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Abstract : The focus of this article is to show and discuss the nonlinear 
dynamical behaviors of brake system subjected to friction-induced vibration 
that  can be generated due to the co-existence of multi-unstable modes. 
A finite element model with friction coupling is used to analyze the stability  
of  the brake system and the stationary nonlinear oscillations for squeal noise 
prediction. The mechanism of squeal instability  considers a mode coupling 
phenomenon that is classically referred to as coalescence. 
 
Keywords: squeal, self-excited vibrations, periodic and quasi-periodic 
oscillations, nonlinear and harmonic components. 

 

1 Introduction 
One of the major challenges for vehicle manufacturers is the detection and prediction of  
squeal noise arising due to friction-induced vibrations in brake systems.  
To study the squeal  phenomenon in brake, the determination of the mechanism of the 
self-excited vibration is one of the first and most important phases to be discussed. As 
explained by Ibrahim [1-2], the first mechanisms that are based on friction 
characteristics and consider the variation of the friction coefficient are not sufficient to 
explain the occurrence of squeal. The second hypotheses in explaining the squeal 
phenomenon state that friction-induced vibrations are based on the structural dynamics 
properties and geometrical mode coupling. One of the first studies was presented by 
Spurr [3] with the sprag-slip model. Then, Earles and co-workers [4-5], and North [6] 
proposed various analytical models with two or more degrees-of-freedom that 
illustrated the importance of structural dynamics and demonstrated that the mode 
coupling can lead to onset of squeal instability. We refer the interested reader to the 
reviews [1-2,7-8] for an extensive overview of the different models and mechanisms of 
automotive disc brake squeal that are not the subject of this study. 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

Even if the first models to study the squeal phenomenon were based on analytical 
models with few degrees-of-freedom, being generally sufficient to understand the 
problem of friction-induced vibrations, extensive studies using finite element method 
are actually performed to analyze brake squeal propensity [9-12]. 
So the aim of this paper is to investigate the squeal prediction and to clarify the 
nonlinear behaviors that might be observed by using a classical finite element model of 
brake system including the disc and the pad. The nonlinear dynamical behaviors of 
squeal noise are discussed in order to obtain some indications that might be useful in 
detecting and understanding the nonlinear friction-induced vibrations in brake system.  
The study is set up as follows: first, the nonlinear finite element model  of mode-
coupling instability in brake system is presented. Second, a brief review of the stability 
analysis and squeal prediction are given. Then, the nonlinear behaviors of squeal 
phenomenon due to a single mode coupling or multi mode couplings are presented and 
discussed. Different analyses are considered to provide information on the effects of 
multi-instabilities and the importance of the nonlinear harmonic components of the 
nonlinear vibrations  in squeal prediction. 

2 Numerical model 
The system under study represents a simplified brake. It is composed by a pad and a 
disc that are the main components contributing to squeal. The pad and disc system 
without frictional interfaces are discretized by using a finite element approximation via 
Abaqus software, as shown in Figure 1. The caliper–piston assembly is not defined in 
this simplified brake. Hence the hydraulic pressure is directly applied to the backplate 
of the pad. The system is reduced by using a Craig and Bampton technique and keeping 
certain  contact nodes (i.e. at the disc/pad interface)  and retaining the first fifty 
eigenmodes of each component of  the brake system. 
The set of equation describing the dynamic system can be written by  

   NL extMx Cx Kx F F   

 
(a) 

 
(b) 

Figure 1: Finite element model (a) disc (b) pad 
 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

 
Figure 2: Experimental tests – pad compression 

 
where M  and C , respectively, the mass and damping matrices. K  represents the 
structural stiffness matrix. x  is the displacement vector and dot denotes derivative with 
respect to time. extF  is the vector force due to brake pressure applied on the pad. NLF  
contains the linear and nonlinear terms due to the friction contact between the pad and 
the disc. 
The friction interface is modelled by using dedicated software in Matlab and by 
introducing in the finite element model the nonlinear contact force vectors that are 
defined by 

     3
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otherwise
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 d d
contact ,Y contact ,X rF F sign v   

where “d” denotes the disc and “p” the pad. The displacements dx  and px are defined in 

the direction normal to the contact surface; then contact ,YF  and contact ,XF  are the contact 

forces along the tangential and normal directions respectively.  is the friction 
coefficient that is assumed to be constant and  the classical Coulomb’s law is applied. vr 
defines the relative velocity between the pad and disc. lk  and nlk   correspond to the 
linear and nonlinear stiffnesses contact respectively. This formulation has been chosen 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

to fit the first and the third order of pad compression curves obtained from experimental 
tests, as showed in Figure 2. As indicated in the previous equations, contact and no-
contact configurations at the friction interface are possible so that the pad and disc can 
separate locally or can open and close repeatedly at some local nodes during the 
vibration. 

