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Université Joseph Fourier and CNRS, Maison des Magistères, 38042 Grenoble, France

(Dated: August 28, 2009)

We present a non-relativistic quantum theory for the linear momentum of electromagnetic zero-
point fluctuations. We consider an harmonic oscillator subject to crossed, quasi-static magnetic and
electric and coupled to the quantum vacuum. We derive a contribution of the quantum vacuum to
the linear pseudo-momentum.

INTRODUCTION

Casimir energy refers to the electromagnetic (EM) en-
ergy that shows up when dielectric or metallic objects
interact with the quantum vacuum. It is undoubtedly
one of the most fascinating phenomena in physics, with
a rich history in the 20th century. Casimir forces become
important on sub-micron scales and are thus believed to
play an important role in nano-optics [1]. Casimir en-
ergy has been the subject of many speculations, such as
its role in sonoluminescence [2] or in the cosmological
constant problem [3].

The standard Casimir effect refers to the reduction of
the EM zero-point energy when two ideal metallic plates
approach [4]. Other well-known phenomena related to
Casimir energy are Van Der Waals and Casimir-Polder
forces between neutral atoms [5], the Lifshitz forces be-
tween dielectric media, and arguably the most famous
among all, the Lamb shift of atomic levels. Shortly after
its observation by Lamb in 1947 [6], Bethe explained the
Lamb shift by the change in EM vacuum energy caused
by the interaction of the atom with the quantum vacuum
[7, 8]. The Lamb shifts in light atoms are now under-
stood to be basically nonrelativistic QED phenomena, al-
though full relativistic theory, including the contribution
of several percents due to vacuum polarization, is nec-
essary to come to the extraordinary agreement with ex-
periment, unprecedented in physics. For the two-photon
1S-2S transition in atomic hydrogen, the shift is known
up to several cycles [9].

Energy and momentum are naturally related by rela-
tivity. The search for ”Casimir momentum” seems there-
fore obvious. In 2004 Feigel [10] proposed a quantum
correction to the momentum of dielectric media exposed
to static electric and magnetic fields. From classical elec-
trodynamics it is easy to find the following expression
for the linear momentum of a neutral, polarizable object
with mass M ,

Q = Mv − α(0)E0 × B0 (1)

which is conserved in time, even if the external electric
field E0 is varied slowly in time. Here α(0) is the static
polarizability, with the dimension of a volume. The semi-

classical theory predicts a strongly diverging contribution
of the quantum vacuum to Eq. (1), quite similar to the
one encountered for Casimir energy. Fortunately, spa-
tial gradients of Casimir energy - observable as forces -
are often found not to diverge. Momentum however is
an observable parameter and the divergence does pose
a problem. It has been suggested that UV divergences
are not physical and should disappear into the values at-
tributed to physical observables, such as inertial mass,
electric charge or cosmological constant [11]. If this is
true it is not evident that the prediction of ”Casimir mo-
mentum” found by Feigel will survive or be measurable.
An obvious next question is what physical observable will
then absorb the UV divergence of Casimir momentum. In
this work we provide first answers to these questions. We
use the method of mass renormalization first employed
by Bethe and Kramers that results in a finite Casimir
momentum of simple quantum objects.

It is now realized that Casimir momentum emerges
quite generally in so-called bi-anisotropic media, in which
also magnetic fields can induce an electric polarization.
Except in media exposed to external EM fields, bi-
anisotropy also occurs in moving dielectric media. This
follows from the relativistic transformations of EM fields,
and shall be discussed elsewhere [12]. In general, like
spin, bi-anisotropic behavior and Casimir momentum can
be viewed as a ”remnants” of special relativity [13] in
non-relativistic theory that often suffices to describe phe-
nomena quantitatively. We will be obliged to go beyond
the dipole approximation to treat the high wave numbers
of zero-point fluctuation accurately.

