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Abstract

This study deals with the non-linear dynamic response of a flexible rotor supported by ball bearings.
The excitation is due to unbalance force. The finite element rotor system is composed of a shaft with
one disk, two flexible bearing supports and a ball-bearing element where the non-linearities are due
to both the radial clearance and the Herztian contact between races and rolling elements. A numerical
analysis is performed to analyze the non-linear behavior ofthis bearing rotor by using the Harmonic
Balance Method with appropriate condensation located onlyon the non-linear coordinates of the
system in order to minimize computer time. The condensationprocess reduces the original non-linear
rotor system by focusing only on the solution of the non-linear equations of the Fourier coefficients
associated with the system’s non-linear components.
In this study, the procedure is developed for the estimationof the harmonic and super-harmonic
responses of the complex rotor system. Consequently, the non-linear unbalance responses and the
associated orbits of the bearing rotor will be investigated. Moreover, the transition from contact
to no-contact states between rolling elements and races, and the associated restoring contact forces
are calculated for different speeds of the unbalanced rotor. Finally, hardening-type nonlinearity or
softening-type nonlinearity due to the effects of radial clearance and unbalance mass are examined.

1 Introduction

One of the most important non-linear mechanical componentsof rotating machines to be taken into
account are bearings due to their considerable influence on the dynamic behavior of rotor systems.
For example, various works have studied non-linear behavior due to active magnetic bearings [1–3]
and fluid-film bearing [4–8]. The third major type of bearingsare the non-linear rolling-bearing
elements currently used to support gas turbine engine rotors due to their durability and low power
requirements [4, 6, 9]. It is well known that ball bearings are a source of nonlinearities for rotor sys-
tems. The nonlinear behavior of rotor systems involving bearing clearances and Hertzian ball-race
contact have been studied by several investigators. For example, the dynamic analysis of rotors with
bearing clearance was studied by Ehrich [10,11]. Sunnersjo[12] studied ball passage vibrations theo-
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retically, taking into account inertia and damping forces.Comparisons with experimentally obtained
results were made. Choi and Noah [13] used the harmonic balance method with the discrete Fourier
transform procedure to analyze the non-linear behavior of arotor bearing system. Tiwari et al. [14]
studied the non-linear dynamics of a horizontal rigid rotor: the appearance of instability and chaos in
the dynamic response are observed both numerically and experimentally. They also studied the effect
of radial internal clearance of a ball bearing and the appearance of regions of periodic, subharmonic
and chaotic behavior [15]. Later, Harsha et al. [16] proposed to take into account various sources of
nonlinearity such as Hertzian contact force, surface waviness and internal radial clearance resulting
in the transition from contact to no contact state between races and rolling elements. Periodic, quasi-
periodic and chaotic behavior were analyzed in detail. Moreover, Harsha [17] investigated the effect
of radial internal clearance for rotor bearing systems in which rolling element bearings show periodic,
quasi-periodic and chaotic behavior by considering time response, Poincaré maps and power spectra.
Mevel and Guyader [18] observed experimentally the existence of two different routes to chaos in
ball bearing dynamic motion. Nataraj and Harsha [19] investigated the nonlinear dynamic behavior
of an unbalanced rotor-bearing system due to cage run-out. They indicated that the responses can
be placed in three categories: periodic with no sensitivityto initial conditions or small variations of
system parameters, quasi-periodic and chaotic with extreme sensitivities to both the initial conditions
and small variations in the system parameters. Jang et al. [20] studied the vibration due to ball bearing
waviness in a rotating system, taking account of the centrifugal force and gyroscopic moment of the
ball.

These studies demonstrated that the nonlinear dynamic response of a balanced rotor supported by
rolling element bearings can be very complex and both time consuming and costly to perform when
parametric design studies are needed. Therefore, due to thefact that the non linear behavior of rotor
systems can be complex, much work has been done on the there has been on the treatment of non-
linear differential equations. More particularly, non-linear methods have been developed to analyse
vibration problems [21, 22]. One of the classical approaches for obtaining the non-linear response of
systems is the numerical integration procedure. However, this approach for non-linear models with
many degrees of freedom or strong non-linearities can be rather expensive and requires considerable
resources both in terms of computation time and data storage. The well-known approximation tech-
nique requires an initial assumption about the form of the solution of the non-linear system, i.e. the
non-linear solution is approximated by finite Fourier series. In order to study the non-linear dynamics
problems of systems with strong non-linearities, the numerical tools most often used are Harmonic
Balance Methods and continuation schemes [8, 23]. Moreover, if this system can be considered as
a linear structure with few additional non-linear elements, it may be of great interest to keep only
the non-linear degrees of freedom, by introducing a condensation process to solve only the nonlinear
equations associated with the non-linear components of thesystem [8].

In the present analysis, we propose to demonstrate the efficiency of the Harmonic Balance Method
with a condensation process on the non-linear terms in orderto study the unbalance responses of
a non-linear flexible rotor system with a radial clearance and a Herztian contact between the races
and the rolling elements. Secondly, we investigate in particular the evolution of the restoring non-
linear forces on each ball bearing for different rotating speeds. Th effects of the radial clearances and
unbalance are investigated and both hardening-type nonlinearity and softening-type nonlinearity are
examined.

The paper is divided into three parts. Firstly, the basic concept of the Harmonic Balance Method,
the path following continuation based on Lagrangian extrapolation, and the condensation on the non-
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linear degrees-of-freedom are introduced. Secondly, the non-linear rotor system under study is de-
scribed and developed. The third part presents non-linear analysis of the rotor-bearing system. The
evolution of the non-linear responses within the speed range of interest is investigated for different
unbalance masses and radial clearances. The associated orbits of the rotor and the stator are calcu-
lated. Attention is finally focused on the contact at the bearing-elements: the non-linear contacts for
each ball of the bearing are evaluated and discussed for different rotating speeds of the rotor system
and for different radial clearances and unbalance masses.

2 General theory of the harmonic balance method and conden-
sation process

In this section, the harmonic balance method with a condensation process on the non-linear degrees
of freedom will be presented.