3 Stability analysis 
The complex eigenvalue analysis is the first tool to provide the physical parameters that 
lead to instabilities of the brake system and the squeal occurrences. 
The stability of the nonlinear system is calculated by considering the linearized system 
at the equilibrium point. This static equilibrium position 0x  is obtained by solving the 
nonlinear static equations that satisfy the following conditions: 

A  0 NL extKx F F  

Stability of the static position 0x  is then investigated for a small perturbation x  around 
the equilibrium point:  

xxx 0   

After calculation, the linearized system is given by 

     L 0Mx Cx K K x x 0   

where LK , which is asymmetric, represents the linearized expression of the nonlinear 

frictional contact NLF  at the equilibrium position 

     i
i i

x
x


 


0

NL
NL L 0
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F x
F x K x x  

So the local stability around the equilibrium point 0x  is investigated by calculating the 

eigenvalues of the Jacobian matrix J   

  1 1 

 
     L 0

0 I
J

M K K x M C
 

The complex eigenvalues can be expressed as a ib    where the real part a  
indicates the stability of the equilibrium point  and b  represents the pulsation of the 
mode. As long as the real part of all the eigenvalues remains negative, the equilibrium 
point of the system is stable. When at least one of the eigenvalues has a positive real 
part, the equilibrium point is unstable and squeal noise occurs. 
Figures 3 display the evolution of real parts and frequencies as a function  of the friction 
coefficient. For a friction coefficient equal to zero, the real parts of eigenvalues are 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

negative due to the structural damping introduced in the system; so, the system features 
stable separate modes in the frequency range. 
As the friction coefficient increases, Figure 3(b) illustrates that the real parts increase 
slowly. The associated frequencies around 1510Hz tend to get closer, as indicated in 
Figure 3(a). The Hopf bifurcation point occurs for a friction value of 0.26 (see Figure 
3(b)). Showing Figure 3(a), it can be noted that the two modes do not reach exactly the 
same frequency at the bifurcation point due to a non-equally damped configuration 
between the two modes (see the paper of Fritz et al. [12] for more details). For the 
reader comprehension, the red lines in Figures 3 correspond to the unstable mode. This 
phenomenon is classified as a non-perfect  coalescence. This non-perfect coalescence 
can also be seen by considering the gap in real part between the two modes at =0. As 
explained by Hoffmann and Gaul [13] and Fritz et al. [14], a ‘‘smoothing effect’’ of the 
curves with respect to the friction coefficient is observed, both for real parts and 
frequencies in the case of non-equally damped configuration. 
After the first Hopf bifurcation point at =0.26, a second instability appears when the 
value of the friction coefficient is greater than 0.28 (see Figure 3(b) where the continues 
and dotted lines are associated with the frequencies at 920Hz and 1510Hz, 
respectively). The upper Figure 3(a) illustrates the coalescence phenomena around 
920Hz. Finally, Figures 4 show the evolutions of both real parts and frequencies with 
increasing the friction coefficient for the two instabilities (at 920Hz and 1510Hz). It can 
be observed that one of the two modes that coalesce is stable whereas the other one is 
unstable for the two instabilities. However, for the first instability (at 1510Hz), the 
unstable mode corresponds to the higher mode, whereas for the second instability (at 
920Hz), the unstable mode corresponds to the lower mode. In these two cases, the less 
damped eigenvalue becomes unstable. 
 

 
(a) (b) 

Figure 3 : coalescences patterns (a) frequency (b) real parts (red lines = unstable modes) 
 
 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

 
 

(a) 
 

(b) 
Figure 4 : 3Dplot of the coalescence patterns (a) at 920Hz (b) at 1510Hz 

 

