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Abstract

This study aims at clarifying the phenomenological roots ofan acoustical disturbance known as
“clutch squeal noise”. A nonlinear two-degrees-of-freedom model is introduced in order to illustrate
some basic phenomena leading to self-generated vibrations. The damping of the system as well as
both circulatory and gyroscopic actions are included in order to highlight their respective influence
and the destabilization paradox. Results are obtained on the stability range of the equilibrium, the
nature of the Hopf bifurcation, the limit cycle branches andtheir stability. A dynamic extension of
the destabilization paradox is proposed and some non-periodic behaviours are identified too.

Keywords: friction, destabilization paradox, limit cycles, self-generated vibrations

1 Introduction

In cars with manual transmissions, different unforced vibrations can be observed during the sliding phase
of clutch engagement. Low frequencies phenomena such as judder can often be attributed to misalign-
ment in the transmission chain or to tribological properties of the friction materials, such as a decreasing
friction coefficient with regard to the sliding speed. However, noise due to high frequencies phenomena
(up to few kHz) can be experienced too and is referred as “clutch squeal noise”. This audible disturbance
can arise even when the friction coefficient is almost constant and the transmission chain shows no im-
portant fault. The observed amplitude of the phenomenon allows excluding the assumption of a stick-slip
cycle too. The present study aims at investigating an instability origin of these vibrations related to the
non-conservative action of the friction forces.
The non-conservative aspect of the friction forces is knownto be a potential cause for the rise of such self-
generated vibrations in dynamical systems through the destabilization of their stationary states. This has
motivated numerous researchers to focus on such mechanismsfor years, see [1]. Some other industrial
applications in need of such studies can be cited without being exhaustive: brakes, machining, civil
engineering and aeronautic design.
In general, a stability analysis only requires the knowledge of the linearized equations of motion in
the vicinity of the equilibriums, see [2]. Therefore, phenomenological roots of the spontaneous rise
of motion can be highlighted through rather simple considerations. However, the price to pay for this
simplicity is the complete ignorance of the nature and of anyproperty of the steady state which then
takes place. This lack of knowledge can lead to misinterpretation of experimental observations as well
as bad or excessively stringent design recommendations.
The present paper aims at demonstrating the important role of the nonlinearities and the damping struc-
ture in dynamical systems subject to flutter destabilization. To this purpose, a paradigmatic example
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model of non-conservative coupling between the degrees of freedom of a clutch is proposed in the first
part. This nonlinear model shows two degrees of freedom coupled by both circulatory and gyroscopic
actions and takes into account the structural damping of thesystem.
The second part serves as a reminder about fundamental results on the stability of the stationary states.
Considerations for the damping structure of the system leadto counter-intuitive results and the so-called
“destabilization paradox”. This phenomenon was first reported by Ziegler in [3]: he demonstrated the
significance of dynamic terms and the destabilizing effect of weak damping for a double pendulum
subjected to tangential load. Further developments were proposed by Bolotin [4] for non-conservative
stability problems. Then, some researchers (Hermann et al.[6], Leipholz [5] and Kounadis [22]) stud-
ied the destabilizing effect of viscous damping for mechanical systems subjected to non-conservative
forces. Moreover, Thomsen [20] examined the non-linear dynamics of a double pendulum with both
linear damping and non-conservative follower loading. He studied the occurrence of chaotic motion
and changes in amplitude due to a destabilizing effect of both linear and non-linear forces. The influ-
ence of the velocity-dependent forces on the stability of non-conservative systems as well as the effects
of non-linearities were also studied by O’Reilly et al. [7] and Kirillov and Seyranian [8]. In spite of
these intensive investigations, this topic still motivates researches aiming at understanding the complex
destabilization mechanisms in presence of damping, see forexample [9–13].
A static influence of the nonlinearities is also evocated in the determination of the equilibriums and the
nature of the Hopf bifurcation points by the analysis of the first Lyapounov coefficient. The important
role of the structural damping is clearly illustrated and a particular relationship to the gyroscopic action
is highlighted.
The third part introduces a nonlinear method for determining the limit cycles of autonomous mechanical
systems which is appropriate to perform parametric studies. An application of the Floquet theory is
also described in order to determine the stability nature ofthe identified periodic solutions. Then, this
approach is applied on the clutch model to investigate its limit cycles. The complex dynamic behaviour
of nonlinear structures is clearly illustrated on this example. Neimark-Sacker bifurcations and a possible
route to chaos according to the Ruelle-Takens scenario are highlighted with the help of Poincaré sections.
Such a turbulent behaviour was already mentioned in [20] forinstance.
Finally, conclusions are drawn on the sensitivity of self-generated vibrations in mechanical structures
to the physical parameters. A particular attention is paid to the role of the structural damping and the
gyroscopic actions both on the stability of the equilibriums and the post-bifurcation dynamic behaviour.

2 2-DOF nonlinear model of a squealing clutch

The proposed model of clutch is depicted on Fig. 1. This system was first proposed by Wickramarachi
in [14] and extensively investigated in the proposed simplified form depicted on Fig. 1 by the authors
in [13]. It consists of two discs(A) and(B) coaxially rotating about theOz axis and rubbing on each
other.Oxyz is the principal inertia frame of(A). (A) is the friction disc and(B) represents the engine
flywheel and the clutch.
Two degrees of freedom (DOF) are considered. They correspond to the swinging motions of(A). The
swinging angles aboutOx andOy are notedθ andφ respectively. Restoring forces about these motions
are represented by linear stiffness and damping elements,(kθ, dθ) and (kφ, dφ) aboutOx andOy re-
spectively. Friction is modeled in a simplified manner: fourdeformable elements are considered, equally
distributed on radiusR on (A), and friction occurs at their end. They represent the flexibility of the
contact area and they are assumed to show equal linear stiffness and damping(kc, dc) aboutOx. A con-
stant Coulomb law is considered with the constant friction coefficientµ. The rotation speed of both the
discs is assumed to be constant. The parallelism of the discs(θ = 0 andφ = 0) illustrated on Fig. 1 is
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Figure 1: Model of rubbing discs subject to a flutter destabilization

supposed to correspond to equilibrium. The distance between theOxy plane and the end of the contact
elements is notedh. Finally, the amplitude of the vibrations is assumed to be small enough so that the
friction force at the end of each contact element never vanishes.
The following nonlinear nondimensional equation of motioncan be obtained for this system,

[

θ̈

φ̈

]

+

[

2ξ ρ

−ρ 2αβξ

] [

θ̇

φ̇

]

+

[

1 ϕ

−ϕ α2

] [

θ

φ

]

+ σ

[

θ3

φ3

]

=

[

0
0

]

. (1)

The upper dot denotes time differentiation with regard to a nondimensional time scaleτ . ξ ≥ 0 is the
reference damping factor.α ≥ 1 andβ ≥ 0 are the ratios of the natural frequencies and damping factors
respectively.ϕ andρ are the nondimensional circulatory and gyroscopic factorsrespectively. Finally,
σ > 0 is related to the local stiffening property of the system in the case of nonvanishing motions.
These nondimensional parameters are related to the physical parameters with the expression reported in
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Eq. 2
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1

J

(

2R2dc + dθ + µ
N0

2
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1
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1

J
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ϕ = −
1
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(
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J
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1

ξ

1

2αω0

1

J

(

2R2dc + dφ + µ
N0

2

h2

R |̟ − Ω|

)

, (2)

wheret is the natural time scale,J is the swinging inertia aboutOx andOy, J̟ is the rotational inertia
aboutOz, ̟ is the rotation speed of(A), Ω is the rotation speed of(B) andN0 is the load applied to the
system.

