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Résumé

On considère une équation aux dérivées partielles stochastique possédant deux non-linéarités de
type logarithmique, avec deux réflexions en 1 et −1 sous la contrainte de conservation de masse.
L’équation, dirigée par un bruit blanc en espace et en temps, contient un double Laplacien.
L’absence de principe de maximum pour le double Laplacien pose des difficultés pour l’utilisation
d’une méthode classique de pénalisation, pour laquelle une importante propriété de monotonie
est utilisée. Etant inspiré par les travaux de Debussche, Goudenège et Zambotti, on démontre
l’existence et l’unicité de solutions pour des données initiales entre −1 et 1. Enfin, on démontre
que l’unique mesure invariante est ergodique, et on énonce un résultat de mélange exponentiel.

Abstract

We consider a stochastic partial differential equation with two logarithmic nonlinearities, with two
reflections at 1 and −1 and with a constraint of conservation of the space average. The equation,
driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift.
The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical
penalization method, which uses a crucial monotonicity property. Being inspired by the works of
Debussche, Goudenège and Zambotti, we obtain existence and uniqueness of solution for initial
conditions in the interval (−1, 1). Finally, we prove that the unique invariant measure is ergodic,
and we give a result of exponential mixing.

Introduction and main results

The Cahn-Hilliard-Cook equation is a model to describe phase separation in a binary alloy (see
[6], [7] and [8]) in the presence of thermal fluctuations (see [11] and [27]). It takes the form:











∂tu = −1

2
∆ (∆u − ψ(u)) + ξ̇, on Ω ⊂ R

n,

∇u · ν = 0 = ∇(∆u− ψ(u)) · ν, on ∂Ω,

(0.1)

where t denotes the time variable and ∆ is the Laplace operator. Also u ∈ [−1, 1] represents the
ratio between the two species and the noise term ξ̇ accounts for the thermal fluctuations. The
nonlinear term ψ has the double-logarithmic form:

ψ : u 7→ θ

2
ln

(

1 + u

1 − u

)

− θcu, (0.2)
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where θ and θc are temperatures with θ < θc.
The study of this equation presents several difficulties. First, the singularities at ±1 have to be

treated carefully. Also, since it is a fourth order equation, no comparison principle holds.
The deterministic equation where ψ is replaced by a polynomial function have first been studied

(see [7], [27] and [32]). Then non smooth ψ have been considered (see [5] and [17]).
Phase separation have been analysed thanks to this model: see for example the survey [31],

and the references therein, or others recent results on spinodal decomposition and nucleation in
[1, 4, 24, 28, 29, 35, 36, 37].

In the case of a polynomial nonlinearity, some results have been obtained in the stochastic case
(see [2, 3, 9, 10, 12, 19]).

Note that the solutions of the equation with polynomial nonlinearity do not remain in [−1, 1]
in general, and their physical interpretation is not clear.

To our knowledge, the case of the logarithmic nonlinearity in the presence of noise have never
been studied. The presence of noise has a strong effect and equation (0.1) cannot have a solution.
Indeed, a solution should remain in [−1, 1] which is impossible with an additive noise. Two reflec-
tion measures have to be added to the model to remedy this problem. In this article, we propose
to study:











∂tu = −1

2
∆
(

∆u− ψ(u) + η− − η+

)

+ ξ̇, with θ ∈ [0, 1] = Ω,

∇u · ν = 0 = ∇(∆u) · ν, on ∂Ω,

(0.3)

where the measures are subject to the contact conditions almost surely:

∫

(1 + u)dη− =

∫

(1 − u)dη+ = 0. (0.4)

The stochastic heat equation with reflection, i.e. when the fourth order operator is replaced
by the Laplace operator, is a model for the evolution of random interfaces near a hard wall. It
has been extensively studied in the literature (see [16], [21], [22], [33] [38], [39] and [40]). Essential
tools in these articles are the comparison principle and the fact that the underlying Dirichlet form
is symmetric so that the invariant measure is known explicitely.

In our case, we consider a noise which is obtained as the space derivative of the space-time
white noise. In other words, the noise is the time derivative of a cylindrical Wiener process in
H−1(0, 1). This is physically reasonable since the Cahn-Hilliard equation can be interpreted as a
gradient system in this space. With such noise, the system is still symmetric and the invariant
measure is known explicitely. As in the second order case, we use this fact in an essential way.

However, as already mentioned, no comparison principle holds and new techniques have to be
developed. The equation (0.3) has been studied with a single reflection and when no nonlinear
term is taken into account in [18]. The reflection is introduced to enforce positivity of the solution.
Various techniques have been introduced to overcome this lack of comparison principle. Moreover,
as in the second order case, an integration by part formula for the invariant measure has been
derived. Then, in [23], a singular nonlinearity of the form u−α or lnu have been considered.
Existence and uniqueness of solutions have been obtained and using the integration by parts formula
as in [39], it has been proved that the reflection measure vanishes if and only if α ≥ 3. In particular,
for a logarithmic nonlinearity, the reflection is active.