4 Nonlinear self-excited vibrations  
Even if the stability analysis is the first step for designing mechanical systems subjected 
to friction-induced vibration, the determination of the vibrational amplitudes is essential 
for a robust design of brake systems. It can be noted that a brake system may be 
considered to be efficient if the self-excited vibrations do not become excessive and so 
no offensive noises are generated. In other words, a brake system with small self-
excited oscillations but performing properly can be validated in a design process. So not 
only the stability analysis but also the amplitudes and the vibrational behaviour of the 
nonlinear oscillations are key factors. 
The time–history responses of the nonlinear dynamic system can be obtained by solving 
the original full nonlinear equation via a numerical integration. Here, the nonlinear 
system is  rewritten in state variables and variable order Adams-Bashforth-Moulton 
PECE solver is used. 
In this section, specific cases (for various friction coefficients) will be given to illustrate 
the different nonlinear behaviour of the brake system that can be observed during 
squeal vibrations. The first case corresponds to self-excited oscillations of the brake 
system with a “single instability” participation (with only one unstable mode). It 
represents one of the most classical nonlinear behavior observed during squeal 
phenomenon. The second one illustrates the “multi-instabilities” case when the 
nonlinear self-excited vibrations appear due to the presence of two unstable modes.  

4.1 Single instability 
Firstly, Figures 5(a) illustrate the nonlinear  oscillations of the pad (Y-component) in 
the time domain for the friction coefficient =0.26 when only one instability is present 
(as previously seen in Section 2). The displacement and velocity growth leading to 
periodic oscillations is one of the most typical nonlinear  features of the squeal 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

phenomenon. Figure 5(b) shows the associated limit cycle amplitudes. Moreover, 
Figures  6 illustrate the limit cycle amplitudes of the pad in the X and Z directions. 
 
 

Friction coefficient Frequency f1 (Hz) Frequency f2 (Hz) 
0.26 - 1512 
0.28 897 1497 
0.35 904 1495 
0.4 907 - 

 
Table 1: Fundamental frequencies of the nonlinear responses 

 

 
(a) (b) 

Figure 5 : stationary response of the Y-component of the pad for =0.26 (a) zoom on 
the displacement and velocity (b) limit cycles 

 

 
(a) (b) 

Figure 6 : Limit cycles of the pad for =0.26 (a) X-direction (b) Z-direction 
 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

The spectrum components of the nonlinear self-excited amplitudes are analyzed by 
using the Fast Fourier Transformation method to derive the Power Spectrum Density of 
the displacement. Results for a node of the pad (in the X,Y and Z directions) are plotted 
in Figure 7: the fundamental frequency that corresponds to the unstable frequency of 
the mode around 1512Hz (as previously showed by the eigenvalues analysis) and its 
second and third harmonics with decreasing amplitudes are present. 
 

 
Figure 7 : Power Spectral Density of the stationary response of the pad for =0.26 (      

X-direction,      Y direction,     Z-direction) 
 

The contribution of the 1  and 2  harmonic components are also clearly shown on the 
limit cycles with the small “double-inside loops” that characterizes the presence of the 
second order for the complete nonlinear response of mechanical systems (see Figure 
5(b)). The contribution of the third order in the nonlinear response can be identified in 
the spectrum (see Figure 7). However  the contribution of the 3  harmonic components 
is  less significance than the 1  and 2  harmonic components. In view of the above, it 
can be concluded that the nonlinear self-excited oscillations during the “single squeal 
instability” is composed by harmonic oscillations.  
The nonlinear time simulation agrees with the instability predictions of the possible 
unstable modal coupling. In fact, not only the fundamental component of the unstable 
mode but also contributions of the second and third orders are detected in periodic 
oscillations of the squeal signal. So the nonlinear contributions and the associated 
harmonic frequency components must be taken into account not only for predicting the 
complete nonlinear periodic vibration of the “single squeal” instability but also for 
avoiding worse designs that could neglect the presence of extra harmonic resonant 
peaks of the fundamental unstable mode. Then, it is observed that the fundamental 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

frequency of the stationary self-excited oscillations is not exactly those of the unstable 
mode obtained by using eigenvalues analysis, as indicated in Table 1.  
Finally, it can be noted that the unstable conditions, the limit cycle amplitudes and the 
associated self-excitation mechanism have been obtained even if a constant friction 
coefficient is used  in the numerical simulation. As reported above, the present work 
deals with squeal phenomenon as a modal instability. 