A particular symmetry of Eq. 1 can be observed since if
[

θ φ
]T

is a solution for a given value of

(ϕ, ρ) = (ϕ0, ρ0) then
[

θ −φ
]T

is a solution for(ϕ, ρ) = (−ϕ0,−ρ0). Therefore, the investigation
of negative values ofϕ can be omitted in any parametric investigation. One can alsonote that the
amplitude ofσ has no qualitative effect on the solutions since if

[

θ φ
]T

is a solution forσ = σ0 then
√

σ0/σ
[

θ φ
]T

is a solution for any other value ofσ.
[

0 0
]T

is the unique equilibrium of Eq. 1. Finally, the linearization of Eq. 1 in the vicinity of the
equilibrium simply gives

[

θ̈

φ̈

]

+

[

2ξ ρ

−ρ 2αβξ

] [

θ̇

φ̇

]

+

[

1 ϕ

−ϕ α2

] [

θ

φ

]

=

[

0
0

]

. (3)

The values used for numerical illustrations in this paper areα = 1.5 andσ = 104. As highlighted in [13]
the value ofα has no qualitative effect on the stability analysis, providedα 6= 1. Therefore, the choice
α = 1.5 is representative of any assumed difference between the static frequencies of the swinging
modes for the stability analysis. Moreover, for a fixed valueof α, the value ofσ has no qualitative effect
neither, as mentioned later. The choice ofσ = 104 allows obtaining reasonable amplitudes for the limit
cycles. The influence of the values of bothα andσ together on the nonlinear behaviour is not analyzed
in this paper. Parametric investigations are performed on the other parameters.

3 Investigation of equilibriums

The equilibriums are steady static states of a system. Theirinvestigation aims at understanding the rea-
sons why a dynamic state arises preferentially to equilibrium. This section is divided into three parts.
Firstly, the eigenvalues approach of the stability analysis is introduced in order to highlight how equilib-
rium can become a repulsive state. Secondly, a local insightinto the nonlinear properties of the system
in the vicinity of bifurcations is proposed in order to describe the loss of stability and explain jump phe-
nomena, i.e. the sudden rise of a large motion when crossing the stability frontier. Finally, the stability
of the equilibrium of the proposed model is investigated andimportant information is obtained on the
role of damping and gyroscopic actions.
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3.1 Stability analysis

Consider the equation of motion of a dynamic system

Ẋ = f (X,p) , (4)

whereX represents the instantaneous state of the system (its coordinates in the phase space), the upper
dot denotes time derivation andf is a function ofX parameterized by the elements ofp. Assume at
least one stationary solutionXe (p0) exists forp = p0, i.e. f (Xe (p0) ,p0) = 0, andf is C1 in its
vicinity. Then, according to the Hartman-Grobman theorem,the linearization of Eq. 4 in the vicinity of
Xe (p0) preserves its non-marginal stability nature. Therefore, the determination of the stability nature
of equilibriums only requires the knowledge of the linearized equation of motion in their vicinity in most
cases.
Nevertheless, the nonlinearities allow many equilibriumsto exist simultaneously and their evolution
when varyingp can be rather complex and possibly discontinuous. Therefore, all equilibrium branches
have to be determined by appropriate approaches as a first step prior to perform a stability analysis of
each branch separately.
Assume the linearized form of Eq. 4 expressed in Eq. 5,

Ẋ ≈ D f (Xe (p0) ,p0)X. (5)

The solutions of such a linear system form a vector space whose basis is constituted of elements of the
form expressed in Eq. 6 when the Jacobian is diagonalisable,whereX0 (p0) is the mode shape,t the
time andλ (p0) a complex factor.λ (p0) andX0 (p0) are an eigenvalue and an associated eigenvector
of D f (Xe (p0) ,p0).

X (t) = X0 (p0) e
λ(p0)t . (6)

Because of the form of the solutions, the stability nature ofXe (p0) is expressed by the eigenvalues of
the JacobianD f (Xe (p0) ,p0). Assume the Jacobian has no purely imaginary eigenvalue (hyperbolic
equilibrium). If all the eigenvalues show a strictly negative real part then the equilibrium is asymptoti-
cally stable; if at least one eigenvalue shows a strictly positive real part then the equilibrium is unstable.
The imaginary part indicates the oscillatory or non-oscillatory nature of the corresponding mode.
In the case the Jacobian is not diagonalisable, the solutions have the more general form expressed in Eq.
7, whereP is a polynomial whose order is strictly lower than the multiplicity order of the associated
eigenvalueλ.

X (t) = P (t,p0) e
λ(p0)t . (7)

This situation can only lead to instability if the real part of at least one eigenvalue is strictly positive or if
the Jacobian has at least one purely imaginary eigenvalue.
The existence of purely imaginary eigenvalues lacks of robustness with regard to physical parameters.
However, the sign of the real part of the eigenvalues is a robust criterion. Furthermore, because of the
continuity of the eigenvalues with regard to the elements ofD f (Xe (p0) ,p0), the locus of purely imag-
inary eigenvalues in the parameters space form continuous surfaces, provided the equilibrium evolves
continuously withp. These surfaces separate regions of asymptotic stability and instability, thus they
constitute stability frontiers.
As reported in many previous works the damping structure hasan important influence on the stability
frontiers. In [9], Kirillov considers 2-DOF purely circulatory and purely gyroscopic undamped systems.
He demonstrates for both these systems that the limit of the domain of asymptotic stability as the ampli-
tude of a perturbing action vanishes can differ from the domain of marginal stability of the unperturbed
systems, this being referred as the destabilization paradox. As a consequence, significant differences can
be found between experienced and theoretically predicted stability frontiers. This effect emphasizes the
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strong influence of the structure of the system on the stability frontiers independently from the amplitude
of the parameters.