3D HARMONIC OSCILLATOR IN EXTERNAL

FIELDS

The quantum-mechanics of a 3D harmonic oscillator -
composed of two particles with opposite charge q1 = +e
and q2 = −e and masses mi - exposed to crossed, homo-
geneous static EM fields E0,B0 was discussed in detail
and non-perturbationally by Dippel etal [14]. We will
use R = (m1r1 + m2r2)/M and r = r1 − r2 for the cen-
ter of mass position and the interparticle distance, with
conjugate momenta P and p, respectively. The external,
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classical magnetic field can be described by the vector
potential A0(r) = 1

2B0 × r. The total kinetic momen-
tum is thus Pkin = P−eA0(r1)+eA0(r2) = P− e

2B0×r.
Finally, the pseudo-momentum Q, given by

Q = P +
e

2
B0 × r = Pkin + eB0 × r (2)

commutes with the atomic Hamiltonian and is the
quantum-mechanical equivalent of Eq. (1). For the pur-

pose of this work it is convenient to choose eigenfunctions
that simultaneously diagonalize the atomic Hamiltonian
and the pseudo-momentum Q, labeled by the eigenvalue
Q0. It will be sufficient to ignore all contributions other
than on those linear in either E0 and B0, as indicated by
the sign ≍. In this approximation, the magneto-electric
oscillator is unitary equivalent to an isotropic harmonic
oscillator as expressed by,

|n,Q0〉 ≍ exp

(

i

~
Q0 ·R

)

exp

[

− i

2~
(B0 × r) · R

]

exp

(

− i

~
p0 · r

)

exp

(

− i

~
p · r0

)

|φn〉

n = (nx, ny, nz), ni = 0, 1, · · · denotes the quantum lev-
els of the oscillator. The first two exponentials on the
right denote translational momentum of the center of
mass, and governed by the conjugate momentum P. The
last pair of exponentials eliminate the static electric field
from the picture, with the eigenfunctions of the oscil-
lator shifted out of the center of mass over a distance
r0 = e−1α(0)(E0 + Q0 × B0/M), and the reduced mo-
mentum shifted by p0 ≍ (2M)−1(m2−m1)α(0)(E0×B0).
Here α(0) = e2/µω2

0 is the static polarizability of the os-
cillator. Due to the static magnetic field, the oscillator
states |φn〉 are in principle still anisotropic and even in
B0. The anisotropy is estimated by the small parame-
ter eB0a/(~/a) ≈ 10−5, with a the atomic size. This
anisotropy constitutes corrections nonlinear in the ap-
plied fields to the final result for the total momentum.
We can therefore neglect it.

Upon taking the quantum-expectation value of Eq. (2)
for the atomic ground state reveals that the eigenvalue
Q0 is just equal to the classical expression (1). The total
energy of the oscillator in the ground state E0 ≍ 3

2~ω0 +
Q2

0/2M is minimal when Q0 = 0, i.e. for a finite kinetic
momentum.

COUPLING TO EM QUANTUM VACUUM

In the following we couple the object above to the EM
quantum vacuum and calculate the total momentum us-
ing second-order perturbation theory. The Hamiltonian

in the Schrödinger picture is given by

H = H0 + HF + W (3)

H0 =

2
∑

i=1

[

1

2mi

(pi − qiA0(ri))
2 − qiE.ri

]

+
1

2
µω2

0r
2

HF =
∑

kǫ

~ωk

[

a†
kǫ

akǫ +
1

2

]

W =

2
∑

i=1

− qi

mi

(pi − qiA0(ri))A(ri) +
q2
i

2mi

A(ri)
2

The EM bath will be treated in the Coulomb gauge.
A pseudo momentum K exists that replaces Q in that it
commutes with H [15], even if the electric field is varied in
time. It has contributions from both atom and radiation,

K = Q + e∆A +
∑

kǫ

~k

[

a†
kǫ

akǫ +
1

2

]

(4)

The term e∆A = eA(r1) − eA(r2) in K guarantees the
gauge-invariant contribution of the ”longitudinal” vac-
uum field to the pseudo-momentum, in terms of the vec-
tor potential A(r) quantized as usual inside a quantiza-
tion volume V . The last term stems from the ”trans-
verse” electromagnetic field in the vicinity of the atom
[15].

