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Abstract

This study aims at clarifying the phenomenological rootamficoustical disturbance known as
“clutch squeal noise”. A nonlinear two-degrees-of-freedunodel is introduced in order to illustrate
some basic phenomena leading to self-generated vibratidmes damping of the system as well as
both circulatory and gyroscopic actions are included ireottd highlight their respective influence
and the destabilization paradox. Results are obtained @sttbility range of the equilibrium, the
nature of the Hopf bifurcation, the limit cycle branches aneir stability. A dynamic extension of
the destabilization paradox is proposed and some nongieti@haviours are identified too.
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1 Introduction

In cars with manual transmissions, different unforced aflons can be observed during the sliding phase
of clutch engagement. Low frequencies phenomena such dsrjedn often be attributed to misalign-
ment in the transmission chain or to tribological properté the friction materials, such as a decreasing
friction coefficient with regard to the sliding speed. Howgwoise due to high frequencies phenomena
(up to few kHz) can be experienced too and is referred ascislstjueal noise”. This audible disturbance
can arise even when the friction coefficient is almost coristad the transmission chain shows no im-
portant fault. The observed amplitude of the phenomenawalexcluding the assumption of a stick-slip
cycle too. The present study aims at investigating an iflgtabrigin of these vibrations related to the
non-conservative action of the friction forces.

The non-conservative aspect of the friction forces is kntwe a potential cause for the rise of such self-
generated vibrations in dynamical systems through theabgigiation of their stationary states. This has
motivated numerous researchers to focus on such mechafosiysars, see [1]. Some other industrial
applications in need of such studies can be cited withoutgoekhaustive: brakes, machining, civil
engineering and aeronautic design.

In general, a stability analysis only requires the knowkedyd the linearized equations of motion in
the vicinity of the equilibriums, see [2]. Therefore, pherenological roots of the spontaneous rise
of motion can be highlighted through rather simple consitiens. However, the price to pay for this
simplicity is the complete ignorance of the nature and of property of the steady state which then
takes place. This lack of knowledge can lead to misinteatiat of experimental observations as well
as bad or excessively stringent design recommendations.

The present paper aims at demonstrating the important faleeaonlinearities and the damping struc-
ture in dynamical systems subject to flutter destabilizatido this purpose, a paradigmatic example



model of non-conservative coupling between the degreeseetibm of a clutch is proposed in the first
part. This nonlinear model shows two degrees of freedom ledupy both circulatory and gyroscopic
actions and takes into account the structural damping afyeem.

The second part serves as a reminder about fundamentaisresuthe stability of the stationary states.
Considerations for the damping structure of the systemteadunter-intuitive results and the so-called
“destabilization paradox”. This phenomenon was first reggbby Ziegler in [3]: he demonstrated the
significance of dynamic terms and the destabilizing effdciveak damping for a double pendulum
subjected to tangential load. Further developments wespgsed by Bolotin [4] for non-conservative
stability problems. Then, some researchers (Hermann g]aleipholz [5] and Kounadis [22]) stud-
ied the destabilizing effect of viscous damping for mecbahsystems subjected to non-conservative
forces. Moreover, Thomsen [20] examined the non-linearadyios of a double pendulum with both
linear damping and non-conservative follower loading. lHel®d the occurrence of chaotic motion
and changes in amplitude due to a destabilizing effect di boear and non-linear forces. The influ-
ence of the velocity-dependent forces on the stability of-oonservative systems as well as the effects
of non-linearities were also studied by O’Reilly et al. [fldaKirillov and Seyranian [8]. In spite of
these intensive investigations, this topic still motigatesearches aiming at understanding the complex
destabilization mechanisms in presence of damping, sesx&mple [9-13].

A static influence of the nonlinearities is also evocatechandetermination of the equilibriums and the
nature of the Hopf bifurcation points by the analysis of thmstfiLyapounov coefficient. The important
role of the structural damping is clearly illustrated andaatioular relationship to the gyroscopic action
is highlighted.

The third part introduces a nonlinear method for deterngrilre limit cycles of autonomous mechanical
systems which is appropriate to perform parametric studies application of the Floquet theory is
also described in order to determine the stability naturéhefidentified periodic solutions. Then, this
approach is applied on the clutch model to investigatent# icycles. The complex dynamic behaviour
of nonlinear structures is clearly illustrated on this exden Neimark-Sacker bifurcations and a possible
route to chaos according to the Ruelle-Takens scenariagiédhted with the help of Poincaré sections.
Such a turbulent behaviour was already mentioned in [20jnstance.

Finally, conclusions are drawn on the sensitivity of sadfigrated vibrations in mechanical structures
to the physical parameters. A particular attention is paithe role of the structural damping and the
gyroscopic actions both on the stability of the equilibraiand the post-bifurcation dynamic behaviour.

2 2-DOF nonlinear model of a squealing clutch

The proposed model of clutch is depicted on Fig. 1. This systas first proposed by Wickramarachi
in [14] and extensively investigated in the proposed sifigaliform depicted on Fig. 1 by the authors
in [13]. It consists of two disc$A) and(B) coaxially rotating about th&z axis and rubbing on each
other. Oxyz is the principal inertia frame ofA). (A) is the friction disc and B) represents the engine
flywheel and the clutch.

Two degrees of freedom (DOF) are considered. They correspmthe swinging motions ofA). The
swinging angles abou?x andQy are noted and¢ respectively. Restoring forces about these motions
are represented by linear stiffness and damping eleméhisdy) and (4, d,) aboutOx and Oy re-
spectively. Friction is modeled in a simplified manner: fdeformable elements are considered, equally
distributed on radius? on (A), and friction occurs at their end. They represent the fléigbof the
contact area and they are assumed to show equal lineaessfamd dampingk., d.) aboutOx. A con-
stant Coulomb law is considered with the constant frictioefficient.. The rotation speed of both the
discs is assumed to be constant. The parallelism of the (isesO and¢ = 0) illustrated on Fig. 1 is



Figure 1: Model of rubbing discs subject to a flutter destasiion

supposed to correspond to equilibrium. The distance bettesOxy plane and the end of the contact
elements is noted. Finally, the amplitude of the vibrations is assumed to balkenough so that the
friction force at the end of each contact element never Yesis