3.2 Nature of the Hopf bifurcation

Assume the system described by Eq. 4 shows a Hopf bifurcationfor p = p0 + ∆p with regard to the
elementpi of p. By this is meant thatf is assumed to be regular with regard toX andpi at(Xe (p0) ,p0),
D f (Xe (p0) ,p0) shows one pair of purely imaginary eigenvaluesλ1,2 (p0) = ±iω0 with ω0 > 0, all
the other eigenvalues show a strictly negative real part and

dRe (λ1,2)

d pi
(p0) 6= 0. (8)

This situation corresponds to the crossing of the stabilityfrontier and the transition between an asymp-
totically stable and an unstable nature of the equilibrium.Without loss of generality, one can assume
p0 = 0 andXe (p) = 0. For |pi| sufficiently small, letX0 (p) be associated toλ1 (p) andX∗

0 (p) be
its adjoint eigenvector, i.e.D f (Xe (p) ,p)X0 (p) = λ1 (p)X0 (p) andD f (Xe (p) ,p)

T
X∗

0 (p) =
λ1 (p)X

∗
0 (p), such that〈X0 (p)

∗ ,X0 (p)〉 = 1 where〈•, •〉 is the inner product〈[ui] , [vi]〉 =
∑

i

ūivi.

According to the Shoshitaishvili theorem the topology of Eq. 4 in the vicinity ofp0 can be judged from
its restriction to a local center manifold, expressed as

X (t) = ς (t)X0 (p) + ς̄ (t)X0 (p) +

3
∑

i+j=2

1

i!j!
aij (p) ς

iς̄j +O
(

|ς|4
)

, (9)

which is locally topologically equivalent to the restriction

X (t) = q (t)X0 (p) + q̄ (t)X0 (p) , with q (t) = 〈X∗
0 (p) ,X (t)〉 . (10)

Eq. 4 can be changed into Eq. 11,

Ẋ = D f (Xe (p) ,p)X+ g (X,p) , with g = O
(

‖X‖2
)

. (11)

Then, it follows from Eq. 10 that

q̇ = λ1 (p) q +
〈

X∗
0 (p) ,g

(

qX0 (p) + q̄X0 (p) ,p
)〉

. (12)

Providedf is regular enough, a polynomial expansion can be proposed, see Eq. 13,

q̇ = λ1 (p) q +

3
∑

i+j=2

1

i!j!
bij (p) q

iq̄j +O
(

|q|4
)

, (13)

with

bij (p) =
∂i+j

∂qi∂q̄j

〈

X∗
0 (p) ,g

(

qX0 (p) + q̄X0 (p) ,p
)〉

(q = 0) . (14)

Then, the Poincaré normal form Eq. 16 is obtained by considering a pertinent change of variable in the
form of Eq. 15,

q = r +

3
∑

i+j=2

1

i!j!
hij (p) r

ir̄j, (15)

ṙ = λ1 (p) r + γ (p) |r|2 r +O
(

|r|4
)

, (16)
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γ (p) =
2λ1 (p) + λ1 (p)

2 |λ1 (p)|
2 b11b20 +

|b11|
2

λ1 (p)
+

|b02|
2

2
(

2λ1 (p)− λ1 (p)
) +

b21

2
. (17)

Finally, a change of variable and time scale expressed in Eq.18 allows writing Eq. 19 for|pi| sufficiently
small,

r =

∣

∣

∣

∣

Re (γ (p))

Im (λ1 (p))
−

Re (λ1 (p)) Im (γ (p))

Im2 (λ1 (p))

∣

∣

∣

∣

−1/2
s and d τ =

1

ω0

(

1− Im

(

γ (p)

ω0

)

|r|2
)

d t, (18)

d s

d τ
=

(

Re (λ1 (p))

Im (λ1 (p))
+ i

)

s+ sign (Re (γ (0))) |s|2 s+O
(

|s|4
)

. (19)

According to the center manifold theory, the dynamical behaviour of Eq. 4 is directly related to the
behaviour of Eq. 20 in the vicinity of the Hopf bifurcation,

d s

d τ
=

(

Re (λ1 (p))

Im (λ1 (p))
+ i

)

s+ sign(l1) |s|
2 s, (20)

l1 = Re (ib11b20 + ω0b21) . (21)

l1 defined in Eq. 21 is the first Lyapunov coefficient. Assumel1 6= 0; it can be seen from Eq. 20 that a
limit cycle branch connects with the equilibrium branch at the Hopf bifurcation point. This is why the
Hopf bifurcation is an appropriate candidate phenomenon toexplain the rise of self-generated vibrations
in dynamical systems. The stable or unstable nature of this limit cycle, related to the supercritical or
subcritical nature of the bifurcation respectively, can bejudged from the sign ofl1. If l1 < 0 (respectively
l1 > 0) then the bifurcation is supercritical (respectively subcritical). In the case of a degenerated Hopf
bifurcation (l1 = 0) further developments can be proposed to determine the nextLyapunov coefficients.
The interested reader is referred to [16] and [17].
The determination of the nature of a Hopf bifurcation is of particular importance when dealing with the
suppression of self-generated vibrations caused by such a mechanism. Indeed, a supercritical bifurca-
tion allows reducing the amplitude of the limit cycle as muchas desired in the vicinity of the stability
frontier. Therefore, an acceptable level can be reached without stabilizing the equilibrium. Contrariwise,
a subcritical bifurcation leads to a jump phenomenon at the stability frontier between the equilibrium
branch and the attracting steady state. Moreover, stable vibrations can remain even after the equilibrium
is stabilized.
Assume a polynomial expression ofg in Eq. 11 in the form of Eq. 22,

g (X,p) =
1

2
P (X,X,p) +

1

6
Q (X,X,X,p) +O

(

|X|4
)

, (22)

with

P (U,V,p) =
∑

i,j>1

∂2g (X,p)

∂xi∂xj
uivj (X = 0) (23)

and

Q (U,V,W,p) =
∑

i,j,k>1

∂3g (X,p)

∂xi∂xj∂xk
uivjwk (X = 0) (24)

wherexi is thei-th component ofX. Because of the relation between Eq. 4 and Eq. 16 above mentioned,
vectorsaij (p) can be directly identified in Eq. 9 so that

ς̇ = λ1 (p) ς +
1

2
Γ (p) |ς|2 ς +O

(

|ς|4
)

. (25)
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Writing Γ, X0, P (U,V), Q (U,V,W) andD f for Γ (0), X0 (0), P (U,V,0), Q (U,V,W,0) and
D f (0,0) respectively, substituting Eq. 9 into Eq. 4 and identifyingthe vectorsaij (p) in order to fit the
form of Eq. 25 forp = 0 one obtains the following criterion for the nature of the Hopf bifurcation,

L1 = Re (Γ) , (26)

Γ =
〈

X∗
0,Q

(

X0,X0,X0

)

+P
(

X0, (2iω0I−Df)−1
P (X0,X0)

)

− 2P
(

X0,Df−1P
(

X0,X0

))

〉

,

(27)
whereI is the identity matrix. Of course, the criterion on the sign of L1 defined in Eq. 26 and the sign of
l1 defined in Eq. 21 are equivalent, but the latter expression can be more convenient when an expression
of g in the form of Eq. 22 is available.