2.1 Non-linear method: the Harmonic Balance Method

For a flexible non-linear rotor, the equations of motion may be written as

MẌ+DẊ+KX = FL

(

X, Ẋ, ω, t
)

+ FNL

(

X, Ẋ, ω, t
)

= F

(

X, Ẋ, ω, t
)

(1)

whereFL andFNL are the linear and non-linear terms of the rotor system. In order to estimate the
response of the non-linear system as a truncated Fourier series (if this solution exists), the right-hand
side of the system is assumed to be a function that is periodicin time with periodT . Thus we assume
that the non-linear dynamical response of the rotor may be approximated by finite Fourier series with
ω = 2π

T
the fundamental frequency:

X (t) = B0 +
m
∑

k=1

(Bk cos (kωt) +Ak sin (kωt)) (2)

wherem is the order of the Fourier series.B0, Ak andBk define the unknown coefficients of the
finite Fourier series. It can be seen that the Fourier series considered in this study are developed for
harmonic and super-harmonic responses of the non-linear rotor system. The number of harmonic
coefficients is selected on the basis of the number of significant harmonics expected in the non-linear
dynamical response. Generally speaking, harmonic components become less significant whenm
increases. Moreover, we assume that the vector forceF

(

X, Ẋ, ω, t
)

can be solved in finite Fourier
series of orderm

F

(

X, Ẋ, ω, t
)

= C0 +
m
∑

k=1

(Ck cos (kωt) + Sk sin (kωt)) (3)

Substituting equations 2 and 3 in equation 1 yields a set of(2m+ 1) ∗ n equations (wheren is the
number of the degrees-of-freedom for the complete rotor bearing system).
Using the firstnth equations, the constant termsB0 can be determined. We obtain

KB0 = C0 (4)
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The2m ∗ n remaining equations defining thekth Fourier coefficientsAk andBk are given by
[

K− (kω)2M −kωD

kωD K− (kω)2M

] [

Ak

Bk

]

=

[

Sk

Ck

]

(5)

However, it may be difficult to determine the Fourier coefficientsC0, Sk andCk (with 1 ≤ k ≤ m)
fromB0,Ak andBk (with 1 ≤ k ≤ m) directly due to the complexity of the non-linearities. Cameron
and Griffin [23] suggested that the truncated Fourier expression ofF should be calculated by applying
an Alternate/Frequency Time domain method (AFT-method)

[B0A1B1 · · ·AmBm]
FFT−1

→ X (t) ⇒ F

(

X, Ẋ, ω, t
)

FFT
→ [C0S1C1 · · ·SmCm] (6)

Following this, the(2m+ 1) ∗ n non-linear equations of motion 4 and 5 can be solved by using a
non-linear system of equations solver such as the Broyden method [24].

2.2 The path following continuation

In the field of rotating machinery, the behaviour of systems is often calculated for different operational
speeds of interest while all the other parameters are kept constant. In this case, it may be useful to
apply predictor and corrector mechanisms in order to estimate the non-linear response of the rotor-
bearing system when rotation speed increases or decreases.
We assume that four previous non-linear responses of the rotor-bearing system are obtained. Based
on these points, the estimated point on the solution branch can be predicted at a given arc length
by applying the Lagrangian polynomial extrapolation method. Any point on the solution branch is
represented by(Xi, ωi) whereXi andωi define the Fourier coefficients and the parameter (i.e. the
rotating speed of the rotor-bearing system). Then, the arc length between two consecutive points
(Xi, ωi) and(Xi+1, ωi+1) can be given by

∆Si+1 =

√

(

(Xi+1 −Xi)
T (Xi+1 −Xi) + (ωi+1 − ωi)

2
)

i = 0, . . . , 2 (7)

with the arc length parameters given by∆S0 = 0, S1 = ∆S1, S2 = S1 +∆S2, S3 = S2 +∆S3 and
S4 = S3 +∆S.
The estimation of the following point at distance∆S can be predicted by using the Lagrangian ex-
trapolation scheme

[

X4

ω4

]

=
3
∑

i=1

3
∏

j=0,i 6=j

(

S3 − Sj

Si − Sj

)[

Xi

ωi

]

i = 0, . . . , 3 (8)

2.3 Condensation procedure

If a non-linear system consists of ann-degree of freedom system with non-linear forces associated
with q of these degrees of freedom, this system may be considered asa linear structure withp = n−q
degrees of freedom and having several additional non-linear elements. Therefore it may be of great
interest to keep only theq non-linear degrees of freedom [8, 25]. Equation 1 can be re-ordered by
considering the linear transformationX = PY = P [Yp

Y
q]T whereYp andYq contain thep
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linear degrees of freedom and theq non-linear degrees of freedom, respectively. Therefore the non-
linear equations 1 are transformed by

[

M̃pp M̃pq

M̃qp M̃qq

] [

Ÿ
p

Ÿ
q

]

+

[

D̃pp D̃pq

D̃qp D̃qq

] [

Ẏ
p

Ẏ
q

]

+

[

K̃pp K̃pq

K̃qp K̃qq

] [

Y
p

Y
q

]

=

[

F̃
p

F̃
q

]

(9)

Here, we present the condensation procedure used to obtain the Fourier coefficients associated with
the non-linear and linear elements of the complete system.

2.3.1 Determination of the constant termsBq
0 associated with the non-linear elements

By substituting equations 2 and 3 in equations 9, and by only equating coefficients for the constant
terms corresponding to the first linear equation of the system 4, we obtain

[

K̃pp K̃pq

K̃qp K̃qq

] [

B
p
0

B
q
0

]

=

[

C
p
0

C
q
0

]

(10)

whereBp
0 andBq

0 are the vectors with thep linear andq non-linear degrees of freedom of the system,
respectively.
By eliminatingBp

0 from the latter equation,Bq
0 is given by

B
q
0 =

(

K̃qq − K̃qpK̃
−1

pp K̃pq

)−1 (

C
q
0 − K̃qpK̃

−1

pp C
p
0

)

(11)

2.3.2 Determination of the sine Fourier coefficientsAq
k associated with the non-linear elements

Then, by equating coefficients for the cosine terms for thekth harmonic of equations 5 we obtain

kωD̃Ak +
(

K̃− (kω)2 M̃
)

Bk = Ck (12)

Similarly, by equating coefficients for the sine terms for thekth harmonic of equations 5 we obtain
(

K̃− (kω)2 M̃
)

Ak − kωD̃Bk = Sk (13)

Then, the determination of the Fourier coefficientsAk can be obtained by eliminating the Fourier

coefficientsBk from equation 12 and 13. By premultiplying equations 12 by
(

K̃− (kω)2 M̃
)−1

and
substituting in equations 13, we obtain
(

K̃− (kω)2 M̃+ kωD̃
(

K̃− (kω)2 M̃
)−1

kωD̃
)

Ak = Sk + kωD̃
(

K̃− (kω)2 M̃
)−1

Ck (14)

By introducing

Tk = K̃− (kω)2 M̃+ kωD̃
(

K̃− (kω)2 M̃
)−1

kωD̃ (15)

Wk = Sk + kωD̃
(

K̃− (kω)2 M̃
)−1

Ck (16)

equation 14 may be rewritten in partitioned form (as done previously for the constant terms)
[