We wish to express K = 〈Ψ0|K|Ψ0〉, of the per-
turbed total ground state |Ψ0〉 in terms of the two rel-
evant vectors: the pseudo momentum Q0 of the unper-
turbed oscillator and the magneto-electric vector E0×B0.
In the absence of the interaction with the quantum
vacuum, the eigenstates are just the direct products
|n,Q0,nk〉 = |n,Q0〉 ⊗ |nk〉, with unperturbed energies
EnQ0nk

= EnQ
0

+
∑

k ~ωk(nk + 1
2 ). Here nk is the oc-

cupation of the EM Fock states with photon momentum
~k. The ground state follows from second-order pertur-

bation in the coupling W to the quantum vacuum (
∑

′
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avoids zeros in the denominator),

|Ψ0〉 = |0,Q0,0〉 +
∑

lQn

′ WlQn,0Q00

E0Q00 − ElQn

|l,Q,n〉

+
∑

lQn

′
∑

sQ′m

′ WlQn,sQ′mWsQ′m,0Q00

(E0Q00 − ElQn)(E0Q00 − EsQ′m)
|l,Q,n〉

+
∑

lQn

′ |WlQn,0Q00|2
(E0Q00 − ElQn)2

|l,Q,n〉

Only the emission and subsequent re-absorption of one
virtual photon contributes at this one-loop level of the
theory, which generates an temporary recoil momentum
Q0 − ~k of the oscillator,

K = Q0

+ e22Re
∑

lkǫ

A2
kǫ

〈φ0| (eik(r+r0)
m2

M − e−ik(r+r0)
m1

M ) |φl〉Ω∗
l,0

E0Q00 − El(Q0−~k)1k

+ B0 × 2Re
∑

lskǫ

e3A2
k 〈φ0| r + r0 |φl〉Ωl,sΩ

∗
s,0

(E0Q00 − ElQ00)(E0Q00 − Es(Q0−~k)1k
)

+ B0 ×
∑

lskǫ

e3A2
k 〈φs| r + r0 |φl〉Ω∗

l,0Ω0,s

(E0Q00 − El(Q0−~k)1k
)(E0Q00 − Es(Q0−~k)1k

)

(5)

We introduced Ωl,s = 〈φl|Ω |φs〉 with

Ω = eǫ · [B0 × (r + r0)]

(

eik(r+r0)
m2

M

m1
− e−ik(r+r0)

m1

M

m2

)

− Q0

M
· ǫ
(

eik(r+r0)
m2

M − e−ik(r+r0)
m1

M

)

− (p − p0) · ǫ
(

eik(r+r0)
m2

M

m1
+

e−ik(r+r0)
m1

M

m2

)

and A2
k = ~/2ε0V kc familiar from quantum optics.

Three kinds of contributions to K can be identified.
The first class is proportional to Q0 (see the middle term

in Ωl,s) that survives even in the absence of external
fields. We will discuss this class elsewhere [12] and argue
that it is a QED correction to the kinetic momentum and
thus to the mass of the oscillator. Its UV divergence can
be absorbed into the total mass M in the same way as
discussed below for the ME divergencies.

The second class, represented by the two last contribu-
tions in Eq. (5), are actually QED contributions to the
induced electrical dipole moment 〈Ψ0|er|Ψ0〉 of the oscil-
lator, that find their way to the total momentum via the
classical expression (1). It is straightforward to calculate
these corrections - they actually do not diverge and they
are relatively small - but we note that if an experimental
value for α(0) is used to evaluate the ”classical” contri-
bution, these terms are automatically included. In this
sense they do not constitute a genuine ”Casimir momen-
tum”.

The term e∆A in Eq. (4) is a genuine contribution of
the vacuum radiation to the pseudo-momentum. It will
be seen to generate a momentum linear in E0 × B0 by
means of the second term in Eq. (5).The following calcu-
lation will focus on this contribution. It suffers from a UV
divergence, that can be eliminated by exactly the same
mass regularization as applied by Bethe in his calcula-
tion of the Lamb shift [7]. In particular, this procedure
establishes that the reduced mass featuring in the static
polarizability α(0) = e2/µω2

0 will be replaced by the ”ob-
served” reduced mass. It is straightforward to show that
the so-called transverse electromagnetic momentum, rep-
resented by the last term of Eq. (4), does not contribute
a net momentum. This follows from selection rules and
spatial symmetry.

We apply the closure relation
∑

l |φl〉 〈φl| (E(k) + El)
−1 = (E(k) + Hho)

−1 in the
second contribution to K. This generates two terms
involving exponentials with opposite phases, one of
which is

−e2
∑

kǫ

A2
kǫ 〈φ0| eik(r+r0)

m2

M

[

~
2k2

2M
− Q0 · ~k

M
+ ~ωk − E0 + Hho

]−1

e−ik(r+r0)
m2

M [eB0 × (r + r0)] · ǫ |φ0〉
1

m1
+ c.c.