The following nonlinear nondimensional equation of moté@m be obtained for this system,

sJe (5 sl 2]+ [ &[]0 ]-5]
A C o+ + = . 1
[A [—p 286 | [ 6] |~ o] lo] "7 ¢ |7 |0 M
The upper dot denotes time differentiation with regard t@adimensional time scate. £ > 0 is the
reference damping factor > 1 and/ > 0 are the ratios of the natural frequencies and damping factor
respectively. o and p are the nondimensional circulatory and gyroscopic factespectively. Finally,

o > 0 is related to the local stiffening property of the systemhia tase of nonvanishing motions.
These nondimensional parameters are related to the phpsiameters with the expression reported in



Eqg. 2

1 N,
wo = \/j <2R2kc+k9 - 7°h(2+u2) + (Jm — J)w2>

= 2—;& <2R2dc+d9+u%mwh72_m>

p= wi()%(Q,uthcsign (w—Q) + (Jo —2J) w) ,
o= —wigéuR <% (1 + ;—Z) — 2h/~€c> sign (ww — Q) | ()
o= wio % <2R2kc+k¢ _ %h(zﬂﬂ) + (o — J)w2>

B = %QOL& <2R2dc +dy J”‘%R\whiim)

wheret is the natural time scale is the swinging inertia abou?x andOy, J is the rotational inertia
aboutOz, w is the rotation speed @¢f4), €2 is the rotation speed ¢f3) andV; is the load applied to the
system.

A particular symmetry of Egq. 1 can be observed sinc@ i o ]T is a solution for a given value of

(¢.p) = (0, po) then[ § —¢ ]T is a solution for(p, p) = (—pg, —po). Therefore, the investigation
of negative values ofp can be omitted in any parametric investigation. One can atde that the

amplitude ofo has no qualitative effect on the solutions sinc{a #t ¢ ]T is a solution fofo = o then
Vaolo [ 6 ¢ ] is asolution for any other value of

[ 0 0 ]T is the unique equilibrium of Eq. 1. Finally, the linearizatiof Eq. 1 in the vicinity of the
equilibrium simply gives

0 2 p 0 1 0 0
L5 e 6L 2] 15)-10 ) ®
The values used for numerical illustrations in this paperas 1.5 ando = 10%. As highlighted in [13]
the value ofx has no qualitative effect on the stability analysis, predd = 1. Therefore, the choice
«a = 1.5 is representative of any assumed difference between tlie ftequencies of the swinging
modes for the stability analysis. Moreover, for a fixed vadiier, the value ot has no qualitative effect
neither, as mentioned later. The choicesof= 10* allows obtaining reasonable amplitudes for the limit

cycles. The influence of the values of bettando together on the nonlinear behaviour is not analyzed
in this paper. Parametric investigations are performecherother parameters.

3 Investigation of equilibriums

The equilibriums are steady static states of a system. Tigistigation aims at understanding the rea-
sons why a dynamic state arises preferentially to equilitri This section is divided into three parts.
Firstly, the eigenvalues approach of the stability analisintroduced in order to highlight how equilib-
rium can become a repulsive state. Secondly, a local ingighthe nonlinear properties of the system
in the vicinity of bifurcations is proposed in order to déberthe loss of stability and explain jump phe-
nomena, i.e. the sudden rise of a large motion when croskimgtability frontier. Finally, the stability
of the equilibrium of the proposed model is investigated anportant information is obtained on the
role of damping and gyroscopic actions.



3.1 Stability analysis
Consider the equation of motion of a dynamic system
X =f(X,p), (4)

whereX represents the instantaneous state of the system (itsioates in the phase space), the upper
dot denotes time derivation arfdis a function ofX parameterized by the elements@f Assume at
least one stationary solutioK. (po) exists forp = py, i.e. f (X, (po),po) = 0, andf is C* in its
vicinity. Then, according to the Hartman-Grobman theorta,linearization of Eq. 4 in the vicinity of
X, (po) preserves its non-marginal stability nature. Therefdre,determination of the stability nature
of equilibriums only requires the knowledge of the lineadzquation of motion in their vicinity in most
cases.

Nevertheless, the nonlinearities allow many equilibriuimsexist simultaneously and their evolution
when varyingp can be rather complex and possibly discontinuous. Thexg#drequilibrium branches
have to be determined by appropriate approaches as a fipspste to perform a stability analysis of
each branch separately.

Assume the linearized form of Eq. 4 expressed in Eq. 5,

X ~ Df (X. (po), o) X. (5)

The solutions of such a linear system form a vector space avhasis is constituted of elements of the
form expressed in Eq. 6 when the Jacobian is diagonalisaliiere X (pg) is the mode shape,the
time and\ (pg) a complex factor.A (pg) and X, (pp) are an eigenvalue and an associated eigenvector
of Df (Xe (po) , po).

X (t) = Xo (po) X0, (6)

Because of the form of the solutions, the stability natur&Xef(py) is expressed by the eigenvalues of
the JacobiaD f (X, (po) , po). Assume the Jacobian has no purely imaginary eigenvalygethglic
equilibrium). If all the eigenvalues show a strictly negatreal part then the equilibrium is asymptoti-
cally stable; if at least one eigenvalue shows a strictlyitpesreal part then the equilibrium is unstable.
The imaginary part indicates the oscillatory or non-oatidty nature of the corresponding mode.
In the case the Jacobian is not diagonalisable, the sotutiawe the more general form expressed in Eq.
7, whereP is a polynomial whose order is strictly lower than the muitity order of the associated
eigenvalue\.

X (t) = P (t, po) 0" 7

This situation can only lead to instability if the real paftab least one eigenvalue is strictly positive or if
the Jacobian has at least one purely imaginary eigenvalue.

The existence of purely imaginary eigenvalues lacks of stiess with regard to physical parameters.
However, the sign of the real part of the eigenvalues is agbbiiterion. Furthermore, because of the
continuity of the eigenvalues with regard to the elements 6{ X, (po) , po), the locus of purely imag-
inary eigenvalues in the parameters space form continuadaces, provided the equilibrium evolves
continuously withp. These surfaces separate regions of asymptotic stabidyirsstability, thus they
constitute stability frontiers.

As reported in many previous works the damping structuregmasnportant influence on the stability
frontiers. In [9], Kirillov considers 2-DOF purely circuiary and purely gyroscopic undamped systems.
He demonstrates for both these systems that the limit oféheagh of asymptotic stability as the ampli-
tude of a perturbing action vanishes can differ from the dons&dmarginal stability of the unperturbed
systems, this being referred as the destabilization paradl®a consequence, significant differences can
be found between experienced and theoretically predidtddliy frontiers. This effect emphasizes the
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strong influence of the structure of the system on the stalhibntiers independently from the amplitude
of the parameters.