4.2 Multi-instabilities 
In this section, the nonlinear behaviour of the brake system subjected to multi squeal 
instabilities is investigated. 
Figure 8(a) shows the quasi-periodic oscillations of the pad (Y-component) for the 
friction coefficient =0.28. This value of the friction coefficient corresponds to the 
appearance of the second instability, as previously indicated in Section 3. The 
associated limit cycle is given in Figure 8(b). Moreover, the limit cycles of the pad in 
the X and Z-directions are plotted in Figures 9. It clearly appears that the nonlinear 
behaviour of the brake system is complex due to the contributions of the two instable 
modes.  
Figure 10 shows the Power Spectrum Density of the three previous components of the 
pad (X,Y and Z components): in this case, it is observed that the fundamental 
frequencies in the spectrum are the frequency f2 of the first squeal instability (at 
1497Hz) and the frequency f1 of the second squeal instability (at 897Hz). The second 
and third harmonics of the second instability (i.e. 2f1, 3f1) and the second harmonics of 
the first instability (i.e. 2f2) are also identified. Moreover, it clearly appears that the two 
unstable modes f1 and f2 interact together to product sum and difference frequencies f2-
f1 and f2+f1. The component f2-f1 is prominently seen, being equal to f2.  The spectrum 
hence indicates the combination harmonics such as 2f1-f2, 3f1-f2, 2f2-f1, f2+f1, 2f1+f2, etc.  

 
(a) (b) 

Figure 8 : stationary response of the pad (Y-component) for =0.28 (a) zoom on the 
displacement and velocity (b) limit cycles 

 
 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

 

 
(a) (b) 

Figure 9 : limit cycles of the pad for =0.28 (a) X-direction (b) Z-direction 
 

 
 

Figure 10 : Power Spectral Density of the stationary response of the pad for =0.28 (      
X-direction,      Y direction,     Z-direction) 

 
 
Even if these combination of frequency components are less important than the 
fundamental frequencies (f1 and f2), its harmonics (2f1, 3f1 and 2f2), and the sum and 
difference frequencies (f2-f1 and f2+f1), they are prominently seen in the spectrum. The 
presence of the combination harmonics of the two instabilities is indicative of strong 
participation and “coupling” of the two unstable modes that leads to quasi-periodic self-
excited oscillations of the brake system. Finally, other combinations (4f1, 3f2, f2+f1, 
2f2+2f1 and 3f1+f2) of less significance could be detectable, as indicated in Figure 10. 
 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

 
(a) (b) 

Figure 11 : stationary response of the pad (Y-component)  for =0.35 (a) zoom on the 
displacement and velocity (b) limit cycles 

 

 
(a) (b) 

Figure 12 : limit cycles of the pad for =0.35 (a) X-direction (b) Z-direction 
 
Then Figures 11 illustrate the nonlinear oscillations of the pad (Y-component) and the 
associated limit cycle for the friction coefficient =0.35. Figures 12 show the limit 
cycles of the pad in the X and Z directions. As previously shown (for =0.28), a 
complex nonlinear vibrational behavior is observed. It can be noted that the amplitudes 
of the pad in this case are smaller than the amplitudes for =0.28. So increasing the 
friction coefficient does not imply an  increase of the limit cycles amplitudes of the 
brake system.  
Figure 13 shows the Power Spectrum Density for the friction coefficient =0.35 for the 
X,Y and Z components of the pad. The fundamental frequencies in the spectrum of this 
case are the frequency f2 of the first squeal instability (at 1495Hz) and the frequency f1 

of the second squeal instability (at 904Hz). In comparison with the previous case 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

(=0.28), it is observed that the frequency of the first squeal instability decreases 
whereas the frequency of the second instability increases (see Table 1).  
The second and third harmonics of the second instability (i.e. 2f1, 3f1) are important 
whereas the second harmonics of the first instability (i.e. 2f2) are less significant. Then, 
interactions between the two unstable modes f1 and f2 are clearly identified: the 
combination harmonics such as 2f1-f2 and f2-f1 are prominently observed, being equal to 
2f1 or 3f1. 
Other combination harmonics of less significance that have been previously observed 
for =0.28 are also present for =0.35, such as 3f1-f2, -f1+f2, 2f1+f2, 2f2-f1, 4f1, 3f1+f2, 
2f2+f1, 2f1+2f2. It is noted that the participation of these combination harmonics are 
practically identical for the two cases.  
Finally, the presences of new combination harmonics of the two instabilities are shown 
(5f1-3f2, -3f1+2f2, -2f1+2f2, 5f1-2f2, 4f1-f2, 5f1-f2,  6f1-f2, 5f1 and 7f1-f2). They are of less 
significance but they are clearly seen in the spectrum and so they indicate a strong 
participation and coexistence of the two unstable modes of fundamental frequencies f1 
and f2 that leads to bi-periodic self-excited oscillations. Then, even if some combination 
harmonics appear to be very close (see for example -3f1+2f2 and 2f1-f2, -2f1+2f2 and 3f1-
f2, or 2f2 and 5f1-f2), they are clearly distinguished. It can be noted that these new 
combination harmonics correspond to the upper orders of the sum and difference 
frequencies  nf1 mf2 (with n and m integers). 
 