= α(0)E0 × B0
4α

3π

[

~
2

m1

∫

kdk
~2k2

2m1

+ ~ck
+ O

(

~ω0

Mc2

)

]

The other term just involves the other mass. The
first term in the second equality neglects the Doppler
terms Q0 · ~k and p · ~k, generated by the identity

eikrHho(p)e−ikr = Hho(p − ~k). They provide a finite
correction of order ~ω0

Mc2 ∼ 10−8. The leading contribu-
tion diverges logarithmically. In the Bethe theory for
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the Lamb shift [7] exactly the same kind of divergency
was encountered. The two diverging mass-like terms

δmi = 4α
3π

~
2
∫

kdk(~
2k2

2mi
+~ck)−1 - here with recoil effects

included - stem from the QED coupling of the free parti-
cles 1 and 2 with the quantum vacuum and are therefore
naturally interpreted to be part of their intrinsic, observ-
able masses [8]. Adding up three diverging contributions
- the third one due to the term Q0/M in the expression

for Ω - we obtain µ−1(δm1/m1 + δm2/m2 − δM/M) =
µ−2δµ = −δ(1/µ). Since the static polarizability is pro-
portional to 1/µ, these UV-divergent corrections disap-
pear into the factor α(0) of Eq. (1), which thus becomes
defined in terms of the observed reduced mass µ∗.

All other terms generated by Eq. (5) are finite. In
particular, the term involving p0 generates the following
contribution to K:

K1 = α(0)E0 × B0
m2 − m1

2M

4α

3π
lim
δ↓0

∫ ∞

δ

dk

(

k

k2/2 + ckm2/~
− 2

k
− k

k2/2 + ~ckm1/~
+

2

k

)

= −α(0)E0 × B0
4α

3π

m1 − m2

M
log

m1

m2
. (6)

The UV divergency cancels out, and the integral is fi-
nite. Of course part of the k-integral enters the rela-
tivistic regime ~k > mic in which the present theory
is not valid. However, by subtracting and adding 2/k to
both integrands in Eq. (6) reveals two terms whose range
of integration is typically mic/~. This wavenumber was
used by Bethe to cut off his nonrelativistic theory for
the Lamb shift [7]. We will thus adopt the final result
in Eq. (6) as a “reasonable” nonrelativistic estimate for
the Casimir momentum. It is nevertheless clear that a
relativistic theory is required to get the complete picture
for Casimir momentum.

All other cross-terms in Eq. (5) contain oscillating
exponential factors and converge rapidly for k > 1/a,
i.e. stay in the nonrelativistic regime . They gen-
erate a Casimir momentum that is typically a factor
√

~ω0/µc2 ∼ α smaller. We obtain,

K2 = α(0)E0 × B0 α

√

~ω0

µc2

×
(

− 14

15
√

π
+

2

3
√

π

(

∆m

M

)2

+
8

3
√

π

µ

M

)

(7)

When both masses are equal, K2 becomes the sole con-
tribution to Casimir momentum. For m1 ≫ m2 , K1

dominates. Since it is independent on details of the force
between the two particles, it is tempting to apply Eq. (6)
to the hydrogen atom. With ~ω0 = 10 eV, m1 = mp and
m2 = me, E0 = 105 V/m and B0 = 17 T, we find for
the velocity associated with the classical contribution (1)
vcl ≈ 5 µm/s, and a QED correction of 2 % in the same
direction; K2 yields a negligible correction of 0.01 %.

In conclusion, we have presented a non-relativistic
quantum electrodynamic theory for the total of an har-
monic oscillator, subject to external classical fields, and
coupled to the electromagnetic quantum vacuum. The
most important conclusions of this work are that Casimir

momentum exists and that its UV divergencies are renor-
malizable. The theory shows it to be basically a non-
relativistic quantity, but that relativistic corrections are
likely to be significant, much like in the Lamb shift prob-
lem. To our knowledge nor the classical contribution to
magneto-electric momentum, neither the QED correction
have ever been observed.
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