten to make use of a
linear-in-the-parameters predictor next to an additional
noise model identification required for determining the
optimal prefilter and instrument. Moreover, two situations
are studied depending on the controller knowledge.
The paper is organized as follows. After the preliminaries,
the lower bound of the covariance matrix is recalled in
Section 3. Section 4 shows how the refined IV method can
be used to provide consistent and efficient estimates to
the closed-loop identification problem. The different algo-
rithms are then presented in Section 5. Finally, in Section
6, the comparison between different methods is illustrated
with the help of Monte Carlo simulation examples.

2. PROBLEM FORMULATION

Preliminaries.
Consider a stable, linear, Single Input Single Output,
closed-loop system of the form shown in Figure 1. The data
generating system is assumed to be given by the relations

S :

{

y(t) = G0(q)u(t) + H0(q)e0(t)

u(t) = r(t) − Cc(q)y(t).
(1)
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Fig. 1. Closed-loop configuration

The process is denoted by G0(q) = B0(q
−1)/F0(q

−1) with
the numerator and denominator degree equals to n0, the
controller is denoted by Cc(q) and q−1 is the delay operator
with q−ix(t) = x(t − i). u(t) describes the process input
signal, y(t) the process output signal. For ease of notation
we introduce an external signal

r(t) = r1(t) + Cc(q)r2(t). (2)

A coloured disturbance ξ0(t) = H0(q)e0(t) is assumed to
affect the closed-loop, where e0(t) is a white noise, with
zero mean and variance σ2

e0
.

The following general model structure is chosen to model
the system (1)

M : y(t) = G(q, ρ)u(t) + H(q, η)ε(t, θ), (3)

where the parameter vector is given as θT = (ρT ηT ). The
parameterized process model takes then the form,

G : G(q, ρ) =
B(q−1, ρ)

A(q−1, ρ)
=

b1q
−1 + · · · + bnq−n

1 + a1q−1 + · · · + anq−n
, (4)

where n denotes the process model order and with the pair
(A, B) assumed to be coprime. The process model param-
eters are stacked columnwise in the parameter vector

ρ = [a1 · · · an b1 · · · bn]T ∈ R
2n. (5)

The process model order n is assumed known or identified
from the data and the parameterized noise model is
assumed to be in the form of the following ARMA process,

H :H(q, η)=
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + · · · + cmq−m

1 + d1q−1 + · · · + dmq−m
, (6)

where the associated noise model parameters are stacked
columnwise in the parameter vector,

η = [d1 · · · dm c1 · · · cm]
T
∈ R

2m. (7)

Note that this paper deals with IV-based methods which
are known to give consistent plant model parameter esti-
mates of G0 irrespective of the structure of H0.
Additionally, the controller Cc(q) is given by

Cc(q) =
Q(q−1)

P (q−1)
=

q0 + q1q
−1 + · · · + qnc

q−nc

p0 + p1q−1 + · · · + pnc
q−nc

, (8)

with the pair (P,Q) assumed to be coprime. In the follow-
ing, the closed-loop system is assumed to be asymptoti-
cally stable and r(t) is an external signal that is persis-
tently exciting of sufficient high order.
With these notations, the closed-loop system can be de-
scribed as

y(t) =
G0(q)

1 + Cc(q)G0(q)
r(t) +

1

1 + Cc(q)G0(q)
ξo(t)

u(t) =
1

1 + Cc(q)G0(q)
r(t) −

Cc(q)

1 + Cc(q)G0(q)
ξo(t). (9)

In the following instrumental variable algorithms, use is
made of the noise-free input/output signals deduced from
(2) and denoted from hereon as

ů(t) =
1

1 + Cc(q)G0(q)
r(t), ẙ(t) =

G0(q)

1 + Cc(q)G0(q)
r(t).