3.2 Nature of the Hopf bifurcation

Assume the system described by Eq. 4 shows a Hopf bifurcédiop = py + Ap with regard to the
elemenip; of p. By this is meant thaft is assumed to be regular with regardaandp; at(X. (po) , Po),
Df (X, (po) o) shows one pair of purely imaginary eigenvalues; (pg) = +iwy with wy > 0, all
the other eigenvalues show a strictly negative real part and

dRe ()\172)

dp: (po) # 0. 8)

This situation corresponds to the crossing of the stabitaptier and the transition between an asymp-
totically stable and an unstable nature of the equilibriwtvithout loss of generality, one can assume
po = 0 andX. (p) = 0. For|p;| sufficiently small, letX,, (p) be associated ta; (p) and X{ (p) be
its adjoint eigenvector, i.eDf (X, (p),p)Xo (p) = A1 (p)Xo (p) andDf (X, (p),p)’ X (p) =
A1 (p) X§ (p), such that X, (p)*, X (p)) = 1 where(e, o) is the inner product[u;] , [vi]) = > @;v;.

2
According to the Shoshitaishvili theorem the topology of Bdn the vicinity ofpy can be judged from
its restriction to a local center manifold, expressed as

3
X(0)= ()Xo @) +5( Ko )+ T ()< +0 (II*). ©
itj—
which is locally topologically equivalent to the restrimti
X (t) = q(t) Xo (p) + 7 (t) Xo (p), with ¢ (t) = (X5 (p) , X (1)) . (10)
Eq. 4 can be changed into Eq. 11,
X =Df (X, (p),p) X +g(X,p), with g = O (|IX]?). (11)
Then, it follows from Eq. 10 that
i =M (p)q+(X5(®),g (¢Xo (P) +7Xo (P),P)) - (12)

Providedf is regular enough, a polynomial expansion can be proposedssg. 13,

3
i=M®)a+ 3 by 0)a'7 + 0 (lal). (13)
(=, !
with ot -
bij (p) = 2407 (X5 (p). g (¢Xo(P) + X0 (P),P)) (¢ =0). (14)

Then, the Poincaré normal form Eq. 16 is obtained by consigea pertinent change of variable in the
form of Eq. 15,

3
1 o
g=r+ D i ()’ (15)
i 9!
=A@+ (@) rr+0 (1), (16)
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21 (p) + M1 (p) b1 | |boz bay
7(p) = bi1boo + + —_+ = (17)
2|\ (p)f? M) 220 (p) - Mi(p) 2
Finally, a change of variable and time scale expressed il&allows writing Eq. 19 foip; | sufficiently
small,

1
_|ReG @) _Reu@NImG @) L (@)
T_‘Im()\l(p)) 2 Oy ) ‘ and d = (1 I ( 0 >| | )dt, (18)
ds  [(Re(\ (p)) )
ds_ <Im<£ o )s+szgn<Re<v<o>>>|s|2s+o(|s|4). (19)

According to the center manifold theory, the dynamical béha of Eq. 4 is directly related to the
behaviour of Eq. 20 in the vicinity of the Hopf bifurcation,

E— 7}{6()\1(13)) 1] s+ sign s|?s
12 = (i gy 1) oo )
l1 = Re (ibllbgo + wObgl) . (21)

l; defined in Eqg. 21 is the first Lyapunov coefficient. Assumez 0; it can be seen from Eq. 20 that a
limit cycle branch connects with the equilibrium branchta Hopf bifurcation point. This is why the
Hopf bifurcation is an appropriate candidate phenomena@xjpdain the rise of self-generated vibrations
in dynamical systems. The stable or unstable nature of ithi$ tycle, related to the supercritical or
subcritical nature of the bifurcation respectively, canuuiged from the sign of;. If [; < 0 (respectively

Iy > 0) then the bifurcation is supercritical (respectively sitial). In the case of a degenerated Hopf
bifurcation {; = 0) further developments can be proposed to determine thelyaptunov coefficients.
The interested reader is referred to [16] and [17].

The determination of the nature of a Hopf bifurcation is oftigallar importance when dealing with the
suppression of self-generated vibrations caused by sucbchanism. Indeed, a supercritical bifurca-
tion allows reducing the amplitude of the limit cycle as mashdesired in the vicinity of the stability
frontier. Therefore, an acceptable level can be reachdubwitstabilizing the equilibrium. Contrariwise,
a subcritical bifurcation leads to a jump phenomenon at takilgy frontier between the equilibrium
branch and the attracting steady state. Moreover, stabtations can remain even after the equilibrium
is stabilized.

Assume a polynomial expressiongin Eq. 11 in the form of Eq. 22,

1 1
g(X,p) = 3P (X,X,p) + zQ (X. X, X,p) + 0 (1X|'), (22)
with ( )
N P8Xp) e
P(U,V,p) = Z D, uivj (X = 0) (23)
2,51
and 55 ( )
g(X,p
W.p) = Z oY v, (X = 24
Q(U,V, W p) ”zk; axiéa:jéa:kuijk( 0) (24)

wherez; is thei-th component oX. Because of the relation between Eq. 4 and Eqg. 16 above meuditio
vectorsa;; (p) can be directly identified in Eq. 9 so that

S=M(p)s+ %F(p) ?¢+0 <|<|4)- (25)



Writing I', X, P (U, V), Q (U, V,W) andDf for I" (0), X, (0), P (U, V,0), Q(U,V,W,0) and
D f (0, 0) respectively, substituting Eq. 9 into Eq. 4 and identifythg vectorsa;; (p) in order to fit the
form of Eq. 25 forp = 0 one obtains the following criterion for the nature of the Hbiurcation,

L; =Re(I), (26)

r— <X;§, Q (Xo, X0, Xg) + P (X_O (2iwol — D)™ P (Xo, XO)) — 2P (X, Df'P (XO,X_O))> ,

(27)
wherel is the identity matrix. Of course, the criterion on the sign.g defined in Eq. 26 and the sign of
l; defined in Eq. 21 are equivalent, but the latter expressiarbeanore convenient when an expression
of g in the form of Eq. 22 is available.

3.3 Stability analysis of the squealing clutch

A complete parametric analysis of the modes and the stabiditnain of the equilibrium was proposed
by the authors in [13]. Eqg. 3 can be changed to fit the form of £y considering the state variable
X=[0 ¢ 0 ¢] .