Tk,pp Tk,pq

Tk,qp Tk,qq

] [

A
p
k

A
q
k

]

=

[

W
p
k

W
q
k

]

(17)

Finally, the Fourier coefficientsAq
k can be determined by eliminating the Fourier coefficientsA

p
k from

the previous equations. After calculation, we obtain

A
q
k =

(

Tk,qq −Tk,qpT
−1

k,ppTk,pq

)−1 (

W
q
k −Tk,qpT

−1

k,ppW
p
k

)

(18)
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2.3.3 Determination of the cosine Fourier coefficientsBq
k associated with the non-linear ele-

ments

The same procedure can now be applied to the determination ofthe Fourier coefficientsBq
k. By

eliminating the Fourier coefficientsAk from equation 12 and 13 by premultiplying equations 13 by
(

K̃− (kω)2 M̃
)−1

and substituting in equations 13, we obtain

(

K̃− (kω)2 M̃+ kωD̃
(

K̃− (kω)2 M̃
)−1

kωD̃
)

Bk = Ck − kωD̃
(

K̃− (kω)2 M̃
)−1

Sk (19)

Using the relation 15 and introducing

Uk = Ck − kωD̃
(

K̃− (kω)2 M̃
)−1

Sk (20)

equation 19 can be rewritten in partitioned form
[

Tk,pp Tk,pq

Tk,qp Tk,qq

] [

B
p
k

B
q
k

]

=

[

U
p
k

U
q
k

]

(21)

Finally, the Fourier coefficientsBq
k can be determined by eliminating the Fourier coefficientsB

p
k from

equations 21. We obtain

B
q
k =

(

Tk,qq −Tk,qpT
−1

k,ppTk,pq

)−1 (

U
q
k −Tk,qpT

−1

k,ppU
p
k

)

(22)

2.3.4 Determination of the Fourier coefficientsBp
0, A

p
k and B

p
k associated with the linear ele-

ments

Now, the(2m+ 1)∗p remaining unknown Fourier coefficientsBp
0,A

p
k andBp

k can be estimated from
equations 10, 17 and 21. After calculations, we obtain

B
p
0 = K̃

−1

pp

(

C
p
0 − K̃pqB

q
0

)

(23)

A
p
k = Tk,pp

−1 (Wp
k −Tk,pqA

q
k) (24)

B
p
k = Tk,pp

−1 (Up
k −Tk,pqB

q
k) (25)

Moreover, it can be seen that the same condensation process should be applied to the linear elements
if the number of linear components is low compared to the number of non-linear components. After
calculation, we obtain the following relations

B
p
0 =

(

K̃pp − K̃pqK̃
−1

qq K̃qp

)−1 (

C
p
0 − K̃pqK̃

−1

qq C
q
0

)

(26)

A
p
k =

(

Tk,pp −Tk,pqT
−1

k,qqTk,qp

)−1 (

W
p
k −Tk,pqT

−1

k,qqW
q
k

)

(27)

B
p
k =

(

Tk,pp −Tk,pqT
−1

k,qqTk,qp

)−1 (

U
p
k −Tk,pqT

−1

k,qqU
q
k

)

(28)

For the latter case, the(2m+ 1) ∗ q remaining unknowns Fourier coefficientsBq
0, A

q
k andBq

k associ-
ated with the non-linear components can be deduced from equations 10, 17 and 21.
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2.3.5 Complete process for the determination of the Fouriercoefficients and the non-linear
dynamical response of the system

In conclusion, the Fourier coefficientsBq
0, A

q
k andBq

k associated with the non-linear components of
the system are first determined by considering the(2m+ 1) ∗ q equations 11, 18 and 22. Secondly,
determination of the FourierBp

0, A
p
k andBp

k associated with the linear components of the system are
obtained by considering(2m+ 1) ∗ p relations 23, 24 and 25. Then, the calculations of the Fourier
coefficientsC0, Sk andCk (with 1 ≤ k ≤ m) from B0 = [Bp

0 B
q
0]
T , Ak = [Ap

k A
q
k]

T and
Bk = [Bp

k B
q
k]

T are obtained by using the alternate frequency/time approach (see equations 6).
Therefore the previous equations 11, 18 and 22 can be solved by a solver such as the Broyden method
[24].
To aid the reader’s comprehension, it can be seen that for a general non-linear system, certain linear
degrees-of-freedom of the vectorYp can be transferred and added to the vectorY

q of the non-linear
degree-of-freedom without loosing the general process presented previously. This operation can be
very interesting if keeping the physical linear degree-of-freedom is necessary for the study (i.e. the
non-linear behavior of the chosen physical linear degree-of-freedom can be obtained directly by using
relations 18 and 22, without calculating expressions 24 and25). However, in this case, the size of the
vectorYq has been increased, thereby increasing calculation time and storage requirements.

3 Application to the flexible rotor-bearing system

In this section, the harmonic balance method with the condensation procedure on the non-linear co-
ordinates will be applied to the non-linear rotor-bearing system shown in Figure 1.

3.1 Description of the flexible rotor system

Firstly, the complete modeling of the rotor-bearing systemis presented. The classical equation of
motion of the shaft and disc elements will be briefly described. Then, the description and global
expressions of the rolling element bearings will be given indetail by considering the kinematics of
the rolling elements, the internal clearance and the Hertz contact nonlinearity.

3.1.1 Shaft elements

The shaft is modeled by 13 Timoshenko beam elements with circular cross sections. Each Timo-
shenko beam finite element has four degrees of freedoms at each node:

(

M
b
T +M

b
R

)

Ẍ
b +

(

C
b + ωGb

)

Ẋ
b +K

b
X

b = 0 (29)

whereMb
T andMb

R are the translational and rotary mass matrices of the shaft element.Cb,Gb andKb

are the external damping, gyroscopic, and stiffness matrices respectively.ω is the rotational speed.
External damping is taken as classical for the sake of simplicity by considering Rayleigh’s expression
C

b = α
(

M
b
T +M

b
R

)

+ βKb whereα andβ are constant factors of proportionality and internal rotor
damping has been neglected.
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3.1.2 Rigid disc

The disk is modeled as a rigid disk and can be written as
(

M
d
T +M

d
R

)

Ẍ
d + ωGd

Ẋ
d = F

d (30)

whereMd
T , Md

R andGd are the translational mass, rotary mass and gyroscopic matrices respectively.
F

d defines the unbalance or any other excitation on the disc.