3.3 Stability analysis of the squealing clutch

A complete parametric analysis of the modes and the stability domain of the equilibrium was proposed
by the authors in [13]. Eq. 3 can be changed to fit the form of Eq.4 by considering the state variable

X =
[

θ φ θ̇ φ̇
]T

.
Provided no degree of freedom is over-damped, the characteristic polynomial of the Eq. 3 is strictly
positive on the real axis. Therefore, the eigenvalues of thesystem can not be real. Thus, the trivial
equilibrium can only destabilize by flutter. In order to distinguish the effect of the damping amount and
its distribution over the two coupled degrees of freedom, one callsξt = ξ (1 + αβ) the total damping
amount. Then, forξt 6= 0 the stability frontier is described by (see [13])

(

ϕρ+ αξt

(

α+ β

1 + αβ

))2

−ξt

(

ϕρ+ αξt
α+ β

1 + αβ

)(

1 + α2 + ρ2 + 4
αβ

(1 + αβ)2
ξ2t

)

+ξ2t
(

α2 + ϕ2
)

= 0,

(28)
The frontiers forα = 1.5 are depicted on Fig. 2 and 3 for various iso-distributed damping amounts
and for various damping distributions respectively. The domain of marginal stability of the associated
undamped system has also been reported. On this figure, stability is found in the central area and the
equilibrium experiences a Hopf bifurcation when the parameters cross the frontiers.
It can be shown that the illustrated behaviour is not qualitatively affected by the value neither ofα nor
ξt providedα 6= 1, ξt 6= 0 andξt sufficiently small. Forα = 1 the domain of marginal stability of the
undamped purely circulatory system collapses and this alsoaffects the frontiers of the damped system.
However, this situation physically corresponds to the equality of the frequencies of two distinct modes
and is unlikely to occur in a real system including some geometrical defects. Therefore Fig. 2 and 3
correctly illustrate the respective influence of the parameters in the general case.
An important observation concerns the distinct role of the damping amount and its distribution respec-
tively. On the one hand, the presence of damping adds robustness to stability by changing the domain of
marginal stability into a domain of asymptotic stability whose size depends on the damping amount. On
the other hand, the damping structure rules the shape of the stability frontiers.
This contrast can be emphasized in the manner of Kirillov [9]by considering a vanishing perturbation
of an undamped system. As an example, assume a constant structure of the damping matrix with a fixed
value ofβ andρ = ηξt, i.e. a perturbed undamped purely circulatory system. Then, asξt vanishes, Eq.
28 tends to

(1 + αβ)2
(

1 + η2
)

ϕ2 +
(

α2 − 1
) (

1− α2β2
)

ηϕ− αβ
(

α2 − 1
)2

= 0. (29)

The limits of the stability frontiers as the perturbation vanishes are reported on Fig. 4. It is obvious from
this expression that the stability frontiers of the vanishingly damped system do not necessarily tend to
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Figure 2: Stability frontiers forα = 1.5 and iso-distributed damping (αβ = 1), bold line: no damping,
dashed line:ξt = 5%, solid line:ξt = 10%
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the domain of marginal stability of the undamped system. Furthermore, looking for maxima of|ϕ| for
givenα andβ, one obtains

|ϕmax| =

(

α2 − 1

2

)

, with ϕmaxη =

(

1− α2

2

)(

1− αβ

1 + αβ

)

. (30)

This result indicates that the limit of the stability frontier when the perturbation vanishes is at most
the limit of marginal stability of the unperturbed system (coalescence point), in accordance with [9].
This also reveals that the smaller the coefficients of the damping matrix are, the more important is to
know the structure of this matrix in order to correctly predict the stability nature of the equilibrium,
which constitutes the destabilization paradox. This makesthe understanding of poorly damped systems
a difficult matter.
As illustrated on Fig. 4, the locus of the extrema of|ϕ| asξt vanishes correspond to two distinct curves
described by the second part of Eq. 30. Indeed, a maximum of|ϕ| exists for both positive and negative
values. These curves cross each other atη = 0 andαβ = 1. At this point both limits reach their
maximum and therefore the overall stability region is the widest.
A maximum width of the stability domain is also observed close to the purely circulatory system with an
iso-distribution of damping for a non-vanishing damping onFig. 3. As a matter of fact, the width∆ϕ of
the stability domain can be calculated from Eq. 28 and is aC1 even function ofρ, which implicates that
an extremum of∆ϕ always exists atρ = 0. The authors have reported the optimal damping distribution
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which maximize∆ϕ for ρ = 0 in [13],

(αβ)opt =

√

16 (α4 − α2 + 1) ξ4t + 4 (α2 + 1) (α2 − 1)2 ξ2t + (α2 − 1)4 − 4
(

α2 − 1
)

ξ2t

4ξ2t + (α2 − 1)2
, (31)

which actually tends to(αβ)opt = 1 asξt vanishes. Therefore, the iso-distribution of damping can be
considered as a “practical” criterion of optimization of the stability domain for quasi-purely circulatory
systems. It can be observed on Fig. 2 that the local extreme values of the circulatory action on the frontier
evolve very slowly in the vicinity of purely circulatory systems as the damping amount increases. This
emphasizes the important role of the damping structure relatively to the damping amount.
In order to complete this overview of the stability domain, the nature of the Hopf bifurcation has been
investigated from Eq. 1 and reported on Fig. 5 for two different amounts of damping. It can be observed
on this figure that the damping distribution strongly affects the nature of the bifurcation. Contrariwise,
the amount of damping has a weak influence. Once again, a dominant role of the damping structure is
suggested by this result.

4 Non-linear analysis and limit cycles

Although the stability analysis is a powerful tool in order to highlight phenomenological roots of self-
generated vibrations, the prediction of their properties definitely requires taking into account the non-
linearities of the system. To this purpose, a method for determining the limit cycles of autonomous
nonlinear systems is introduced in the first part. Then, a stability analysis of these periodic solutions is
proposed. This last step aims at predicting if the system is likely to converge to one of these solutions
or if a more complex behaviour is to be expected. Finally, thelimit cycles of the example model are
investigated.