(10)
The noise-free regressor is then defined as follows

ϕ̊T (t) = [−ẙ(t−1) · · ·− ẙ(t−n) ů(t−1) · · · ů(t−n)]. (11)

Now consider the relationship between the process input
and output signals in (1),

y(t) = G0(q)u(t) + H0(q)e0(t). (12)

If the plant G0 is included into the chosen model set G
(G0 ∈ G), y(t) can be written as

y(t) = ϕT (t)ρ0 + v0(t), (13)

where ρ0 denotes the true plant parameter vector,

ϕT (t) = [−y(t−1) · · ·−y(t−n) u(t−1) · · ·u(t−n)] (14)

and v0(t) = F0(q
−1)H0(q)e0(t).

The objective is to estimate the parameter vector from
the collected data y(t), u(t) and r(t) with or without the
knowledge of the controller.

Extended IV
The well-known extended-IV estimate is given by (see e.g.
Söderström and Stoica [1983])

ρ̂xiv(N) = arg min
ρ

∥

∥

∥

∥

∥

[

1

N

N
∑

t=1

L(q)ζ(t)L(q)ϕT (t)

]

ρ

−

[

1

N

N
∑

t=1

L(q)ζ(t)L(q)y(t)

]
∥

∥

∥

∥

∥

2

W

, (15)

where ζ(t) is the instrument vector, ‖x‖2
W = xT Wx, with

W a positive definite weighting matrix and L(q) a stable
prefilter.
By definition, when G0 ∈ G, the extended-IV estimate
provides a consistent estimate under the following two
conditions 1

• ĒL(q)ζ(t)L(q)ϕT (t) is full column rank,
• ĒL(q)ζ(t)L(q)v0(t) = 0.

3. LOWER BOUND FOR AN IV METHOD

The choice of the instrumental variable vector ζ(t), the
number of instruments nζ , the weighting matrix W and
the prefilter L(q) may have a considerable effect on the
covariance matrix Pxiv produced by the IV estimation
algorithm. In the open-loop situation the lower bound
of the covariance matrix for any unbiased identification
method is given by the Cramer-Rao bound (see e.g.
Söderström and Stoica [1983] and Ljung [1999]). The
closed-loop situation has been investigated recently in
Gilson and Van den Hof [2005], therefore only the main
results to be used in the following are recalled here. It has
been shown that a minimum value of the covariance matrix
Pxiv as a function of the design variables ζ(t), L(q) and W
exists under the restriction that ζ(t) is a causal function
of the external signal r(t) only. In that case

Pxiv ≥ P opt
xiv

1 The notation Ē[.] = limN→∞

1

N

∑N

t=1
E[.] is adopted from the

prediction error framework of Ljung [1999].



with

P opt
xiv = σ2

e0
[Ēϕ̊f (t)ϕ̊T

f (t)]−1, (16)

ϕ̊f (t) = Lopt(q)ϕ̊(t), (17)

Lopt(q) =
1

F0(q−1)H0(q)
, (18)

and where ϕ̊(t) is the noise-free part of ϕ(t) (see equation
(11)). It has been shown that the minimum variance result
can be achieved by the following optimal choice of design
variables

W = I and nζ = 2n, (19)

L(q) = Lopt(q) (20)

ζ(t) = ϕ̊(t). (21)

Using equations (15) and (19)-(21), the IV estimate using
these optimal design variables is given by

ρ̂opt(N) = R̂−1
ζf ϕf

(N)R̂ζf yf
(N) (22)

with

R̂ζf ϕf
(N) =

1

N

N
∑

t=1

ζf (t)ϕT
f (t), (23)

R̂ζf yf
(N) =

1

N

N
∑

t=1

ζf (t)yf (t) (24)

and where the regressor ϕf (t) = Lopt(q)ϕ(t), the output
yf (t) = Lopt(q)y(t) and the instrument vector ζf (t) =
Lopt(q)ζ(t) are filtered by Lopt(q) (18).
As a result, note that in the considered IV estimator
(15), the optimal choice of instruments and prefilter is
dependent on unknown system properties, i.e. the plant as
well as the noise dynamics. Whereas dependency of plant
dynamics could be taken care of by an iterative procedure
where the instruments and prefilter are constructed on the
basis of a previous process model ρ̂i−1 in order to provide
an improved process model ρ̂i by applying (15); knowledge
of the noise dynamics H0(q) is generally missing in an IV
estimator like (15) as it is not particularly estimated.
Therefore the next step in an optimal IV method should be
to extend the estimator (15) with a procedure to estimate
an appropriate noise model, to be used as a basis for
constructing the optimal prefilter Lopt(q) given in (18).