3.1.3 Flexible supports and coupling

The flexible supports (see Section A and B in Figure 1) and coupling (see Section C in Figure 1)
situated at the two locations of the two rolling-element bearings and the right end of the shaft are
modeled as two-node linear elastic spring elements. They are formulated from the following equations
of motion:

M
s
Ẍ

s +K
s
X

s = F
s (31)

whereMs, Ks andFs are the elementary mass matrix, stiffness matrix, and external load vector.

3.1.4 The rolling bearing

A schematic diagram of the rolling element bearing with its fixed frame of reference and the spin
direction of the rotor is shown in Figure 2. The rolling bearing is modeled as a two degrees of
freedom bearing with radial clearance and Hertz contact between races and rolling elements. In this
study, the outer race of the ball bearing is assumed to be fixedto the flexible support and the inner
race is assumed to be fixed to the shaft.
The precessional angular position of the center of the ball is given by (Harsha et al. [16] and Tiwari
et al. [14])

ωcage = ω
(

Ri

Ri +Ro

)

(32)

whereRi andRo are the inner and outer race radii.ω defines the rotational speed of the rotor. The
varying compliance frequency is

ωV C = ωcageNb = ωNb

(

Ri

Ri +Ro

)

(33)

whereNb defines the number of rolling elements for the rolling bearing.
By considering that the angular spacing of the rolling elements is constant, the angular space between
two balls is equal to∆θ = 2π

Nb

and each ball is located by its angular position changing with time as
the shaft rotates

θk =
2π

Nb
(k − 1) + ωcaget , k = 1, . . . , Nb (34)

Then the relative radial distance∆k between the inner and the outer races at thekth ball position can
be expressed by

∆k = (xo − xi) cos (θk) + (yi − yo) sin (θk) , k = 1, . . . , Nb (35)

wherexi, xo, yi andyo define the horizontal and vertical displacements of the inner and outer races at
thekth ball.
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Considering the position of each rolling element and the local Hertzian contact, the restoring force
can be estimated

Fk =

{

KH (∆k − δ)n , ∆k ≥ δ
0 , ∆k < δ

(36)

whereδ is the radial clearance between races and rolling element.KH defines the effective stiffness
which is the combined stiffness of a ball in relation to the inner race and outer race contacts

KH =
1

1

K
3/2
i

+
1

K
3/2
o

(37)

The material deformations are elastic and the dimensions ofthe contact area are small compared to
the curvature radii of the contacting bodies. As indicated in equation 36, restoring forceFk appears
if the kth ball (at the positionθk) is loaded (i.e. δk ≥ δ). If δk < δ, the kth ball is not loaded
and no restoring force is generated. It is noted that loadingis assumed to be in normal direction at
the contacting surfaces and that the deformations at the contact surface are small compared to the
dimensions of the contact area.
Finally, the global bearing reaction can be obtained by summing the individual restoring force from
each of the rolling-element bearings. Then the total restoring force componentsFX andFY in X and
Y directions can be expressed as

FX = −

Nb
∑

k=1

Fk cos (θk) (38)

FY = −

Nb
∑

k=1

Fk sin (θk) (39)

3.1.5 The complete flexible rotor system

After assembling, the general dynamics equations of the complete rotor system can be written in the
following

MẌ+ (C+ ωG) Ẋ+KX = FL + FNL (40)

whereẌ, Ẋ andX are the acceleration, velocity and displacement vectors.M is the mass matrix,
C is the external damping matrix associated with the non-rotating parts,G is the gyroscopic matrix
andK is the stiffness matrix. It should be noted that the internaldamping has been neglected in
this analysis. However, it may be observed that the non-linear method (i.e. the Harmonic Balance
Method) works even if the internal damping of the rotor system is taken into account.FL contains
the weight forces and the unbalance forces.FNL corresponds to the complete non-linear forces due
to the rolling-element bearings.ω defines the rotating frequency of the system.
All the parameters of the rolling-bearing element and the rotor system are given in Tables 1 and 2.
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Figure 1: Rotor system

Figure 2: Rolling element bearing and definition of the stator and rotor centers
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Notation Description Value
Rd Ball radius 5.953mm
Ro outer race radius 38.933mm
Nb number of balls 14
δ radial clearance 20µm

MB2 rolling element mass 1.5kg
KH load-deflection factor for contact point4.6× 107N/m3/2

Table 1: Geometric properties of the rolling-bearing element

Notation Description Value
Dshaft diameter of the shaft 0.04m
Lshaft length of the shaft 1.7m
L1 1st length section of the shaft 0.222m
L2 2nd length section of the shaft 1.136m
L3 3rd length section of the shaft 0.146m
ρ density 7800kg/m3

E Young’s modulus of elasticity 2.1× 1011N/m2

α first Rayleigh damping coefficient 1.36
β second Rayleigh damping coefficient 1.75× 10−5

Ddisc/outer outer diameter of disc 0.4m
Ddisc/inner inner diameter of disc 0.04m

hdisc thickness of disc 0.02m
du eccentricity of the mass unbalance 0.2m
MB1 1st rolling element mass 1.5kg
KB1 1st rolling element stiffness 7× 108N/m
MB2 2nd rolling element mass 1.5kg
KB2 load-deflection factor for point contact4.6× 107N/m3/2

MBS1 1st bearing support mass 6kg
KBS1 1st bearing support stiffness 3.8× 106N/m
MBS2 2nd bearing support mass 6kg
KBS2 2nd bearing support stiffness 3.8× 106N/m
MFC flexible coupling mass 0.73kg
KFC flexible coupling stiffness 5.75× 104N/m

Table 2: Parametric values of the flexible rotor system
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3.2 Numerical studies

As explained previously, the rolling-bearing system investigated here is composed of a horizontal
flexible shaft of 1700mm length with a circular cross sectionof 40mm. The shaft has one disk with
a diameter of 400mm and a thickness of 20mm attached 196mm from the right-end of the shaft. The
flexible coupling is added at the right-end of the shaft to connect the motor. The rotor shaft is sup-
ported by two bearing supports; the two supports are placed 342mm and 1478mm respectively from
the end of the shaft with the flexible coupling. The second bearing support illustrated in Figure 1 is
composed of a rolling bearing with radial clearance and Hertz contact between the races and rolling
elements, as previously explained in Section 3.1.4. All theparametric values for the rolling bearing
element and the complete rotor are given in Tables 1 and 2.
Here, the non-linear unbalance responses due to the non-linear and linear components will be inves-
tigated, after which the non-linear restoring forces and the associated contact evolution at the rolling
bearing element will be calculated.