Provided no degree of freedom is over-damped, the chaistitepolynomial of the Eq. 3 is strictly
positive on the real axis. Therefore, the eigenvalues ofsifgtem can not be real. Thus, the trivial
equilibrium can only destabilize by flutter. In order to diguish the effect of the damping amount and
its distribution over the two coupled degrees of freedong callsé; = £ (1 + a3) the total damping
amount. Then, fo€; # 0 the stability frontier is described by (see [13])

+ ? +
(o (5500 oo 22) o0
(28)

The frontiers fora. = 1.5 are depicted on Fig. 2 and 3 for various iso-distributed dagmamounts
and for various damping distributions respectively. Thendm of marginal stability of the associated
undamped system has also been reported. On this figureljitgtabfound in the central area and the
equilibrium experiences a Hopf bifurcation when the parimsecross the frontiers.

It can be shown that the illustrated behaviour is not qualily affected by the value neither of nor

& provideda # 1, & # 0 andé; sufficiently small. Forx = 1 the domain of marginal stability of the
undamped purely circulatory system collapses and thisaffeots the frontiers of the damped system.
However, this situation physically corresponds to the étyuaf the frequencies of two distinct modes
and is unlikely to occur in a real system including some gedons defects. Therefore Fig. 2 and 3
correctly illustrate the respective influence of the partarsein the general case.

An important observation concerns the distinct role of taenging amount and its distribution respec-
tively. On the one hand, the presence of damping adds radsssto stability by changing the domain of
marginal stability into a domain of asymptotic stability @ge size depends on the damping amount. On
the other hand, the damping structure rules the shape ofahéity frontiers.

This contrast can be emphasized in the manner of Kirillovd@onsidering a vanishing perturbation
of an undamped system. As an example, assume a constamtigtrotcthe damping matrix with a fixed
value of 5 andp = né&;, i.e. a perturbed undamped purely circulatory system. Thsé vanishes, Eq.
28 tends to

(1+ aﬂ)2 (1 + 772) o+ (a2 — 1) (1 — a252) ne —af (a2 — 1)2 =0. (29)

The limits of the stability frontiers as the perturbatiomighes are reported on Fig. 4. It is obvious from
this expression that the stability frontiers of the vamgity damped system do not necessarily tend to
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Figure 4: Limit of the stability frontiers for a vanishinglyamped purely circulatory system versus the
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the domain of marginal stability of the undamped systemtHeumore, looking for maxima dfp| for
givena and/3, one obtains

a?—1 . 1—a? 1—ap
|<Pmax| = <T) 1W|th Pmax’] = < 9 ) <1 —i—aﬂ) . (30)

This result indicates that the limit of the stability fraetiwhen the perturbation vanishes is at most
the limit of marginal stability of the unperturbed systenodtescence point), in accordance with [9].
This also reveals that the smaller the coefficients of thepdiagnmatrix are, the more important is to
know the structure of this matrix in order to correctly pradihe stability nature of the equilibrium,
which constitutes the destabilization paradox. This makesunderstanding of poorly damped systems
a difficult matter.

As illustrated on Fig. 4, the locus of the extremd©f as¢; vanishes correspond to two distinct curves
described by the second part of Eq. 30. Indeed, a maximulp|@Xxists for both positive and negative
values. These curves cross each othep at 0 andafS = 1. At this point both limits reach their
maximum and therefore the overall stability region is thelesgi.

A maximum width of the stability domain is also observed eltsthe purely circulatory system with an
iso-distribution of damping for a non-vanishing dampingreg. 3. As a matter of fact, the width of

the stability domain can be calculated from Eq. 28 andd® a@ven function ofp, which implicates that
an extremum ofAp always exists ab = 0. The authors have reported the optimal damping distributio
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and the gyroscopic factor far = 1.5, & = 5% (a) and$, = 20% (b) (dark: subcritical bifurcation,
light: supercritical bifurcation)

which maximizeAy for p = 0in [13],

\/16(a4 —a2+ 1) +4(a2+1) (@2 -1+ (a2 - 1) —4(a® - 1) &
(Oéﬁ)opt = 452 + (Oé2 - 1)2

(31

which actually tends tQaﬁ)Opt = 1 as¢&; vanishes. Therefore, the iso-distribution of damping can b
considered as a “practical” criterion of optimization oéthktability domain for quasi-purely circulatory
systems. It can be observed on Fig. 2 that the local extrefunewvaf the circulatory action on the frontier
evolve very slowly in the vicinity of purely circulatory stgns as the damping amount increases. This
emphasizes the important role of the damping structurgivelg to the damping amount.

In order to complete this overview of the stability domaime ihature of the Hopf bifurcation has been
investigated from Eq. 1 and reported on Fig. 5 for two différamounts of damping. It can be observed
on this figure that the damping distribution strongly affettie nature of the bifurcation. Contrariwise,
the amount of damping has a weak influence. Once again, a dommiole of the damping structure is
suggested by this result.

4 Non-linear analysis and limit cycles

Although the stability analysis is a powerful tool in ordertighlight phenomenological roots of self-
generated vibrations, the prediction of their propertiefirdtely requires taking into account the non-
linearities of the system. To this purpose, a method forrd@téng the limit cycles of autonomous

nonlinear systems is introduced in the first part. Then, kilgiaanalysis of these periodic solutions is
proposed. This last step aims at predicting if the systerikétylto converge to one of these solutions
or if a more complex behaviour is to be expected. Finally, limi cycles of the example model are
investigated.

4.1 Determination of thelimit cycles

A method is proposed in this section to identify the limit leyarising from the Hopf bifurcation. This
method is based on an extension of the harmonic balance thethicludes dynamic constraints in
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order to avoid convergence of the estimated solution to ¢oudibrium. It shares some similarities with
the Constrained Harmonic Balance Method (CHBM) method @sed by Coudeyras et al. [15].
Assume a system described by

Y —h (Y,Y,p) , (32)

whereh is a real function globally continuous with regard to botle tteal vectorsY andY, and a
continuous and piecewigg! periodic solution exists. This solution can be expresseaifsurier series,

Y (1) = Ao (p) + ) _ (An (p) cos (nw (p) #) + Bx (p) sin (nw (p) 1)), (33)

n>1

where A, (p) andB,, (p) are constant vectors and(p) is the angular frequency of the solution. In
the previous expression; (p) is unknown since it is likely to differ from the angular frespcy of the
unstable mode obtained by the eigenvalues analysis ofrtearlzed system.