  

 
 

Figure 13 : Power Spectral Density of the stationary response of the pad for =0.35 (      
X-direction,      Y direction,     Z-direction) 

 
 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

Now, Figures 14, 15 and 16 show the nonlinear oscillations of the pad, the associated 
limit cycles and the Power Spectrum Density for the friction coefficient =0.4 in the 
X,Y and Z directions.  
In this last case, the fundamental frequency f1 of the first unstable mode and its second 
and third harmonics components 2f1 and 3f1 are predominant.  The typical “inside loop” 
of the limit cycle is shown in Figures 14(b) and 15(a). Contributions of less significance 
that corresponds to the n  harmonic components (for n=4 to 11) are also detected in the 
spectrum, as indicated in Figure 16. 
Here, the presence of the first instability and the sum and difference frequencies or 
harmonics combinations of the two unstable modes are found to be absent in the 
spectrum. Hence, the nonlinear behavior of the self-excited system is similar to periodic 
oscillations and so appears more simple than the two previous cases (for the friction 
coefficient =0.28 or =0.35). 
So, it may be concluded that even if the eigenvalues analysis indicates the presence of 
two instabilities,  the second unstable mode of frequency f2 does not participate in the 
nonlinear oscillations of the self-excited vibrations. One general explanation can be that 
the first instability of frequency f1 governs the nonlinear oscillations of the brake 
system hiding or “removing” the contributions of the second instability of frequency f2. 
As reported in the previous section, the fundamental frequencies of the self-excited 
oscillations are not exactly those obtained by using eigenvalues analysis, as indicated in 
Table 1. 

 
 

(a) (b) 
Figure 14 : stationary response of the pad (Y-component)  for =0.4 (a) zoom on the 

displacement and velocity (b) limit cycles 
 
 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

 
(a) (b) 

Figure 15 : limit cycles of the pad for =0.4 (a) X-direction (b) Z-direction 
 

 
 

Figure 16 : Power Spectral Density of the stationary response of the pad for =0.4 (      
X-direction,      Y direction,      Z-direction) 

 

5 Conclusion 
In this study, we investigated numerically the nonlinear behaviour of disc brake squeal 
by using a simplified finite element model.  
Firstly, two classical results are observed: 

- when only one instability occurs in the brake system, the fundamental frequency 
and its harmonic are present in the nonlinear self-excited vibrations. The 



  

 

   

  
 

   

  

 

   

       
 

   
 
 

   

  
 

   

  

 

   

      
 

fundamental frequency of the nonlinear oscillations is not exactly the same than 
those obtained by applying eigenvalues analysis.  

- The resonance peaks due to the fundamental frequencies component are usually 
greater than the resonance peaks due to the harmonics components  or 
combinations of frequency components. However, the amplitudes of the 
harmonics components, sum and difference frequencies can not be neglected 
and clearly contribute to the self-excited oscillations of the brake system. 

Secondly, two additional observations are obtained: 
- The resonances of the nonlinear self-excited vibrations that satisfy the 

relationships  nf1 mf2 (with n and m integers) occur due the coexistence of 
two instabilities of fundamental frequencies f1 and f2, respectively. So the 
amplitudes of peaks that do not correspond to the fundamental frequencies of 
unstable modes do not indicate the presence of new instability but show the 
harmonics of these frequencies that  can contribute to the overall vibration.   

- Even if the stability analysis indicates the existence of two instabilities, the 
nonlinear behaviour can be governed by only one unstable mode without a 
significant contribution of the other instability. As a result, the nonlinear self-
excited oscillations are only composed by the fundamental frequency f1 or f2 and 
its harmonics. So a method for the suppression of brake squeal should be to 
introduce energy to an other frequency that is out of the audible range (see for 
example the application of the Dither mechanism [15]). 

In conclusion, the nonlinear self-excited vibrations of  disc brake squeal can be very 
complex due to the presence of multi resonance peaks. Therefore, it becomes easier to 
avoid a worse design by utilizing not only the fundamental frequencies but also the 
harmonic components and the combination of frequencies components. 
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