3.2.1 Non-linear unbalance responses

The non-linear unbalance responses and contacts of the non-linear components (i.e. the rotor and
stator coordinates at the non-linear rolling bearing elements) are obtained by solving the non-linear
equations 11, 18 and 22, the non-linear unbalance responsesof the linear components being obtained
by using the relations 23, 24 and 25.
The number of harmonics chosen for the approximated solution is selected on the basis of the number
of significant harmonics expected in the non-linear dynamical response. In this study, the number of
significant harmonic components varies with the rotating speed of the rotor due to the relative contri-
bution of the unbalance forces, gravity and restoring contact forces on each ball bearing. However,
the number of harmonic components retained in the solution for the following numerical analysis is
equal to twelve due to the fact that the harmonic components become less significant for upper orders.
The complete vertical and horizontal unbalance responses at the non-linear rotor-bearing element and
the contribution of the first twelve orders for the non-linear components are shown in Figures 3 (for
a radial clearance ofδ = 10µm and an unbalance mass ofmu = 2g). The non-linear unbalance
responses of the linear components of the rotor system at theleft end of the shaft are given in Figure
4. These non-linear amplitudes are obtained by consideringthe previous relations 23, 24 and 25.
Firstly, it is shown that the complete non-linear dynamic responses (noted ”‘CP”’ in Figures) at the
non-linear and linear rotor-bearing elements are very complex, with significant contributions not only
of the first and second orders (i.e. the blue and red lines) butalso the sixth orders (i.e. the grey lines)
when the rotating speed is in the range [0-500] rpm. However,it can be seen that in some cases the
first and second order approximations of the truncated Fourier series should be enough to obtain a
good approximation of the non-linear dynamics of the rolling-bearing rotor system (see, for example,
the speed rangeω = [1000; 4000]rpm where the amplitudes of the rotor are maximal).
Moreover, it is clearly shown that the contribution of thenth upper orders can be significant at low
amplitudes and when the rotor is passing through the1

n
critical speeds. To facilitate understanding, the

forward and backward critical speeds for the first and secondmodes are situated around1740rpm and
2050rpm, and2900rpm and3520rpm, respectively. For example, the7×, 6×, 5×, 4×, 3× and2×
harmonic components are predominant at260rpm, 300rpm, 360rpm, 450rpm, 610rpm and880rpm
(290rpm, 340rpm, 400rpm, 500rpm, 670rpm and1020rpm, respectively) due to the fact that the
rotation speed passes through the subharmonic components of the first backward critical speed (and
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the first forward critical speed, respectively). The same phenomenon can be observed for the sec-
ond backward and forward critical speeds: when the rotor passes through the7×, 6×, 5×, 4×, 3×
and 2× harmonic components of the backward or forward critical speeds of the second mode (at
430rpm, 500rpm, 600rpm, 750rpm, 970rpm and1480rpm for the backward mode, respectively; at
470rpm, 540rpm, 660rpm, 820rpm, 1100rpm and1720rpm for the forward mode, respectively),
the amplitudes of thenth associated upper orders increase.

The non-linear responses of the rotor at the non-linear rotor-bearing element and at the left end of
the shaft are illustrated in Figures 5 for a radial clearanceof δ = 10µm and an unbalance mass of
mu = 4g. It can be seen that the non-linear responses of the rotor system are complex with jump phe-
nomenon for rotor speeds betweenω = 2100rpm andω = 2300rpm. This jump is not only observed
for the first order, but also for the second, third, fourth andfifth orders, as illustrated in Figures 5. This
phenomenon indicates the ”‘hardening effect”’ at the first critical speed due to the contribution of the
non-linear terms of the rolling bearing. Therefore, for an excitation level about twice as high as that
of the initial case, the peak of the first forward critical speed appears for a rotating speed higher than
about 7% with respect to the initial case. The hardening-type nonlinearity on the maximum amplitude
of the harmonic components can also be observed. It is then possible to see that two stable solutions
coexist when the rotation speed is around[2140 : 2210]rpm.
As previously seen for the unbalance casemu = 2g (Figures 3 and 4), the global non-linear responses
are very complex with the significant presence of the first, second and sixth orders (see the horizon-
tal amplitudes at the left end of the shaft). Even if the non-linear behavior between the two cases
(mu = 2g andmu = 4g) are different (with the appearance of jump phenomenon for example), the
global contributions of each order for the two cases are verysimilar: the maximum amplitude is ob-
served when the rotation speed exceeds the first critical speed (ω = 2000rpm), the most important
contributions are given by the first and second orders when the speed reaches about [1000-4000]rpm,
the sixth order makes a significant contribution at low speed(around [0-500]rpm), and thenth orders
appear when the rotor speed reaches around1

n
of critical speeds. Finally, it can be seen that the non-

linear responses at the left end of the shaft (see the line ”‘CP”’ in Figures 4 and 5) are governed by
the amplitudes of the sixth order when the rotation speed is between [0-1300]rpm: the contribution
of the sixth order is most significant when the rotation speedis between [0-500]rpm and one of the
highest amplitudes if the rotor speed reaches around [500-1300]rpm.

The orbits at the disc position, left end and middle of the shaft are shown in Figures 6 for various
rotation speeds between [300-1500]rpm when the componentsof thenth orders have significant con-
tributions. Thus it is clear that the non-linear responses can be very complex with ”‘multiple inside
or outside loops”’.
Figures 7 show the complete non-linear amplitudes for the rotor shaft and the two stators of the rolling
bearing elements at specific rotation speeds. For each case,the orbits associated with the non-linear
degrees of freedom (and thus calculated by using the condensation process and the relation equations
11, 18 and 22) are indicated by red lines. The orbits corresponding to the linear degrees of freedom
obtained by using the expressions 23, 24 and 25 are indicatedby the black lines. The blue line il-
lustrates the deflection of the rotor shaft. To facilitate comprehension, the top subfigures illustrate
the rotor amplitudes of the linear and non-linear degrees offreedom, and the stator amplitudes at the
rolling bearing element are presented by the lower subfigures (for the linear and non-linear degrees of
freedom). It should be noted that the orbits and the deflection of the shaft are presented without the
static deflection of the rotor in order to clearly show the complexity of the non-linear response that
generally occurs at low amplitudes.
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Figure 3: Non-linear unbalance response at the non-linear rotor-bearing element forδ = 10µm and
mu = 2g (a) horizontal (b) vertical
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Figure 4: Non-linear horizontal unbalance responses at thelinear rotor elements (left end of the shaft)
for δ = 10µm andmu = 2g
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Figure 5: Non-linear horizontal unbalance responses of therotor for δ = 10µm andmu = 4g (a) at
the non-linear rotor-bearing element (b) at the left end of the shaft
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Figures 7 (c) and (d) show the shaft’s deflection at the backward and forward first critical speeds (for
ω = 1737rpm andω = 2052rpm). The shaft’s deflections for the backward and forward second
critical speeds (forω = 2932rpm andω = 3526rpm) are given in Figures 7 (e) and (f), respectively.
It may be observed that the rotor’s orbits are very simple andsimilar to a simple loop when the ro-
tation speed is passing through the second critical speeds.For the first critical speeds, simple loops
are shown at the right-end of the shaft and at the disc position. However, inner loops appear for the
orbits at the left position, at the middle of the shaft and at the first bearing support. These results are
in perfect agreement with the previous evolutions of the Fourier components: the second order of the
Fourier series is sufficient to describe the non-linear behavior and the associated orbits of the non-
linear rotor system at the first critical speeds, and the firstorder gives an adequate approximation of
the rotor orbits at the second critical backward and forwardcritical speeds. Finally, Figures 7 (a) and
(b) illustrate that the orbits can be more complex (as previously seen in Figures 6): the contributions
of thenth order are shown for all the shaft orbits. All these orbits shown in Figures 6 and 7 clearly
indicate the complexity and variability of the non-linear responses of the rotor-bearing system.
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Figure 6: Evolution of complex orbits forδ = 10µm andmu = 2g (b,c) disc position (d,e,g,h) left
end (a,f) middle of the shaft