4.1 Determination of the limit cycles

A method is proposed in this section to identify the limit cycle arising from the Hopf bifurcation. This
method is based on an extension of the harmonic balance method. It includes dynamic constraints in
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order to avoid convergence of the estimated solution to the equilibrium. It shares some similarities with
the Constrained Harmonic Balance Method (CHBM) method proposed by Coudeyras et al. [15].
Assume a system described by

Ÿ = h
(

Y, Ẏ,p
)

, (32)

whereh is a real function globally continuous with regard to both the real vectorsY and Ẏ, and a
continuous and piecewiseC1 periodic solution exists. This solution can be expressed asa Fourier series,

Y (t) = A0 (p) +
∑

n>1

(An (p) cos (nω (p) t) +Bn (p) sin (nω (p) t)), (33)

whereAn (p) andBn (p) are constant vectors andω (p) is the angular frequency of the solution. In
the previous expression,ω (p) is unknown since it is likely to differ from the angular frequency of the
unstable mode obtained by the eigenvalues analysis of the linearized system.
The method consists in changing the time integration problem into an optimization problem. Consider
the following functional,

Ψ([An] , [Bn] , ω) =

t0+2π/ω
∫

t0

∥

∥

∥
Ÿ (t)− h

(

Y (t) , Ẏ (t) ,p
)
∥

∥

∥

2
d t. (34)

A solution of Eq. 32 is a global minimum ofΨ. In order to numerically identify it, the Fourier series
is truncated at a high enough order. By doing so, the functional is changed into a function of a finite
number of variables. Finally, convergence to some irrelevant local minima (as equilibrium that is an
exact solution of the nonlinear expression of Eq. 32) can be avoided if the following constraints are
imposed:

t0+2π/ω
∫

t0

(

Ÿ (t)− h
(

Y (t) , Ẏ (t) ,p
))

d t = 0, (35)

t0+2π/ω(p)
∫

t0

∣

∣

∣
Ÿi (t)

∣

∣

∣
d t−

t+2π/ω
∫

t0

∣

∣

∣
hi

(

Y (t) , Ẏ (t) ,p
)
∣

∣

∣
d t = 0,∀i, (36)

t0+2π/ω(p)
∫

t0

(

Ÿi (t) + hi

(

Y (t) , Ẏ (t) ,p
))

Ẏi (t)
√

Ẏi (t)
2 + Ÿi (t)

2
d τ = 0,∀i, (37)

where the subscripti indicates thei-th component of a vector. Theses proposed constraints correspond
to a null mean error, to a mean respect of the fundamental principle of dynamics on each DOF and
to a motion being neither dilating nor contracting in the phase plane of each DOF respectively. Other
constraints can be used to improve the convergence, provided they correspond to some properties fulfilled
by both the solution and its approximations.
By solving this problem, not only one finds an approximate form of the solution but also the angular
frequency is identified. Moreover, this approach allows obtaining estimations faster than a direct time
integration of Eq. 32, unstable limit cycles can be identified as well, and no post-processing is required.
The method is particularly efficient with parametric studies of continuous limit cycle branches when one
iteratively uses a result as an initial guess for a close new set of parameters.
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4.2 Stability analysis of the limit cycles

Assume a periodic solutionX of Eq. 4 has been identified having the angular frequencyω = 2π/T with
T its period. The analysis of its stability aims at determining if this solution is attractive or not, i.e. if
the system is likely to converge or not to this limit cycle. Tothis purpose, a vanishing perturbationε of
X is considered and̃X = X+ ε denotes the perturbed solution. Then, one considers the following local
approximation of Eq. 4 in the vicinity ofX

ε̇ ≈ D f (X,p) ε, (38)

which is a periodic non-autonomous but linear differentialequation. Therefore, its solutions form a
vector space. Consider a basis of solution{ei}. Because of the periodicity of Eq. 38, one can express
the elements of this base as linear combinations of the same elements translated of one period in time,

ei (t+ T ) =
∑

j>1

cijej (t),∀i,∀t orE (t+ T ) = ME (t) ,∀t with E = [ei] . (39)

The constant matrixM is the monodromy matrix. The basis{ei} can be chosen so that

E (t0) = I, (40)

whereI is the identity matrix andt0 is an arbitrary origin of time. It follows that

M = E (t0 + T ) . (41)

The eigenelements ofM characterize the modes of perturbation ofX. An eigenvectorVi associated to
the eigenvalueµi is such thatMVi = µiVi, i.e. Vi (t+ T ) = µiVi (t). Therefore, according to the
Floquet theory

Vi (t) = Θi (t) e
i
arg(µi)

T
t e

log(|µi|)
T

t, (42)

whereΘi (t) is aT -periodic function. It follows that the studied limit cycleis unstable if at least one
eigenvalue ofM has a modulus strictly bigger than1. Because Eq.4 is autonomous, any translation in
time of X produces a new solution. The difference between this new solution andX corresponds to a
periodic perturbation. Therefore,1 is always an eigenvalue ofM.
Assume one of the other eigenvalue crosses the unit circle and the remaining ones remain inside. Then, it
can be shown from the center manifold theory that the crossing through1 corresponds to the junction of a
stable limit cycle with an unstable limit cycle which both disappear. A crossing through−1 corresponds
to the destabilization of the limit cycle and the appearanceof period-doubling bifurcation. Finally, a
crossing by a pair of non-real conjugate eigenvalue corresponds to the junction of a stable limit cycle
with a stable biperiodic trajectory (Neimark-Sacker bifurcation).
It can be observed that this stability analysis of the limit cycle is similar to the stability analysis of
equilibriums introduced in the previous section and can even be considered as its generalization. Indeed,
equilibrium can be considered as a periodic solution with any value forT and the same approach can be
used to define the stability. This consideration leads to

M = eD f(Xe(p0),p0)T . (43)

A translation in time of equilibrium induces no difference so there is no reason forM to admit1 as an
eigenvalue, except on the stability frontier. According tothe center manifold theory, the period of the
destabilizing mode and the period of the limit cycle arisingfrom the Hopf bifurcation converge to each
other at the bifurcation point. Therefore, ifT is chosen so that it is equal to this common period at the
bifurcation point, the exponential of the eigenvalues ofD f (Xe (p0) ,p0) time T can be expected to
continuously connect with the eigenvalues of the monodromymatrix of the limit cycle at the bifurcation
point.
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Figure 6: Comparison between time integration and limit cycle estimation (gray: time integration, black:
estimated limit cycle) of Eq. 1 withα = 1.5, αβ = 1, ξt = 20%, ϕ = 1, ρ = 0 andσ = 104, (a)
trajectory (b) velocity phase