Here, we consider the original Cahn-Hilliard-Cook model (0.1) with the double-logarithmic
nonlinear term (0.2). The noise is as in the above mentioned articles and we still have an explicit
invariant measure. Our method mixes ideas from [18], [23] and [39]. Additional difficulties are
overcome, the main one being to understand how to deal with the nonlinear term. Indeed, in [23],
the positivity of the nonlinear term was essential. We overcome this difficulty thanks to a delicate a
priori estimate. Our main results state that equations (0.3), (0.4) together with an initial condition
have a unique solution (see Proposition 2.3 and Theorem 1.1). As in [18], it is constructed thanks to
the gradient structure of (0.3) and strong Feller property. Moreover, we prove that this solution is
the limit of the solution of the Cahn-Hilliard-Cook equation with polynomial nonlinearity without
reflections. This justifies the use of the polynomial models. We also prove that the invariant
measure is unique and ergodic. Such property is very easy to obtain if θc is small (see [18]) or in
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the polynomial case (see [12]). Finally, a stronger result of exponential mixing is given in the last
Theorem 3.1. It is based on coupling and arguments developped by Odasso in [34].

In future studies, we shall generalize the integration by part formula obtain in [18] to prove
that the reflection measure does not vanish. The presence of two reflection measures introduces
additional difficulties. In the second order case, this has been studied in [20].

1 Preliminaries

We denote by 〈·, ·〉 the scalar product in L2(0, 1); A is the realization in L2(0, 1) of the Laplace
operator with Neumann boundary condition, i.e.:

D(A) = Domain of A = {h ∈W 2,2(0, 1) : h′(0) = h′(1) = 0}

where we use Wn,p and ||.||W n,p to denote the Sobolev space Wn,p(0, 1) and its associated norm.
Remark that A is self-adjoint on L2(0, 1) and we have a complete orthonormal system of eigenvec-
tors (ei)i∈N in L2(0, 1) for the eigenvalues (λi)i∈N. We denote by h̄ the mean of h ∈ L2(0, 1):

h̄ =

∫ 1

0

h(θ)dθ.

We remark that A is invertible on the space of functions with 0 average. In general, we define
(−A)−1h = (−A)−1(h− h̄) + h̄.

For γ ∈ R, we define (−A)γ by classical interpolation. We set Vγ := D((−A)γ/2). It is endowed
with the classical seminorm and norm :

|h|γ =

(

+∞
∑

i=1

(−λi)
γh2

i

)1/2

, ‖h‖γ =
(

|h|2γ + h̄2
)1/2

, for h =
∑

i∈N

hiei.

| · |γ is associated to the scalar product (·, ·)γ . To lighten notations, we set (·, ·) := (·, ·)−1 and
H := V−1. The average can be defined in any Vγ by h̄ = (h, e0). It plays an important role and
we often work with functions with a fixed average c ∈ R. We define Hc = {h ∈ H : h̄ = c} for all
c ∈ R.

We use the following regularization operators:

QNx =
1

N

N
∑

n=0

n
∑

i=0

(x, ei)ei.

It is defined on L2(0, 1) and can extended to any Vγ . Clearly QNx converges to x in Vγ if x ∈ Vγ .
Moreover, it is well known that if x ∈ C([0, 1]; R), then the converges holds in C([0, 1]; R). Note
also that QN is self-adjoint in Vγ and commutes with A.

The covariance operator of the noise is the operator B defined by

B =
∂

∂θ
,D(B) = W 1,2

0 (0, 1).

Note that

B∗ = − ∂

∂θ
, D(B∗) = W 1,2(0, 1), BB∗ = −A.

We denote by Bb(Hc) the space of all Borel bounded functions on Hc. We set Os,t := [s, t] × [0, 1]
for s, t ∈ [0, T ] with s < t and T > 0, and Ot = O0,t for 0 ≤ t ≤ T . Given a measure ζ on Os,t and
a continuous function v on Os,t, we write

〈

v, ζ
〉

Os,t
:=

∫

Os,t

v dζ.
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For λ ∈ R, we define:

f(x) :=































+∞, for all x ≤ −1,

ln

(

1 − x

1 + x

)

+ λx, for all x ∈ (−1, 1),

−∞, for all x ≥ 1,

(1.1)

and the following antiderivative F of −f :

F (x) = (1 + x) ln(1 + x) + (1 − x) ln(1 − x) − λ

2
x2, for all x ∈ (−1, 1).