The method consists in changing the time integration prokilgo an optimization problem. Consider
the following functional,

to+2m/w

U ([An], [Bn],w) = / HY (t)—h (Y (1), Y (1) ,p) H2 dt. (34)

to

A solution of Eqg. 32 is a global minimum oF. In order to numerically identify it, the Fourier series
is truncated at a high enough order. By doing so, the funatimchanged into a function of a finite
number of variables. Finally, convergence to some irrgievacal minima (as equilibrium that is an
exact solution of the nonlinear expression of Eq. 32) canvoédad if the following constraints are
imposed:

to+2m/w

/ (i'{(t)—h(Y(t),Y(t),p))dtzo, (35)
to
to+2m /w(p) 42w

/ ‘Yi(t)‘dt— /

R (0 4 (Y ()3 (1).p) ) Y ()

) VY 02+ ¥ (1)
where the subscriptindicates the-th component of a vector. Theses proposed constraintesmond
to a null mean error, to a mean respect of the fundamentatipten of dynamics on each DOF and
to a motion being neither dilating nor contracting in the gdhalane of each DOF respectively. Other
constraints can be used to improve the convergence, pbthdy correspond to some properties fulfilled
by both the solution and its approximations.
By solving this problem, not only one finds an approximaterfaf the solution but also the angular
frequency is identified. Moreover, this approach allowsaobhg estimations faster than a direct time
integration of Eq. 32, unstable limit cycles can be iderdifies well, and no post-processing is required.
The method is particularly efficient with parametric studad continuous limit cycle branches when one
iteratively uses a result as an initial guess for a close refwfgparameters.

h; (Y (t),Y(t),p)‘dt — 0,V (36)

dr=0,Vi, (37)
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4.2 Stability analysisof the limit cycles

Assume a periodic solutioX of Eq. 4 has been identified having the angular frequemney 27 /7" with
T its period. The analysis of its stability aims at determgnihthis solution is attractive or not, i.e. if
the system is likely to converge or not to this limit cycle. this purpose, a vanishing perturbatiomf
X is considered an& = X + ¢ denotes the perturbed solution. Then, one considers thwsvial local
approximation of Eqg. 4 in the vicinity oK

e~Df(X,p)e, (38)

which is a periodic non-autonomous but linear differengglation. Therefore, its solutions form a
vector space. Consider a basis of solut{en}. Because of the periodicity of Eq. 38, one can express
the elements of this base as linear combinations of the skamests translated of one period in time,

€; (t + T) = Z Cij€; (t),W,Vt orkE (t + T) = ME (t) ,Vtwith E = [el] . (39)

j>1
The constant matrid is the monodromy matrix. The basfe;} can be chosen so that
E () =1, (40)
wherel is the identity matrix and, is an arbitrary origin of time. It follows that
M=E(y+T). (41)

The eigenelements &1 characterize the modes of perturbationXf An eigenvectofV; associated to
the eigenvalug; is such thatM'V,; = 1, V;, i.e. V,; (t+T) = p; V; (t). Therefore, according to the

Floquet theory
jas(nd) , los(lmil),

Vi(t)=0;(t)ei— 1 tem T, (42)
where®; () is aT-periodic function. It follows that the studied limit cycle unstable if at least one
eigenvalue ofM has a modulus strictly bigger than Because Eq.4 is autonomous, any translation in
time of X produces a new solution. The difference between this neutisalandX corresponds to a
periodic perturbation. Thereforé,is always an eigenvalue &fl.

Assume one of the other eigenvalue crosses the unit cirdéheremaining ones remain inside. Then, it
can be shown from the center manifold theory that the crggsiroughl corresponds to the junction of a
stable limit cycle with an unstable limit cycle which botlsdppear. A crossing throughl corresponds

to the destabilization of the limit cycle and the appearaoicperiod-doubling bifurcation. Finally, a
crossing by a pair of non-real conjugate eigenvalue coomrdgp to the junction of a stable limit cycle
with a stable biperiodic trajectory (Neimark-Sacker bifation).

It can be observed that this stability analysis of the linyitle is similar to the stability analysis of
equilibriums introduced in the previous section and caméageconsidered as its generalization. Indeed,
equilibrium can be considered as a periodic solution with\aiue for7T and the same approach can be
used to define the stability. This consideration leads to

M = P f(Xe(Po),po)T (43)

A translation in time of equilibrium induces no difference there is no reason fdvl to admitl as an
eigenvalue, except on the stability frontier. Accordinghe center manifold theory, the period of the
destabilizing mode and the period of the limit cycle arisirgn the Hopf bifurcation converge to each
other at the bifurcation point. Therefore,7ifis chosen so that it is equal to this common period at the
bifurcation point, the exponential of the eigenvaluesDdf (X. (po) , po) time 7' can be expected to
continuously connect with the eigenvalues of the monodramayrix of the limit cycle at the bifurcation
point.
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estimated limit cycle) of Eq. 1 witlx = 1.5, a8 = 1, & = 20%, ¢ = 1, p = 0 ando = 10%, (a)
trajectory (b) velocity phase

4.3 Parametric investigation of thelimit cycles of the squealing clutch

The proposed method is applied at ordeftruncation order of the Fourier series) that allows a high
enough precision over the domain of investigation, and ¢selts are compared to direct time integra-
tion on Fig. 6 for§, = 20%, a8 = 1, p = 0 andy = 1. Itis observed on the whole results that
the qualitative results are rather independent from thepilagnamount.£; = 20% is a high value of
damping. However, high values are observed to allow obtgisimoother evolutions of the limit cy-
cles. Therefore, this example is more appropriate for pri@lary observations. More realistic damping
amounts are investigated later.

Both the trajectory of the identified limit cycle in the staface and the estimated angular frequency are
in very good accordance with the result from time integratitt can be noted in this example that the
angular frequency of the limit cycle is = 3.85 rad.s * (see Fig. 5(b)) which greatly differs from the
angular frequency of the unstable linear mage= 1.31 rad.s * obtained by considering the stability
analysis of the linearized system.

Following Eq. 38, a local approximation of Eq. 1 in the vitine = [ &1 & ]T of a limit cycle

X=[6 ¢]" canbe expressed as

él 2§ P él 1 €1 9251 0

R R oy g i B g R Posg B Y R
The eigenvalues of the monodromy matrix obtained for thergta by integrating Eq. 44 (see Fig. 7(c)
and 7(d)) are inside the unit circle, which confirms the saidture of the identified limit cycle.
The limit cycles can be repeatedly estimated in the same emamrder to perform a parametric inves-
tigation. Such a parametric investigation is reported an Fi for a variation of the circulatory action
and on Fig. 8 for a variation of the gyroscopic action for theng values of the other parameters as in
the previous example.
The mean inclination indicated on these figures is the meamation of the disc over one period of
the identified limit cycles as expressed in Eq. 45. This esgiom correspond to the instantaneous
global inclination of the disc (combination of the two compats) averaged over one period of the
periodic motion. The associated stability nature corragigeeither to stability if no eigenvalues of the
monodromy matrix has a modulus bigger tHamstability with a dominant real eigenvalue if the biggest
eigenvalues in modulus is real or instability with a pair ohtinant conjugate complex eigenvalue if the
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biggest eigenvalues in modulus is complex.