4. OPTIMAL IV IDENTIFICATION IN
CLOSED-LOOP

4.1 Introduction

The optimal IV identification method is based on esti-
mator (15). However, this latter one needs to be com-
plemented with the estimation of a noise model. In this
perspective, a general prediction error identification step
is added to estimate a model for H0(q). This requires the
choice of a particular parametrization for H(q, θ), possibly
in relation to G(q, ρ). Two options have been used so far
in the literature Gilson and Van den Hof [2005]:

• ARX structure:

A(q−1, ρ)y(t) = B(q−1, ρ)u(t) + ε(t, ρ).

In this case the noise model

H(q, ρ̂) = 1/A(q−1, ρ̂) (25)

is already available from the process model estimate,
and no additional noise model estimate is required.

On the basis of the estimated process model G(q, ρ̂)
the corresponding filter is given by

L(q, ρ̂) = 1/[A(q−1, ρ̂)H(q, ρ̂)] = 1 (26)

ρ̂ is estimated during the model identification step.
• ARARX structure:

A(q−1, ρ)y(t) = B(q−1, ρ)u(t) +
1

D(q−1, η)
ε(t, θ).

In this case the corresponding noise model

H(q, η) = 1/A(q−1, ρ̂)D(q−1, η) (27)

is not available from the process model ρ̂ only as
previously, but an additional noise model estimate
is required. In Gilson and Van den Hof [2005], this is
achieved by identifying D(q−1, η) as an autoregressive
model D(q−1, η)w(t) = ε(t, η) with

w(t) = A(q−1, ρ̂)y(t) − B(q−1, ρ̂)u(t), (28)

by using a first process model estimate (ρ̂) and by
applying a least square estimator

η̂ = arg min
η

1

N

N
∑

t=1

ε(t, η)2.

The optimal filter that results from this identification
procedure is therefore

L(q, η̂) = D(q−1, η̂). (29)

Note that these two methods rely on special structures of
the estimated noise models, and therefore limit the possi-
bility to reach consistent estimates of H0(q) in situations
where these structures are not in accordance with the
properties of the underlying systems. Therefore, in this
paper, the options are extended to other more general
model structures.

4.2 Extension to BJ and OE structure

The more general structure is obtained by choosing a Box
Jenkins (BJ) model structure for identifying the noise
dynamics, which takes the form

y(t) =
B(q−1, ρ)

F (q−1, ρ)
u(t) +

C(q−1, η)

D(q−1, η)
ε(t, ρ, η), (30)

and a natural way to extend the IV estimator (15) with
an identification of the noise model η is to write

v(t) =
C(q−1, η)

D(q−1, η)
ε(t, ρ̂, η) (31)

with v(t) = y(t)−B(q−1, ρ̂)/F (q−1, ρ̂)u(t) being available
as a measured/reconstructed signal once IV estimator
(15) has delivered a process model ρ̂. Estimation of η
in the above equation is then undertaken by an ARMA
estimation algorithm on the basis of v(t).
The optimal prefilter that results from this identification
procedure is then given by

L(q, ρ̂, η̂) = D(q−1, η̂)/[F (q−1, ρ̂)C(q−1, η̂)]. (32)

When choosing an Output Error (OE) model structure for
the noise dynamics, we arrive at

y(t) =
B(q−1, ρ)

F (q−1, ρ)
u(t) + ε(t, ρ), (33)

and of course no additional estimation of the noise dynam-
ics is required. The optimal prefilter however changes, and
now becomes given by

L(q, ρ̂) = 1/F (q−1, ρ̂). (34)



5. THE ITERATIVE IV ALGORITHM

The outline of the optimal IV algorithm in a unified way
for the 4 considered model structures, within the closed-
loop context is given below. Two versions are provided
according to whether the controller is known or not.
Moreover, the proposed algorithm is chosen to be iterative
to refine the parameter estimates as it is achieved in the
optimal refined IV estimation technique initially developed
for open-loop system identification (see e.g. Young [1984]).