4.3 Parametric investigation of the limit cycles of the squealing clutch

The proposed method is applied at order9 (truncation order of the Fourier series) that allows a high
enough precision over the domain of investigation, and the results are compared to direct time integra-
tion on Fig. 6 forξt = 20%, αβ = 1, ρ = 0 andϕ = 1. It is observed on the whole results that
the qualitative results are rather independent from the damping amount.ξt = 20% is a high value of
damping. However, high values are observed to allow obtaining smoother evolutions of the limit cy-
cles. Therefore, this example is more appropriate for preliminary observations. More realistic damping
amounts are investigated later.
Both the trajectory of the identified limit cycle in the statespace and the estimated angular frequency are
in very good accordance with the result from time integration. It can be noted in this example that the
angular frequency of the limit cycle isω = 3.85 rad.s- 1 (see Fig. 5(b)) which greatly differs from the
angular frequency of the unstable linear modeω0 = 1.31 rad.s- 1 obtained by considering the stability
analysis of the linearized system.
Following Eq. 38, a local approximation of Eq. 1 in the vicinity ε =

[

ε1 ε2
]T

of a limit cycle

X =
[

θ φ
]T

can be expressed as

[

ε̈1
ε̈2

]

+

[

2ξ ρ

−ρ 2αβξ

] [

ε̇1
ε̇2

]

+

[

1 ϕ

−ϕ α2

] [

ε1
ε2

]

+ 3σ

[

θ2ε1
φ2ε2

]

=

[

0
0

]

. (44)

The eigenvalues of the monodromy matrix obtained for the example by integrating Eq. 44 (see Fig. 7(c)
and 7(d)) are inside the unit circle, which confirms the stable nature of the identified limit cycle.
The limit cycles can be repeatedly estimated in the same manner in order to perform a parametric inves-
tigation. Such a parametric investigation is reported on Fig. 7 for a variation of the circulatory action
and on Fig. 8 for a variation of the gyroscopic action for the same values of the other parameters as in
the previous example.
The mean inclination indicated on these figures is the mean inclination of the disc over one period of
the identified limit cycles as expressed in Eq. 45. This expression correspond to the instantaneous
global inclination of the disc (combination of the two components) averaged over one period of the
periodic motion. The associated stability nature corresponds either to stability if no eigenvalues of the
monodromy matrix has a modulus bigger than1, instability with a dominant real eigenvalue if the biggest
eigenvalues in modulus is real or instability with a pair of dominant conjugate complex eigenvalue if the
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biggest eigenvalues in modulus is complex.

ϑ =
ω

2π

τ=τ0+
2π
ω

∫

τ=τ0

√

θ2 + φ2 d τ . (45)

Regarding the evolution of the limit cycle versus the circulatory action for the purely circulatory system,
see Fig. 7, one can observe a unique limit cycle arising at theHopf bifurcation with growing amplitude
and frequency. The eigenvalues of the monodromy matrix of the limit cycle continuously connect with
those of the equilibrium at the bifurcation point as expected. Then, one eigenvalue is equal to1 and the
other ones remain inside the unit circle, which indicates a stable limit cycle on the studied domain.
From the end of this domain (ϕ = 1) and by varying the gyroscopic action in the vicinity of0, see Fig.
8, one can observe an abrupt evolution of both the amplitude and the frequency, and the appearance of
a new limit cycle branch forρ > 0.03. The eigenvalues of the monodromy matrix indicate that the first
branch remains always stable whereas the new one shows instability by real eigenvalues for the highest
amplitude part and instability by complex eigenvalues thenstability for the lowest amplitude part.
These figures illustrate a strong influence of the gyroscopicaction on the existence of limit cycle branches
and their evolution, especially in the vicinity of the purely circulatory system for an iso-distribution of
damping. Indeed, a low gyroscopic action drastically modifies the limit cycle. Finally, it is important to
observe on Fig. 8 that the frequency can either increase or decrease as the amplitude grows. Thus the
frequency and the amplitude of the limit cycles are rather independent and show no simple relation.
Fig. 9-26 allow extending these observations to various values of damping amount, damping distribution,
gyroscopic and circulatory actions (the equilibrium is notreported anymore on these figures). These
figures show sections of the parameters space in the same manner as on Fig. 7-8 forξt = 5%, ξt = 10%
andξt = 20%. It can be firstly checked that the subcritical or supercritical nature of the Hopf bifurcation
observed on all these figures is in perfect accordance with Fig. 5.
The limit cycle branches and their stability domains tend tobe more separated in the parameters space as
the damping amount increases. However, no important qualitative effect is observed on their shape and
relative positions. The most important effect of the damping amount is quantitative: the more damping
the lower amplitude and frequency of the limit cycles. The influence of the circulatory action has also a
general tendency, in spite of local discrepancies on unstable limit cycles: the more circulatory action, the
larger amplitude and frequency.
The fast evolution of the limit cycle with regard to the gyroscopic action in the vicinity of the purely
circulatory system with an iso-distributed damping which was previously mentioned can be generalized.
Indeed, it can be observed for any damping amount and an iso-distribution of damping that when the
purely circulatory system shows an unstable equilibrium, achange in the gyroscopic action leads to a
fast evolution of the limit cycle, see Fig. 19, 22 and 25. For negative values of the gyroscopic action,
a unique limit cycle with a large amplitude and frequency is observed. This limit cycle evolves slowly
for large (negative) values of the gyroscopic action. For positive values of the gyroscopic action, the
amplitude rapidly decreases, reaches a minimum then increases slowly. For a large enough gyroscopic
action, a new limit cycle branch can be observed with the samequalitative behaviour as previously
discussed. Fig. 22 suggests that the highest amplitude partand the lowest amplitude part of this new
branch are likely to connect to form a closed branch for a large enough gyroscopic action. The highest
amplitude part of this new branch is unstable by a dominant real eigenvalue of the monodromy matrix
whereas the lowest amplitude part is firstly unstable by complex eigenvalues then becomes stable and its
amplitude and frequency are close to those of the first branchover a range of the gyroscopic action.
For a lower circulatory action, i.e. when the purely circulatory system with an iso-distributed damping
has a stable equilibrium, the first branch gets separated into two parts which surround the stable equilib-
rium. In this situation a negative gyroscopic action leads to a subcritical bifurcation with an important
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Figure 9: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 0.2, ξt = 5% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 10: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 1, ξt = 5% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 11: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 5, ξt = 5% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 12: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 0.2, ξt = 10% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
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Figure 13: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 1, ξt = 10% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 14: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 5, ξt = 10% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 15: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 0.2, ξt = 20% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 16: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 1, ξt = 20% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 17: Limit cycles versus the circulatory action for various values of the gyroscopic action, for Eq.
1 with α = 1.5, αβ = 5, ξt = 20% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 18: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 0.2, ξt = 5% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 19: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 1, ξt = 5% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 20: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 5, ξt = 5% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 21: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 0.2, ξt = 10% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)