3.2.2 Non-linear contact forces and orbits at the rolling-bearing element

In this part of the paper, the contacts between races and balls and the associated restoring forces in
fixed coordinates (OXY in Figure 1) are investigated in orderto understand the relative contribution of
the unbalance and gravitational forces for the rotor, the shaft whirling motion, and the associated non-
linear behavior at the rolling-bearing element. Due to the condensation process previously presented
and by using the relations 11, 18 and 22, the non-linear behavior of the rotor system is only estimated
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Figure 7: Evolution of the orbits forδ = 10µm andmu = 2g
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at the non-linear degrees of freedom in this part of the study.
In order to carry out this analysis, the evolution of the contact on each ball is first evaluated and
discretized over one period of revolution of the rolling-bearing cageωcage = ω(Ri/(Ri +Ro)) where
Ri andRo are the outer and inner race radii of the rolling bearing element andω defines the rotation
speed of the rotor. Secondly, the global restoring force is calculated in the fixed coordinates not only
over one period of revolution of the rolling-bearing cage but also over fifty periods, in order to show
the envelops of the non-linear contact forces of the rollingbearing element.

Figures 8 and 9 show the evolution of the contact restoring forces for each ball of the bearing for
a radial clearance ofδ = 10µm, and an unbalance mass ofmu = 2g andmu = 4g, respectively. The
white lines define the limits between the contact and no-contact zones for each ball.
Figures 10 and 11 give the global restoring forces for both cases in the fixed coordinates. The blue
lines represent the evolution of the non-linear contact over one period of revolution of the rolling-
bearing cage. The green surface corresponds to the envelop of the non-linear contact over fifty periods
of revolution. The red line indicates that the rotor and stator are in contact with a non-linear force
greater than zero. Figures 9 and 11 give contact evolutions for all the speed ranges of interest (i.e.
ω = [0 − 4000]rpm and formu = 4g) whereas Figures 8 and 10 focus on the first critical speeds for
mu = 2g.

For the first unbalance massmu = 2g, the rotor moves at the bottom of the bearing for different
rotation speeds (ω = 1895rpm, ω = 1990rpm, ω = 2215rpm andω = 2244rpm), as indicated in
Figures 10(a,b,e,f) with the red lines that define the non-linear contact of the rolling-bearing element
in fixed coordinates. Regarding the associated non-linear contacts on each ball of the bearing (see
Figures 8(a,b,e,f)), five or six balls are in contact with theouter ring each time and the number of times
of contact and non-contact per ball is similar for each ball.Forω = 1895rpm andω = 2244rpm, the
evolution of contact for each ball is due to the revolution ofthe rolling-bearing cage: the area within
which the rolling elements are still in contact with the raceway, generally referred to as the loaded
zone, is situated at the bottom of the ball bearings (in fixed coordinates). The value of the non-linear
contact force is still high, as shown in Figure 10(a) and (f) (see the green surfaces that indicate the
contact over fifty periods of revolution of the rolling-bearing cage). When the rotor exceeds the first
forward critical speed (i.e.ω = 1990 − 2130rpm), the contact value at the bottom of the bearing
can be equal to zero (see the green surface in Figures 10(b,c,d,e)) and the red lines correspond to the
full circle. Moreover, the evolutions of the non-linear contacts on each ball become more complex,
as indicated in Figures 8(b,c,d,e). The contact and non-contact times per ball can differ considerably
from one ball to another and the associated restoring contact forces can increase or decrease during
one period of revolution of the rolling-bearing cage. Finally, Figures 10(c) and 8(c) illustrate the case
of a complete whirling contact on the rolling element (i.e. the radial clearance in the fixed coordinates
is consumed while the red line defines the full ”‘circle”’ in Figure 10(c)). It is noted that the value of
the non-linear restoring forces is still higher at the bottom of the rolling element. Due to cage rotation,
the maximum value of the non-linear contact changes from oneball to another, as indicated in Figure
8(c). Finally, it can be seen that the period of contact/no-contact between the rotor and each ball in
this case (i.e.ω = 2030rpm andmu = 2g, Figure 8(c)) decreases in comparison to the previous cases
(i.e. ω = 1895rpm or ω = 2244rpm for mu = 2g, Figures 8(a,f)).