5.1 Case 1 - cliv with known controller

Step 1. Initialisation: estimate a first model
Apply a basic IV method

ρ̂0 =

[

N
∑

t=1

ζ(t)ϕT (t)

]−1
N

∑

t=1

ζ(t)y(t), (35)

where ϕ(t) is given by (14). Several IV methods may be
chosen, as e.g. using the delayed version of the excitation
signal r(t) as instruments. This yields B(q−1, ρ̂0) and
F (q−1, ρ̂0). Denote the corresponding transfer function
by G(q, ρ̂0) = B(q−1, ρ̂0)/F (q−1, ρ̂0). Set the initial noise
model estimates C(q−1, η̂0) = D(q−1, η̂0) = 1 and i = 1.

Step 2. Estimate by IV
Generate the filtered instruments 2 according to the model
structure used as














































L(q, θ̂i−1) computed using either (26), (29), (32), or (34)

ˆ̊y(t, ρ̂i−1) =
G(q, ρ̂i−1)

1 + Cc(q)G(q, ρ̂i−1)
r(t),

ˆ̊u(t, ρ̂i−1) =
1

1 + Cc(q)G(q, ρ̂i−1)
r(t),

ζf (t, θ̂i−1)=L(q, θ̂i−1)
[

−ˆ̊y(t − 1, ρ̂i−1) . . . − ˆ̊y(t − n, ρ̂i−1)

ˆ̊u(t − 1, ρ̂i−1) . . . ˆ̊u(t − n, ρ̂i−1)
]

ζf (t, θ̂i−1) can be seen as a filtered estimate of the noise-
free part of the regressor vector ϕ(t) (14) based on esti-

mates ˆ̊y(t) and ˆ̊u(t) of the noise-free output and input to
the plant, respectively. Determine the IV estimate using
the prefilter and these instruments

ρ̂i=

[

N
∑

t=1

ζf (t, θ̂i−1)ϕT
f (t, θ̂i−1)

]−1
N

∑

t=1

ζf (t, θ̂i−1)yf (t, θ̂i−1)

(36){

ϕf (t, θ̂i−1) = L(q, θ̂i−1)ϕ(t)

yf (t, θ̂i−1) = L(q, θ̂i−1)y(t)
(37)

This yields B(q−1, ρ̂i) and F (q−1, ρ̂i). Denote the
corresponding transfer function by G(q, ρ̂i) =
B(q−1, ρ̂i)/F (q−1, ρ̂i).

Step 3. Obtain an optimal estimate of the noise
model parameter vector ηi based on the estimated
noise sequence:
Use one of the noise model identification scheme described
in Section 4 to estimate η̂i and the associated transfer
function H(q, η̂i).

Step 4. For OE and BJ model strutures: repeat
from step 2. Stop when F (q−1, ρ̂), B(q−1, ρ̂), H(q, η̂)

and L(q−1, θ̂) have converged.

2 i stands for the ith iteration

Step 5. Compute the estimated parametric error

covariance matrix P̂θ associated with the cliv pa-
rameter estimates, from

P̂θ = σ̂2
[

ϕT
f (t, θ̂)ϕf (t, θ̂)

]

−1

, (38)

where σ̂2 is the sample variance of the estimated residuals.
Then, according to the model structure used, the resulting
algorithm will be referred to as clivarx, clivararx, clivbj or
clivoe.

5.2 Case 2 - cliv with unknown controller

When the controller is known, it is worthwhile to use this
information into the identification procedure, to provide
with more accurate results. In the previous algorithm, the
controller is used with the open-loop system model to
construct the instruments and the filter. However, when
it is unknown, another solution may be used to build
up the instrumental vector which satisfies the optimal
conditions (19)-(21). Indeed, the noise-free estimation of
this instrumental vector can be achieved by using the
two closed-loop transfers between r(t), u(t) and between
r(t), y(t) instead of the open-loop one (between u(t) and
y(t)). The second step consists then in identifying the two
closed-loop transfers Gyr(q, Θyr) and Gur(q, Θur) using
two basic IV methods as