T=T0+2Z

ﬁ:zi / VOZ+ ¢2dr. (45)
™
T=T0

Regarding the evolution of the limit cycle versus the ciataty action for the purely circulatory system,
see Fig. 7, one can observe a unique limit cycle arising attgf bifurcation with growing amplitude
and frequency. The eigenvalues of the monodromy matrix @fithit cycle continuously connect with
those of the equilibrium at the bifurcation point as expéct€hen, one eigenvalue is equalltand the
other ones remain inside the unit circle, which indicatetahle limit cycle on the studied domain.

From the end of this domainp(= 1) and by varying the gyroscopic action in the vicinity @fsee Fig.

8, one can observe an abrupt evolution of both the amplitndetlze frequency, and the appearance of
a new limit cycle branch fop > 0.03. The eigenvalues of the monodromy matrix indicate that ttse fi
branch remains always stable whereas the new one showakilitgthy real eigenvalues for the highest
amplitude part and instability by complex eigenvalues thiability for the lowest amplitude part.

These figures illustrate a strong influence of the gyroscagiion on the existence of limit cycle branches
and their evolution, especially in the vicinity of the pyrelirculatory system for an iso-distribution of
damping. Indeed, a low gyroscopic action drastically medithe limit cycle. Finally, it is important to
observe on Fig. 8 that the frequency can either increasearedse as the amplitude grows. Thus the
frequency and the amplitude of the limit cycles are rathdependent and show no simple relation.

Fig. 9-26 allow extending these observations to variousesbf damping amount, damping distribution,
gyroscopic and circulatory actions (the equilibrium is neported anymore on these figures). These
figures show sections of the parameters space in the sameneaan Fig. 7-8 fo; = 5%, & = 10%
and¢; = 20%. It can be firstly checked that the subcritical or superaitnature of the Hopf bifurcation
observed on all these figures is in perfect accordance withT-i

The limit cycle branches and their stability domains tendd¢anore separated in the parameters space as
the damping amount increases. However, no important qtigéteffect is observed on their shape and
relative positions. The most important effect of the darggamount is quantitative: the more damping
the lower amplitude and frequency of the limit cycles. Thituence of the circulatory action has also a
general tendency, in spite of local discrepancies on ulestiahit cycles: the more circulatory action, the
larger amplitude and frequency.

The fast evolution of the limit cycle with regard to the gyeopic action in the vicinity of the purely
circulatory system with an iso-distributed damping whiciswpreviously mentioned can be generalized.
Indeed, it can be observed for any damping amount and anissdbdtion of damping that when the
purely circulatory system shows an unstable equilibriunchange in the gyroscopic action leads to a
fast evolution of the limit cycle, see Fig. 19, 22 and 25. Fegative values of the gyroscopic action,
a unique limit cycle with a large amplitude and frequencybsearved. This limit cycle evolves slowly
for large (negative) values of the gyroscopic action. Fasifpe values of the gyroscopic action, the
amplitude rapidly decreases, reaches a minimum then iseseslowly. For a large enough gyroscopic
action, a new limit cycle branch can be observed with the squaditative behaviour as previously
discussed. Fig. 22 suggests that the highest amplitudeapdrthe lowest amplitude part of this new
branch are likely to connect to form a closed branch for adagough gyroscopic action. The highest
amplitude part of this new branch is unstable by a dominaaite&genvalue of the monodromy matrix
whereas the lowest amplitude part is firstly unstable by dermgigenvalues then becomes stable and its
amplitude and frequency are close to those of the first brameha range of the gyroscopic action.

For a lower circulatory action, i.e. when the purely cir¢daly system with an iso-distributed damping
has a stable equilibrium, the first branch gets separatedwu parts which surround the stable equilib-
rium. In this situation a negative gyroscopic action leama subcritical bifurcation with an important
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Figure 9: Limit cycles versus the circulatory action forieais values of the gyroscopic action, for Eq.
1witha = 1.5, a8 = 0.2, & = 5% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 12: Limit cycles versus the circulatory action forigas values of the gyroscopic action, for Eq.
1witha = 1.5, af = 0.2, & = 10% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
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Figure 13: Limit cycles versus the circulatory action forigas values of the gyroscopic action, for Eq.
1witha = 1.5, af = 1, & = 10% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)

22



=1 p=—0.5 p=0 p=0.5 p=1

0.15 0.15 0.15 0.15 0.15
£ 01 0.1 0.1 0.1 4 01
© .
£
=
2 0.05 0.05 0.05 005} - 0.05
0 0 ol—- 0 0
0O 05 1 0 05 1 o0 05 1 ©0 05 1 O 05 1
Circ. action ($) o ¢ ¢ ¢
(a)
p=-1 p=-0.5 p=0 p=0.5 p=1
10 10 10 10 10
5 8 8 8 8 8
g
2 g 6 6 6 6
o
2 4 4 4 4 4
IS
Z 2 2 2l — 2 2
0 0 0 0 0
0O 05 1 0 05 1 o0 05 1 0 05 1 ©0 05 1
Circ. action (¢) (0 (0 (0 0]

(b)

Figure 14: Limit cycles versus the circulatory action forigas values of the gyroscopic action, for Eq.
1witha = 1.5, aff = 5, & = 10% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)

23



=1 p=-0.5 p=0 p=0.5 =1

0.06 0.06 0.06 0.06 0.06
£ 0.04 0.04 0.04 0.04 21 0.04
= & :
= Z
g | )y
g 0.02 0.02 0.02 0.02 ~ 0.02
0 - 0 0 0
0 05 1 0 05 1 0O 05 1 0 05 1 0O 05 1
Circ. action (¢) (0 (0 (0 )
(a)
p=-1 p=-0.5 p=0 p=0.5 p=1
6 6 6 6 6
c
il .
g 4 4 4 4 4
> 4 ~
o R
(O] —
=
g 2 2 2 2 2
(0]
4
0 0 0 0 0
0 05 1 0 05 1 0O 05 1 0 05 1 0 05 1
Circ. action (¢) ¢ ¢ ¢ ¢