Then, for the second unbalance massmu = 4g, the same non-linear evolutions are observed around
the first critical speed: each ball participates with almostthe same contact time over the period of
rotation of the rolling-bearing cage and the non-linear contact forces can increase or decrease during
one period. When the rotor whirls on the bottom of the bearing, the evolution of the contact forces
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corresponds to one period of revolution of the rolling-bearing cage. At the first critical speed (i.e.
ω = 2100− 2200rpm), the rotor whirls completely in the rolling-bearing element and the clearance
is consumed in the fixed coordinates during its rotation (i.e. the red lines define the ”‘full circle”’,
as shown in Figure 11). Moreover, due to the increase of the unbalance force, the contact on all the
rotor-bearing elements (i.e. the ”‘red circle”’) is present for a greater speed range and the values of the
non-linear contact forces at the top and bottom of the rolling element are more higher (see Figure 11
for ω = 2195rpm). In this case, the unbalance effect is predominant for the non-linear behavior of the
contact/no-contact evolutions. As seen in Figure 9 forω = 2204rpm three or four contacts occur per
period of revolution of the rolling-bearing cage for each ball. Each ball participates with almost the
same contact time over the period of rotation. As previouslyshown, the period of contact/no-contact
between the rotor and each ball is similar to the period of therotation of the rotorω.
However, if the rotation speed is around the first critical speed, the contact time and the restoring
contact force are very different and complex per period of revolution for each ball (see Figures 9 for
ω = 1919rpm ω = 2253rpm) even if the rotor and stator orbits are simple and close to a periodic
harmonic form (see results of the previous section).
Finally, the non-linear contact forces are given for the speed range of interestω = 0 − 4000]rpm in
Figures 11. It can be seen that the non-linear contact over one period of revolution of the cage (i.e.
the blue line) or the envelopes of the non-linear contact (i.e. the green surface) are totally different
for the different rotation speeds and can be complex in some cases. For example, the non-linear
contact can be dissymmetrical on the rotor-bearing element(for example, at the following rotation
speeds:ω = [1696; 1787; 2703; 2890]rpm). These dissymmetric non-linear restoring forces at the
rolling element are observable at the first and second backward critical speeds where the rotor orbits
are elliptical. Then, at low amplitudes, the value of the non-linear force can remain constant due to
the fact that the rotor moves on the bottom of the rolling element: see for example Figure 11 for
the following rotation speedsω = [296; 1595; 4000]rpm where the blue lines (i.e. evolution of the
non-linear contact forces over one period of revolution of the rolling-bearing cage) are similar to the
green surface (i.e. evolution of the non-linear contact forces over fifty periods of revolution of the
rolling-bearing cage). As explained previously, the contact and non-contact times per ball and the
value of the non-linear forces are similar from one ball to another, in this case due to the rotation of
the rolling cage.

Finally, it can be seen that the non-linear contact force at the rolling element can be different for a
given rotation speed if in run-up or run-down configurationsdue to the jump phenomenon. This fact
is illustrated in Figure 12 formu = 4g andδ = 10µm.

3.2.3 Influence of the mass unbalance and the radial clearance

In this section, the influence of the mass unbalancemu and the radial clearanceδ on the non-linear
responses, the Fourier components and the non-linear contact forces and orbits at the rolling-bearing
element are investigated.
Figures 13 and 14 show the non-linear amplitudes and the Fourier components relating to the un-
balance and the radial clearance, respectively. Figures 15illustrate the associated non-linear contact
forces at the rolling-bearing element.
Firstly, the unbalance mass is increased from1g to4g. In the simulations, a reduction of the unbalance
mass appears to be an effective way to reduce the vibration level of the non-linear response and the
subharmonic components if the rotation speed is higher than1000rpm, as illustrated in Figures 13.
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Figure 8: Evolution of the contact on the balls forδ = 10µm andmu = 2g
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Figure 9: Evolution of the contact on the balls forδ = 10µm andmu = 4g
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(a)ω = 1895rpm (b) ω = 1990rpm (c) ω = 2030rpm

(d) ω = 2066rpm (e)ω = 2115rpm (f) ω = 2244rpm

Figure 10: Evolution of the contact at the rolling-bearing for δ = 10µm andmu = 2g
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(a)ω = 296rpm (b) ω = 1595rpm (c) ω = 1696rpm (d) ω = 1797rpm

(e)ω = 1916rpm (f) ω = 1996rpm (g) ω = 2195rpm (h) ω = 2253rpm

(i) ω = 2703rpm (j) ω = 2890rpm (k) ω = 3004rpm (l) ω = 4000rpm

Figure 11: Evolution of the contact at the rolling-bearing for δ = 10µm andmu = 4g
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Figure 12: Contact comparison between a run-up and run-downfor mu = 4g andδ = 10µm (a-b)
run-up (c-d) run-down
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Initially a softening-type nonlinearity, due to the non-linear contribution of the rolling bearing, is ob-
served for low excitation levels (i.e.mu = [1; 2]g). This ”‘softening effect”’ is observed on the first
and second orders around the first forward critical speed. For an excitation level of about 0.5 times
the initial case (frommu = 2g to mu = 1g), the peak of the response appears for a frequency lower
than about 2% in comparison to the initial case (i.emu = 2g), even if the amplitude increases. For
the two highest excitations (i.e.mu = 3g andmu = 4g), a hardening-type nonlinearity is obtained
with jumps. Jumps can be observed not only for the first order and the complete non-linear response
(i.e. Composite Power), but also for the second harmonic component, as shown in Figure 13. For
these two highest excitations, increases of about 2% and 8% respectively of the frequency of the max-
imum amplitude are observed. Moreover, an increase of the rotation speed interval where two stable
solutions coexist is obtained due to the hardening-type nonlinearity of the rolling bearing. For low
rotational speeds (i.e.ω = [0 − 1000]rpm), it is noted that the non-linear responses and the most
important sub-harmonic component in the amplitudes (i.e. order 6) are not changed.

Secondly, Figures 14 give the non-linear amplitudes and theFourier components for the radial
clearance. In this example, the radial clearance is decreased from 30µm to 0µm. It can be seen that
that the radial clearance influences the critical speeds of the rotor. By increasing the radial clearance,
a small softening-type nonlinearity can be observed. For the largest radial clearance (30µm), the
peak of the response appears for a frequency lower by about 4%in comparison to the initial case (10
µm). However, the non-linear response and the subharmonic components appear to be very similar
for the different radial clearances under study. Finally, Figures 15 illustrate the non-linear contact
forces for the different unbalances and radial clearances for the rotation speed around2000rpm. It
should be noted that the unbalance mass influences the non-linear restoring forces at the rolling-
bearing element: increasing the mass unbalance allows the rotor to whirl in the cage with an increase
of the non-linear contact forces. A reduction or increase ofradial clearance has very little effect on
the non-linear contact forces.
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Figure 13: Influence of the unbalance mass on the rotor unbalance responses (black=composite power,
blue=order 1, red=order 2, magenta=order 3, green=order 4,cyan=order 5, grey=order 6,−mu = 1g,
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Figure 15: Evolution of the contact at the rolling-bearing
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4 Conclusion

This Harmonic Balance Method with a condensation procedurewas developed in order to analyze the
non-linear behavior of a rotor system with a rolling bearingelements. In this study, twelve harmonic
components were chosen in order to approximate the non-linear response. The non-linear elements
are both due to the radial clearance and the Herztian contactbetween races and rolling elements.
The results demonstrated that the non-linear unbalance response and the associated orbits can be very
complex due to the non-linear elements and the relative contribution of unbalance forces and radial
clearance: thenth Fourier components can make a significant contribution whenthe rotor passes
through the1

n
sub-critical resonances and critical speeds. In particular, the2× and3× and6× super-

harmonic frequency components and1

2
, 1

3
and 1

6
sub-critical resonances are significant. It appears

that the vibration amplitudes in the sub-critical and critical resonances depend on the radial clearance
and unbalance mass. If the unbalance mass and radial clearance remain constant during operation of
rotor, the1×, 2× and3× amplitude may change during run-up or rundown due to the occurrence of
the jump phenomenon.
The changes in the non-linear contacts at each rolling bearing element were examined in details, with
particular attention given to when the rotor exceeds critical speeds. It was shown that the contact
evolution for each ball-bearing can be very simple even if the non-linear behavior of the rotor and the
associated orbits are complex. Finally, it was shown that mass unbalance and radial clearance affect
the non-linear contact forces and the whirling motion of therotor at the rolling-bearing element.
In particular, it was shown that increasing small excitation levels leads to an initial softening-type
nonlinearity, which turns into hardening-type for higher excitations.