Θ̂yr =

[

N
∑

t=1

ζr(t)ϕ
T
yr(t)

]−1
N

∑

t=1

ζr(t)y(t) (39)

Θ̂ur =

[

N
∑

t=1

ζr(t)ϕ
T
ur(t)

]−1
N

∑

t=1

ζr(t)u(t), (40)

where the instruments are a delayed version of the excita-
tion signal and the regressors make use of the input/ouput
signals. These closed-loop estimates are then used to com-
pute the instruments as

ˆ̊y(t, Θ̂yr) = Gyr(q, Θ̂yr)r(t), ˆ̊u(t, Θ̂ur) = Gur(q, Θ̂ur)r(t).

The estimation of ρ is then achieved using the same way
as in (36), only the instrument vector computation is
changed.

5.3 Comments

• Adaptive optimal prefiltering of both I/O data signals
is an inherent part of the cliv estimation.

• One of the advantages of the proposed algorithms is
that it provides consistent plant estimates while still
exploiting the pseudo-linear regression type of estima-
tion. Indeed, the IV based pseudo-linear regression
method recently suggested in Young [2006] can be
used to estimate the ARMA process noise in the third
step of the algorithms.

• The clivoe algorithm obtained when C(q−1, η) =
D(q−1, η) = 1 has some similarities with the algo-
rithm of Steiglitz and McBride adapted to the closed-
loop situation. However, the Steiglitz-McBride algo-
rithm uses iterative least-squares rather than itera-
tive optimal IV; as a result it is consistent only un-
der restrictive conditions (see Stoica and Söderström
[1981]) and therefore is less robust than clivoe.



6. SIMULATION EXAMPLES

The numerical examples presented in this section are used
to illustrate the performance of the proposed methods. The
plant to be identified is described by equation (1), where

G0(q) =
0.0997q−1 − 0.0902q−2

1 − 1.8858q−1 + 0.9048q−2
, n = 2

Cc(q) =
10.75 − 9.25q−1

1 − q−1
,

r(t) is a deterministic sequence: realization of a pseudo
random binary signal of maximal length, with the number
of stages of the shift register set to 9 and the clock period
set to 8; e0(t) is a white noise uncorrelated with r(t).

6.1 Example 1: white noise

Firstly, a white noise disturbance (H0(q) = 1) is considered
in order to evaluate the performance clivoe algorithm in
the case S ∈ M. The plant parameters are estimated
on the basis of closed-loop data of length N = 4088. A
Monte-Carlo simulation of 100 runs is used for a signal-to-
noise (SNR) ratio equal to 35dB. The proposed method is
compared to:

• clivr : the first basic IV method developed to han-
dle the closed-loop case and which uses the de-
layed version of the reference signal as instruments
(Söderström et al. [1987]);

• clivarx: the optimal IV method with an ARX model
structure making use of the controller knowledge;

• pem: applied to the closed-loop data as described e.g.
in Forssell and Ljung [1999] known to be theoretically
efficient in the S ∈ M case;

• clivoe1: making use of the controller knowledge;
• clivoe2: assuming the controller unknown.

The Monte Carlo simulation (MCS) results are presented
in Table 1 where the mean and standard deviation of the
estimated parameters are displayed. The average number
of iterations (Niter) for the pem and clivoe algorithms
are also given. It can be seen that all of the methods
deliver accurate results, with smaller standard deviations
for pem and for the proposed clivoe type of methods.
Indeed, these methods lead to better results thanks to the
iterative estimation procedure, even though the number
of iterations required for convergence is quite low. As
expected, the clivr method provides the least accurate
results since it is a simple basic (and not optimal) IV
approach.

6.2 Example 2: colored noise

A second example is used to analyse the performance of
the proposed methods in the case of a colored noise, with

H0(q) =
1 + 0.5q−1

1 − 0.85q−1
.