30



−1 0 1
0

0.05

0.1

0.15

Gyr. action (ρ)

M
ea

n 
in

cl
. (

ϑ)

ϕ=0.25

−1 0 1
0

0.05

0.1

0.15
ϕ=0.5

ρ
−1 0 1
0

0.05

0.1

0.15
ϕ=0.75

ρ
−1 0 1
0

0.05

0.1

0.15
ϕ=1

ρ

(a)

−1 0 1
0

2

4

6

8

10

Gyr. action (ρ)

R
el

at
iv

e 
pu

ls
at

io
n

ϕ=0.25

−1 0 1
0

2

4

6

8

10
ϕ=0.5

ρ
−1 0 1
0

2

4

6

8

10
ϕ=0.75

ρ
−1 0 1
0

2

4

6

8

10
ϕ=1

ρ

(b)

Figure 22: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 1, ξt = 10% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 23: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 5, ξt = 10% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 24: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 0.2, ξt = 20% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 25: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 1, ξt = 20% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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Figure 26: Limit cycles versus the gyroscopic action for various values of the circulatory action for Eq.
1 with α = 1.5, αβ = 5, ξt = 20% andσ = 104, (a) mean inclination, (b) Relative frequency (gray:
stable limit cycle, dot black: dominant real unstable eigenvalue, solid black: dominant pair of conjugate
complex unstable eigenvalues)
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jump phenomena whereas a positive gyroscopic action leads to a supercritical bifurcation. The additional
branch appears for a large enough circulatory action.
The fast evolution of the limit cycle which is observed in thevicinity of the purely circulatory system
for αβ = 1 is shifted to negative values of the gyroscopic action asαβ is shifted toαβ < 1. As a
consequence, the purely circulatory system shows a far lower limit cycle amplitude and frequency and a
very low sensitivity to the gyroscopic action, see Fig. 18, 21 and 24. The possibility to reach a minimum
of amplitude and minimum of sensitivity with regard to the gyroscopic action by varying the damping
distribution is suggested by this result. In the meanwhile,the additional limit cycle branch is shifted to
positive values of the gyroscopic action and positive values of the circulatory action. The amplitude and
frequency of its lowest amplitude part gets separated from the first branch and their growth is slower with
regard to both the circulatory and the gyroscopic actions, whereas the first branch shows a faster growth.
Nevertheless, apart from these points and the modification of the stability frontier of the equilibrium, the
limit cycle branches look very similar forαβ = 1 andαβ < 1.
Contrariwise, the behaviour of the limit cycle branches becomes more complex asαβ is shifted toαβ >

1. Fig. 20, 23 and 26 reveal that all the parts of the branches have changed their connections in the
vicinity of the purely circulatory system and now all branches interconnect. On Fig. 20, 23 and 26,
it can be observed that the limit cycles are unstable by complex eigenvalues of the monodromy matrix
where the parts connect. Moreover, a particular effect can be observed on Fig. 20, 23 and 26 for the
purely circulatory system which now shows a subcritical bifurcation. A subcritical bifurcation with no
stable limit cycle is even observed for the lowest values of the damping amount, see Fig. 11 and 14. As
a consequence when the circulatory action crosses the stability frontier a jump phenomenon to a steady
state which is not a limit cycle is obtained.
Another consequence of the interconnection between the limit cycle branches is that the steady state of
the system can depend on the time history of its parameters, independently from considerations about
initial conditions. Indeed, assume the dynamics of the system remains always close to the identified limit
cycles for slowly varying parameters and follows their branches by continuity. As an example, consider
Fig. 17 and 26. Assume a negative gyroscopic action, e.g.ρ = −1, and a slowly increasing circulatory
action, fromϕ = 0 to ϕ = 1. The system shows a unique stable limit cycle as the equilibrium destabi-
lizes. Moreover, no other stable solution could be identified, thus the steady state is not conditioned by
the initial conditions. Then, assumeϕ is kept constant andρ varies fromρ = −1 to ρ = 1. Then, the
arrival state is different of that reached when varyingϕ from ϕ = 0 to ϕ = 1 with ρ = 1 kept constant.
A jump phenomena between limit cycles corresponding to a change of branch can even be expected in
the later case ifρ is then decreased fromρ = 1 to ρ = −1.
To summarize, some general tendencies can be extracted fromthis parametric study on the role of the
damping structure, the coupling actions and the nonlinearity.

• The stiffening rate of the system for non-vanishing motions(σ in Eq. 1) has an independent and
strong influence as previously mentioned, the more stiffening the lower amplitude but without any
effect on the frequency.

• The damping amount has a rather independent effect too, the more damping the lower amplitude
and frequency.

• The circulatory action shows a general tendency to increaseboth the amplitude and the frequency.

• The non-symmetrical dependency of the limit cycle to eitherpositive or negative gyroscopic action
or damping distribution withαβ < 1 or αβ > 1 was highlighted.

• For the purely circulatory system with an iso-distributionof damping, a high sensitivity to the
gyroscopic action is observed. Changing the damping distribution to eitherαβ < 1 or αβ > 1
alters this phenomenon by shifting the fast evolution frontto negative values of the gyroscopic
action so that the amplitude and frequency can be largely reduced for the purely circulatory system.
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Figure 27: Limit cycle of the purely circulatory system versus the damping distribution and the circula-
tory action for Eq. 1 withα = 1.5, ξt = 20% andσ = 104 (black: stable limit cycle, gray: dominant
real unstable eigenvalue, white: dominant pair of conjugate complex unstable eigenvalues)