(b)

Figure 15: Limit cycles versus the circulatory action forigas values of the gyroscopic action, for Eq.
1witha = 1.5, af = 0.2, & = 20% ando = 10%, (@) mean inclination, (b) Relative frequency (gray:
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Figure 16: Limit cycles versus the circulatory action forigas values of the gyroscopic action, for Eq.
1witha = 1.5, af = 1, & = 20% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
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Figure 17: Limit cycles versus the circulatory action forigas values of the gyroscopic action, for Eq.
1witha = 1.5, aff = 5, & = 20% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
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Figure 18: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
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Figure 19: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
1witha = 1.5, af = 1, & = 5% ando = 10%, (@) mean inclination, (b) Relative frequency (gray:
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Figure 20: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
1witha = 1.5, aff = 5, & = 5% ando = 10, (@) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 21: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
1witha = 1.5, af = 0.2, & = 10% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
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complex unstable eigenvalues)
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Figure 22: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
1witha = 1.5, af = 1, & = 10% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 23: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
1witha = 1.5, aff = 5, & = 10% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 24: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
1witha = 1.5, af = 0.2, & = 20% ando = 10%, (@) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 25: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
1witha = 1.5, af = 1, & = 20% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 26: Limit cycles versus the gyroscopic action folimas values of the circulatory action for Eq.
1witha = 1.5, aff = 5, & = 20% ando = 10%, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigdune, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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jump phenomena whereas a positive gyroscopic action leasupercritical bifurcation. The additional
branch appears for a large enough circulatory action.

The fast evolution of the limit cycle which is observed in theinity of the purely circulatory system
for a8 = 1 is shifted to negative values of the gyroscopic actiorv@sis shifted toas < 1. As a
consequence, the purely circulatory system shows a farlbmé cycle amplitude and frequency and a
very low sensitivity to the gyroscopic action, see Fig. 1BaRd 24. The possibility to reach a minimum
of amplitude and minimum of sensitivity with regard to therggcopic action by varying the damping
distribution is suggested by this result. In the meanwttiie,additional limit cycle branch is shifted to
positive values of the gyroscopic action and positive \&lofethe circulatory action. The amplitude and
frequency of its lowest amplitude part gets separated flaniitst branch and their growth is slower with
regard to both the circulatory and the gyroscopic actiorigneas the first branch shows a faster growth.
Nevertheless, apart from these points and the modificafitimecstability frontier of the equilibrium, the
limit cycle branches look very similar fars = 1 andag < 1.

Contrariwise, the behaviour of the limit cycle branchesdmees more complex ass is shifted toa g >

1. Fig. 20, 23 and 26 reveal that all the parts of the branchee bhanged their connections in the
vicinity of the purely circulatory system and now all braeshinterconnect. On Fig. 20, 23 and 26,
it can be observed that the limit cycles are unstable by cexgigenvalues of the monodromy matrix
where the parts connect. Moreover, a particular effect @oliserved on Fig. 20, 23 and 26 for the
purely circulatory system which now shows a subcriticabtiifition. A subcritical bifurcation with no
stable limit cycle is even observed for the lowest valuedhefdamping amount, see Fig. 11 and 14. As
a consequence when the circulatory action crosses thditst@taintier a jump phenomenon to a steady
state which is not a limit cycle is obtained.

Another consequence of the interconnection between thediyole branches is that the steady state of
the system can depend on the time history of its parametetependently from considerations about
initial conditions. Indeed, assume the dynamics of theesgsemains always close to the identified limit
cycles for slowly varying parameters and follows their lmiags by continuity. As an example, consider
Fig. 17 and 26. Assume a negative gyroscopic action,e-g.—1, and a slowly increasing circulatory
action, fromy = 0to ¢ = 1. The system shows a unique stable limit cycle as the edquitibdestabi-
lizes. Moreover, no other stable solution could be idertjftbus the steady state is not conditioned by
the initial conditions. Then, assumeis kept constant and varies fromp = —1to p = 1. Then, the
arrival state is different of that reached when varyinfrom ¢ = 0 to ¢ = 1 with p = 1 kept constant.

A jump phenomena between limit cycles corresponding to aghaf branch can even be expected in
the later case ip is then decreased from= 1top = —1.

To summarize, some general tendencies can be extractedtismparametric study on the role of the
damping structure, the coupling actions and the nonlibeari

e The stiffening rate of the system for non-vanishing moti¢msn Eq. 1) has an independent and
strong influence as previously mentioned, the more stifigihe lower amplitude but without any
effect on the frequency.

e The damping amount has a rather independent effect too, thhe damping the lower amplitude
and frequency.

e The circulatory action shows a general tendency to incrbatiethe amplitude and the frequency.

e The non-symmetrical dependency of the limit cycle to eiphasitive or negative gyroscopic action
or damping distribution witlv3 < 1 or o5 > 1 was highlighted.

e For the purely circulatory system with an iso-distributioh damping, a high sensitivity to the
gyroscopic action is observed. Changing the damping Higtdn to eitheras < 1 oraf > 1
alters this phenomenon by shifting the fast evolution framhegative values of the gyroscopic
action so that the amplitude and frequency can be largelycextifor the purely circulatory system.
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Figure 27: Limit cycle of the purely circulatory system vwasghe damping distribution and the circula-
tory action for Eq. 1 withw = 1.5, & = 20% ando = 10* (black: stable limit cycle, gray: dominant
real unstable eigenvalue, white: dominant pair of conjggaimplex unstable eigenvalues)

It was also conjectured the possibility to reach a robusimmiim of amplitude and frequency by varying
the damping distribution for the purely circulatory systeds a matter of fact, the iso-distribution of
damping seems to maximize the amplitude and frequency. @driscular property is emphasized on
Fig. 27 which shows the evolution of the unique limit cyclendified for the purely circulatory system
over a range of damping distribution.

It appears clearly on this figure that the iso-distributieads to a faster increase of the amplitude and
frequency with regard to the circulatory action and repmse local maximum far from the stability
frontier. Contrariwise, local minima can be observed fdhei oS < 1 or o5 > 1. The bifurcation
nature changes from supercritical to subcriticalogs changes fronng < 1to o > 1. Thus not
only avoiding an iso-distribution of damping can allow rethg the limit cycle amplitude butg < 1
also appears more favourable thafi > 1 because of the nature of the associated bifurcation. As
an important consequence, a proper design strategy cam i@thucing the amplitude of self-generated
vibrations and avoiding subcritical bifurcations in thergatime by adjusting the damping distribution.