Nomenclature
X displacement vector
Ẋ velocity vector
Ẍ acceleration vector
M mass matrix of the rolling-bearing rotor system
K stiffness matrix of the rolling-bearing rotor system
G gyroscopic matrix of the rolling-bearing rotor system
C damping matrix of the rolling-bearing rotor system
FL vector of the weight and unbalance forces
FNL vector of the non-linear forces due to the rolling-element bearing
m order of the Fourier series
Ak Fourier coefficients of the sinus function for thekth order
Bk Fourier coefficients of the cosinus function for thekth order
Y

p p linear degrees of freedom of the rolling bearing rotor system
Y

q q non-linear degrees of freedom of the rolling bearing rotor system
B

q
k Fourier coefficients of the sinus function for thekth order of the non-linear dof

A
q
k Fourier coefficients of the cosinus function for thekth order of the non-linear dof

B
p
k Fourier coefficients of the sinus function for thekth order of the linear dof

A
p
k Fourier coefficients of the cosinus function for thekth order of the linear dof

27



References

[1] Chinta, M., and Palazzolo, A. B., 1998. “Stability and bifurcation of rotor motion in a magnetic
bearing”.Journal of Sound and Vibration, 214, p. 793–803.

[2] Virgin, L. N., Walsh, T. F., and Knight, J. D., 1995. “Nonlinear behavior of a magnetic bearing
system”.Journal of Sound and Vibration, 117, p. 582–588.

[3] Ji, J. C., and Leung, A. Y. T., 2003. “Non-linear oscillations of a rotor-magnetic bearing system
under superharmonic resonance conditions”.International Journal of Non-Linear Mechanics,
38, p. 829 – 835.

[4] Erich, F. E., 1992.Handbook of Rotordynamics. McGraw-Hill.

[5] Childs, D., 1993.Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. Wiley-
Interscience.

[6] Yamamoto, T., and Ishida, Y., 2001.Linear and Nonlinear Rotordynamics: a Modern Treatment
with Applications. Wiley and Sons.

[7] Ding, Q., and Leung, A. Y. T., 2003. “Non-stationary processes of rotor/bearing system in
bifurcations”.Journal of Sound and Vibration, 268, p. 33–48.

[8] Hahn, E. J., and Chen, P. Y., 1994. “Harmonic balance analysis of general squeeze film damped
multidegree-of-freedom rotor bearing systems”.Journal of Tribology, 116, pp. 499–507.

[9] Harris, T. A., 2001.Rolling Bearing Analysis, 4 ed. John Wiley and Sons.

[10] Ehrich, F. F., and O’Connor J. J., 1967. “stator whirl rotors in bearing clearance”.ASME Journal
of Engineering for Industry, pp. 381–390.

[11] Ehrich, F. F., 1988. “High order subharmonic response if high speed rotors in bearing clearance”.
ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design, 110, pp. 9–16.

[12] Sunnersjo, C. S., 1978. “Ball passage vibrations of rolling bearings”. Journal of Sound and
Vibration, 58, pp. 363—373.

[13] Choi, Y. S., and Noah, S. T., 1987. “Nonlinear steady state response of a rotor-support system”.
ASME Journal of Vibration, Accoustics, Stress and Reliability in Design, 109(255-261).

[14] Tiwari, M., Gupta, K., and Prakash, O., 2000. “Effect ofa ball bearing on the dynamics of a
balanced horizontal rotor”.Journal of Sound and Vibration, 238(5), pp. 723–756.

[15] Tiwari, M., and Gupta, K., 2000. “Dynamics response of an unbalanced rotor supported on ball
bearings”.Journal of Sound and Vibration, 238(5), pp. 757–779.

[16] Harsha, S. P., Sandeep, K., and Prakash, R., 2004. “Non-linear dynamic behaviors of rolling
element bearings due to surface waviness”.Journal of Sound and Vibration, 272, pp. 557–580.

28



[17] Harsha, S. P., 2006. “Nonlinear dynamic response of a balanced rotor supported by rolling
element bearings due to radial internal clearance effect ”.Mechanism and Machine Theory,
41(6), pp. 688-706.

[18] Mevel, B., Guyader, J. L., 2008. “Experiments on routesto chaos in ball bearings”.Journal of
Sound and Vibration, 318(549–564).

[19] Nataraj, C., and Harsha.,S. P., 2008. “The effect of bearing cage run-out on the nonlinear
dynamics of a rotation shaft”.Communications in Nonlinear Science and Numerical Simulation
, 13, pp. 822—838.

[20] Jang, G., and Jeong, S. W., 2004. “Vibration analysis ofa rotation system due to the effect of
ball bearing waviness”.Journal of Sound and Vibration, 269, pp. 709–726.

[21] Nayfeh, A. H., and Mook, D. T., 1995.Nonlinear oscillations. John Wiley & Sons.

[22] Sinou, J.-J., and Lees, A., 2007. “A non-linear study ofa cracked rotor”.Journal of European
Mechanics - A/Solids, 26(1), pp. 152–170.

[23] Cameron, T. M., and Griffin, J. H., 1989. “An alternatingfrequency time domain method for
calculating the steady state response of nonlinear dynamicsystems”.ASME Journal of Applied
Mechanics, 56, pp. 149–154.

[24] Broyden, C. G., 1965. “A class of methods for solving nonlinear simultaneous equations”.
Mathematics of Computations, 19, pp. 577–593.

[25] Sinou, J.-J., 2008. “Detection of cracks in rotor basedon the 2X and 3X super-harmonic fre-
quency components and the crack–unbalance interactions”.Communications in Nonlinear Sci-
ence and Numerical Simulation, 13, pp. 2024—2040.

29