As previously, the proposed clivbj methods are compared
to clivr, clivararx, pem algorithms. The plant parameters
are estimated on the basis of closed-loop data of length
N = 4088. A Monte Carlo simulation of 100 experiments
is performed for SNR = 25dB. The mean and standard
deviation of the estimated parameters for the 100 realiza-
tions are given in Table 2 along with the averaged number

of iterations needed for the clivbj methods. The Bode
diagrams of the 100 models identified by the clivr, pem,
clivararx and clivbj algorithms are displayed in Figure 2.
These results show that all of the optimal-IV based meth-
ods give efficient results whereas the classical clivr and
the pem algorithms fail to give accurate estimates. Indeed,
the approximate optimal IV type of algorithms (clivararx

and clivbj) give estimates with smaller standard deviation
errors compared to the clivr algorithm, thanks to the
optimal choices of instruments and filter. Furthermore,
the clivbj algorithms yields results with smaller standard
deviation than the clivararx algorithm thanks to a more
accurate noise model estimation.
Moreover, on the Bode diagrams, it can be noticed that
the pem algorithm is not able to converge to the global
minimum at each run and therefore leads to erroneous
results.
It can also be noted that although the clivbj2 algorithm
uses less information to identify the model (the controller
is supposed to be unknown), the corresponding results re-
main really accurate. Therefore this method which aims at
identifying a consistent BJ model without the knowledge of
the controller should be very interesting in many practical
situations.

7. CONCLUSION

This paper has considered the identification of several
transfer function model structures within a closed-loop
environment, using the instrumental variable technique
modified to solve the closed-loop situation. The general
Box-Jenkins model structure identification has been han-
dled by making use of a linear-in-the-parameters predictor
next to an additional noise model identification required
for determining the optimal filter and the instruments.
Two approaches have then been suggested according to
whether the controller is known or not. It has been shown
that a minimal value of the associated parametric error co-
variance matrix can be achieved by an appropriate choice
of instruments and prefilters. The estimated Box-Jenkins
model has the advantage of not constraining the plant and
the noise models to have common polynomials.
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parameters b̂1 b̂2 â1 â2 Niter

true values 0.0997 -0.0902 -1.8838 0.9048

clivr 0.0997 ± 0.3e−3 −0.0898 ± 3.8e−3 −1.8821 ± 35e−3 0.9014 ± 32.4e−3
clivarx 0.0997 ± 0.3e−3 −0.0900 ± 1.1e−3 −1.8772 ± 9e−3 0.8977 ± 8.5e−3
pem 0.0996 ± 0.05e−3 −0.0901 ± 0.06e−3 −1.8858 ± 0.12e−3 −0.9048 ± 0.10e−3 4.14

clivoe1 0.0997 ± 0.05e−3 −0.0902 ± 0.06e−3 −1.8858 ± 0.10e−3 0.9048 ± 0.09e−3 3.89
clivoe2 0.0997 ± 0.05e−3 −0.0902 ± 0.06e−3 −1.8858 ± 0.12e−3 −0.9048 ± 0.10e−3 3.53

Table 1. Mean and standard deviation of the 100 estimated models, white noise

parameters b̂1 b̂2 â1 â2 Niter

true values 0.0997 -0.0902 -1.8838 0.9048

clivr 0.0992 ± 0.5e−3 −0.0900 ± 4.9e−3 −1.8834 ± 44.3e−3 0.9025 ± 41.1e−3
clivararx 0.0998 ± 0.5e−3 −0.0898 ± 2.4e−3 −1.8823 ± 21.1e−3 0.9014 ± 19.6e−3

pem 0.0793 ± 64.8e−3 −0.0715 ± 64e−3 −1.8993 ± 34.7e−3 0.9181 ± 33.8e−3 4.22
clivbj1 0.0997 ± 0.7e−3 −0.0903 ± 0.7e−3 −1.8856 ± 3.6e−3 0.9048 ± 3.2e−3 5.88
clivbj2 0.0997 ± 0.6e−3 −0.0903 ± 0.7e−3 −1.8860 ± 3.7e−3 0.9050 ± 3.4e−3 5

Table 2. Mean and standard deviation of the 100 estimated models, colored noise
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Fig. 2. Estimated Bode diagrams (gain and phase (degree)) of the plant model G(q, η) over the 100 MCS, colored noise
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