It was shown in the stability analysis of the equilibriumtttiee widest stability domain is found near the
iso-distribution of dampingd8 = 1). Therefore, in a small enough vicinity of the destabili@aatpoint,

the iso-distribution of damping can appear as a local minini amplitude because of the late rise of
the limit cycle. However, this situation reverses far frdme tlestabilization point and the iso-distribution
of damping becomes a local maximum of the amplitude. In otdezxplain this observation, it can
be reminded that for the purely circulatory system with andsstribution of damping, both stable and
unstable modes have the same frequency (see [13]). Thustramsic resonance of the stable mode can
be evocated to explain this particular behaviour.

Therefore, the iso-distribution of damping restrains thastrthe purely circulatory system from desta-
bilizing but to the detriment of the amplitude of the dynarsiate that follows the destabilization. This
can be considered as a dynamic extension of the destaioilizaaradox. As a concluding remark, the
important contrast between the results from the stabilitglygsis of the equilibrium and the limit cycle
amplitude regarding the influence of the parameters higtdithe large difference which exists between
a linear and a nonlinear investigation of the system. Thaseviewpoints are complementary and re-
quire an equal attention in order to define relevant desigiegies. Countermeasures to self-generated
vibrations based exclusively on a stability analysis ofaqailibrium would suggest an iso-distribution of
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damping which can lead to even higher vibrations amplit@entrariwise, taking into account the limit
cycles investigation allows defining two distinct approegldepending on whether or not the instability
can be retained.

5 Some commentson the nonperiodic dynamic behavior

In some circumstances neither a stable equilibrium nortaestamit cycle can be found, as an example
see Fig. 23 forp = 1 andp € [—0.01, —0.05]. This situation can not be highlighted by the sole identifi-
cation of the limit cycle with the proposed method. The siigtinalysis of the estimated solution is also
necessary. Indeed, a multi-DOF second order system cart aghady solutions which are neither equi-
librium nor limit cycles, but dense trajectories in the stapace, strange attractors or chaotic motions.
In the present section, it is proposed to illustrate suchadyin behaviours for the proposed system. A
practical way to do so is to use Poincaré sections, see [18].

In the state space, assume a lower dimensional subspacedrbyg the studied trajectory, called a
Poincaré section. Then, the locus of the recursive crgssinthis subspace by the trajectory in a chosen
direction forms the Poincaré application and is intimatelated to the nature of the motion.

Such sections are reported on Fig. 28 for various valueseofiyinoscopic action and the same values of
the other parameters as on Fig. 23.

Depending on the gyroscopic action, the Poincaré sectiows various pattern.

e Forp = 0, the Poincaré section is restricted to a unique point, whidicates a periodic motion,
i.e. alimit cycle, confirmed by the time evolution of the \aduies.

e Forp = —0.01, the Poincaré section is a single loop closed curve, qooreding to the section
of a torus in the state space, thus the motion is biperiodiee fime evolution of the variables
shows pseudo-periodic oscillations limited by a periodieetop. Moreover, eigenvalues of the
monodromy matrix of the identified limit cycle cross the wiitle through non-real values between

p = 0andp = —0.01, thus a Neimark-Sacker bifurcation, i.e. between a limileyand a torus,
see [19], can be conjectured to occur.
e Forp = —0.02, the previous closed curve now appears divided into two icabed loops, which

can indicate a period doubling bifurcation of the secongeanjod of the torus between= —0.01
andp = —0.02. This is qualitatively supported by the previously obsdreavelop being changed
into a half-frequency new one.

e Forp = —0.03 andp = —0.04, the Poincaré section show scattered points in the wcioit
the previous closed curve and the corresponding motiontlerarregular. A bifurcation to a-
periodic motion withn > 3, a strange attractor or a chaotic attractor according t&ilnele-Takens
scenario can be evocated, see [21].

e Forp = —0.05, the Poincaré changes back to a closed curve, indicatimgegiddic motion.

e Finally, for p = —0.06 the Poincaré section is restricted again to a unique paihich indicates
the stabilization of the limit cycle.

By comparing Fig. 23 and 28, it can be observed that the meatitade and the mean pseudo-period of
the non-periodic motions remain close to those of the ifiedt{unstable) limit cycle. Therefore, even
if the limit cycle is not the attractive state, its charaigics are representative of the steady motion and
can still serve as a design criterion to some extend. Thisalgasobserved for other branches of unstable
limit cycle.

In spite of the relative simplicity of the proposed model, idewariety of behaviours is observed when
both the equilibrium and the limit cycles destabilize. Téfere, one can presume that more detailed
models with less regular nonlinearities are even moreyikelshow such a complexity.
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6 Conclusion

A nonlinear2-DOF system combining damping and both circulatory and ggopic actions has been
extensively investigated. Regarding the equilibrium, @partant effect of the damping structure on
both the stability frontiers and the nature of the Hopf lihtion has been exhibited. In particular, it
appears that the iso-distribution of damping is nearly a@majm for the stability range of quasi-purely
circulatory systems. The influence of the gyroscopic adtias been illustrated too.

The identification of the limit cycles of the systems alsoeied a particular influence of the damping
distribution. Both the connections between the branchémifcycles and their stability are affected. As
an extension to the destabilization paradox, the iso#digton of damping has been shown to induce the
fastest growth of the limit cycles for quasi-purely cirdoley systems. As a result, the iso-distribution of
damping appears to be at the same time the most desirabdtusérin order to avoid the destabilization
and the worst configuration in the purpose of reducing theli&mle of the self-generated vibrations.
An internal resonance of the stable mode to the unstable risodeocated to explain this particular
behaviour. Moreover, the damping structure as well as thedd the gyroscopic action play an important
role in the nonlinear behaviour of the system. In partigutarsymmetry can be observed on the branches
of limit cycles between positive and negative values of yr@gcopic action in the proposed model. The
influence of the damping structure shows no symmetry neither

Finally, non-periodical stable motions have been showrake fplace when neither stable equilibrium
nor stable limit cycle were identified, including multi-fetic motion, strange or chaotic attractors. This
large variety of behaviours exhibited for the rather simalegonomou-DOF lumped system allows
emphasizing how complex the dynamics of real-life systereslikely to be. Although the proposed
approach can be applied to some more sophisticated modeis, major aspects of friction-induced self-
generated vibrations are highlighted in this paper. Suatinmalist models with few DOF can serve as
effective tools for understanding the role of some physiesmeters in identified coupling mechanisms.
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