It was also conjectured the possibility to reach a robust minimum of amplitude and frequency by varying
the damping distribution for the purely circulatory system. As a matter of fact, the iso-distribution of
damping seems to maximize the amplitude and frequency. Thisparticular property is emphasized on
Fig. 27 which shows the evolution of the unique limit cycle identified for the purely circulatory system
over a range of damping distribution.
It appears clearly on this figure that the iso-distribution leads to a faster increase of the amplitude and
frequency with regard to the circulatory action and represents a local maximum far from the stability
frontier. Contrariwise, local minima can be observed for eitherαβ < 1 or αβ > 1. The bifurcation
nature changes from supercritical to subcritical asαβ changes fromαβ < 1 to αβ > 1. Thus not
only avoiding an iso-distribution of damping can allow reducing the limit cycle amplitude butαβ < 1
also appears more favourable thanαβ > 1 because of the nature of the associated bifurcation. As
an important consequence, a proper design strategy can allow reducing the amplitude of self-generated
vibrations and avoiding subcritical bifurcations in the same time by adjusting the damping distribution.
It was shown in the stability analysis of the equilibrium that the widest stability domain is found near the
iso-distribution of damping (αβ = 1). Therefore, in a small enough vicinity of the destabilization point,
the iso-distribution of damping can appear as a local minimum of amplitude because of the late rise of
the limit cycle. However, this situation reverses far from the destabilization point and the iso-distribution
of damping becomes a local maximum of the amplitude. In orderto explain this observation, it can
be reminded that for the purely circulatory system with an iso-distribution of damping, both stable and
unstable modes have the same frequency (see [13]). Thus, an intrinsic resonance of the stable mode can
be evocated to explain this particular behaviour.
Therefore, the iso-distribution of damping restrains the most the purely circulatory system from desta-
bilizing but to the detriment of the amplitude of the dynamicstate that follows the destabilization. This
can be considered as a dynamic extension of the destabilization paradox. As a concluding remark, the
important contrast between the results from the stability analysis of the equilibrium and the limit cycle
amplitude regarding the influence of the parameters highlights the large difference which exists between
a linear and a nonlinear investigation of the system. These two viewpoints are complementary and re-
quire an equal attention in order to define relevant design strategies. Countermeasures to self-generated
vibrations based exclusively on a stability analysis of theequilibrium would suggest an iso-distribution of
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damping which can lead to even higher vibrations amplitude.Contrariwise, taking into account the limit
cycles investigation allows defining two distinct approaches depending on whether or not the instability
can be retained.

5 Some comments on the nonperiodic dynamic behavior

In some circumstances neither a stable equilibrium nor a stable limit cycle can be found, as an example
see Fig. 23 forϕ = 1 andρ ∈ [−0.01,−0.05]. This situation can not be highlighted by the sole identifi-
cation of the limit cycle with the proposed method. The stability analysis of the estimated solution is also
necessary. Indeed, a multi-DOF second order system can admit steady solutions which are neither equi-
librium nor limit cycles, but dense trajectories in the state space, strange attractors or chaotic motions.
In the present section, it is proposed to illustrate such dynamic behaviours for the proposed system. A
practical way to do so is to use Poincaré sections, see [18].
In the state space, assume a lower dimensional subspace crossed by the studied trajectory, called a
Poincaré section. Then, the locus of the recursive crossings of this subspace by the trajectory in a chosen
direction forms the Poincaré application and is intimately related to the nature of the motion.
Such sections are reported on Fig. 28 for various values of the gyroscopic action and the same values of
the other parameters as on Fig. 23.
Depending on the gyroscopic action, the Poincaré section shows various pattern.

• For ρ = 0, the Poincaré section is restricted to a unique point, which indicates a periodic motion,
i.e. a limit cycle, confirmed by the time evolution of the variables.

• For ρ = −0.01, the Poincaré section is a single loop closed curve, corresponding to the section
of a torus in the state space, thus the motion is biperiodic. The time evolution of the variables
shows pseudo-periodic oscillations limited by a periodic envelop. Moreover, eigenvalues of the
monodromy matrix of the identified limit cycle cross the unitcircle through non-real values between
ρ = 0 andρ = −0.01, thus a Neimark-Sacker bifurcation, i.e. between a limit cycle and a torus,
see [19], can be conjectured to occur.

• For ρ = −0.02, the previous closed curve now appears divided into two imbricated loops, which
can indicate a period doubling bifurcation of the secondaryperiod of the torus betweenρ = −0.01
andρ = −0.02. This is qualitatively supported by the previously observed envelop being changed
into a half-frequency new one.

• For ρ = −0.03 and ρ = −0.04, the Poincaré section show scattered points in the vicinity of
the previous closed curve and the corresponding motion is rather irregular. A bifurcation to an-
periodic motion withn ≥ 3, a strange attractor or a chaotic attractor according to theRuelle-Takens
scenario can be evocated, see [21].

• Forρ = −0.05, the Poincaré changes back to a closed curve, indicating a biperiodic motion.

• Finally, for ρ = −0.06 the Poincaré section is restricted again to a unique point,which indicates
the stabilization of the limit cycle.

By comparing Fig. 23 and 28, it can be observed that the mean amplitude and the mean pseudo-period of
the non-periodic motions remain close to those of the identified (unstable) limit cycle. Therefore, even
if the limit cycle is not the attractive state, its characteristics are representative of the steady motion and
can still serve as a design criterion to some extend. This wasalso observed for other branches of unstable
limit cycle.
In spite of the relative simplicity of the proposed model, a wide variety of behaviours is observed when
both the equilibrium and the limit cycles destabilize. Therefore, one can presume that more detailed
models with less regular nonlinearities are even more likely to show such a complexity.
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Figure 28: Steady solution of Eq. 1 withα = 1.5, αβ = 5, ξt = 10%, ϕ = 1, σ = 104 and various
values ofρ, (a) Poincaré application in the sectionθ = 0 andθ̇ > 0, (b) position on the1st DOF versus
time
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6 Conclusion

A nonlinear2-DOF system combining damping and both circulatory and gyroscopic actions has been
extensively investigated. Regarding the equilibrium, an important effect of the damping structure on
both the stability frontiers and the nature of the Hopf bifurcation has been exhibited. In particular, it
appears that the iso-distribution of damping is nearly an optimum for the stability range of quasi-purely
circulatory systems. The influence of the gyroscopic actionhas been illustrated too.
The identification of the limit cycles of the systems also revealed a particular influence of the damping
distribution. Both the connections between the branches oflimit cycles and their stability are affected. As
an extension to the destabilization paradox, the iso-distribution of damping has been shown to induce the
fastest growth of the limit cycles for quasi-purely circulatory systems. As a result, the iso-distribution of
damping appears to be at the same time the most desirable structure in order to avoid the destabilization
and the worst configuration in the purpose of reducing the amplitude of the self-generated vibrations.
An internal resonance of the stable mode to the unstable modeis evocated to explain this particular
behaviour. Moreover, the damping structure as well as the sign of the gyroscopic action play an important
role in the nonlinear behaviour of the system. In particular, no symmetry can be observed on the branches
of limit cycles between positive and negative values of the gyroscopic action in the proposed model. The
influence of the damping structure shows no symmetry neither.
Finally, non-periodical stable motions have been shown to take place when neither stable equilibrium
nor stable limit cycle were identified, including multi-periodic motion, strange or chaotic attractors. This
large variety of behaviours exhibited for the rather simpleautonomous2-DOF lumped system allows
emphasizing how complex the dynamics of real-life systems are likely to be. Although the proposed
approach can be applied to some more sophisticated models, some major aspects of friction-induced self-
generated vibrations are highlighted in this paper. Such minimalist models with few DOF can serve as
effective tools for understanding the role of some physicalparameters in identified coupling mechanisms.
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bration for an aircraft brake system”.International Journal of Mechanical Sciences,48(5), pp. 536–
567.
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