With these notations, we rewrite (0.3) in the abstract form:



























dX = −1

2
A (AX + f(X) + η− − η+) dt +BdW,

〈(1 +X), η−〉OT
= 〈(1 −X), η+〉OT

= 0,

X(0, x) = x for x ∈ V−1,

(1.2)

where W is a cylindrical Wiener process on L2(0, 1).

Definition 1.1 Let x ∈ C([0, 1]; [−1, 1]). We say that
(

(X(t, x))t∈[0,T ] , η+, η−,W
)

, defined on a

filtered complete probability space
(

Ω,P,F , (Ft)t∈[0,T ]

)

, is a weak solution to (0.3) on [0, T ] for the
initial condition x if:

(a) a.s. X ∈ C ((0, T ] × [0, 1]; [−1, 1])∩ C([0, T ];H) and X(0, x) = x,

(b) a.s. η± are two positive measures on (0, T ]×[0, 1], such that η±(Oδ,T ) < +∞ for all δ ∈ (0, T ],

(c) W is a cylindrical Wiener process on L2(0, 1),

(d) the process (X(·, x),W ) is (Ft)-adapted,

(e) a.s. f(X(·, x)) ∈ L1(OT ),

(f) for all h ∈ D(A2) and for all 0 < δ ≤ t ≤ T :

〈X(t, x), h〉 = 〈X(δ, x), h〉 − 1

2

∫ t

δ

〈X(s, x), A2h〉ds − 1

2

∫ t

δ

〈Ah, f(X(s, x))〉ds

−1

2

〈

Ah, η+
〉

Oδ,t
+

1

2

〈

Ah, η−
〉

Oδ,t
−
∫ t

δ

〈Bh, dW 〉, a.s.,

(g) a.s. the contact properties hold :
supp(η−) ⊂ {(t, θ) ∈ OT /X(t, x)(θ) = −1} and supp(η+) ⊂ {(t, θ) ∈ OT /X(t, x)(θ) = 1},
that is,

〈

(1 +X), η−
〉

OT
=
〈

(1 −X), η+
〉

OT
= 0.

Finally, a weak solution (X, η+, η−,W ) is a strong solution if the process t 7→ X(t, x) is adapted
to the filtration t 7→ σ(W (s, .), s ∈ [0, t])

Remark 1.1 In (f), the only term where we use the function f is well defined. Indeed, by (e) we
have f(X(·, x)) ∈ L1(OT ) and by Sobolev embedding Ah ∈ D(A) ⊂ L∞(OT ). Hence the notation
〈·, ·〉 should be interpreted as a duality between L∞ and L1.
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The solution of the linear equation with initial data x ∈ H is given by

Z(t, x) = e−tA2/2x+

∫ t

0

e−(t−s)A2/2BdWs.

As easily seen this process is in C([0,+∞[;H) (see [14]). In particular, the mean of Z is constant
and the law of the process Z(t, x) is the Gaussian measure:

Z(t, x) ∼ N
(

e−tA2/2x,Qt

)

, Qt =

∫ t

0

e−sA2/2BB∗e−sA2/2ds = (−A)−1(I − e−tA2

).

If we let t→ +∞, the law of Z(t, x) converges to the Gaussian measure on L2:

µc := N (ce0, (−A)−1), where c = x̄.

Notice that µc is concentrated on Hc ∩ C([0, T ]).
In order to solve equation (1.2), we use polynomial approximations of this equation. We denote

by {fn}n∈N the sequence of polynomial functions which converges to the function f on (−1, 1),
defined for n ∈ N by:

fn(x) = −2

n
∑

k=0

x2k+1

(2k + 1)
+ λx, for all x ∈ R.

We use the following antiderivative Fn of −fn defined by:

Fn(x) = 2

n
∑

k=0

x2k+2

(2k + 2)(2k + 1)
− λ

2
x2, for all x ∈ R.

Then for n ∈ N, we study for the following polynomial approximation of (1.2) with an initial
condition x ∈ H :











dXn +
1

2
(A2Xn +Afn(Xn))dt = BdW,

Xn(0, x) = x.

(1.3)

This equation has been studied in [12] in the case B = I. The results generalize immediately and
it can be proved that for any x ∈ H , there exists a unique solution Xn(·, x) a.s. in C([0, T ];H) ∩
L2n+2((0, T )× (0, 1)). It is a solution in the mild or weak sense. Moreover the average of Xn(t, x)
does not depend on t.

For each c ∈ R, (1.2) defines a transition semigroup (Pn,c
t )t≥0:

Pn,c
t φ(x) = E[φ(Xn(t, x)], t ≥ 0, x ∈ Hc, φ ∈ Bb(Hc), n ∈ N

∗.

Existence of an invariant measure can be proved as in [12].
Using Galerkin approximation and Bismut-Elworthy-Li formula, it can be seen that (Pn,c

t )t≥0

is Strong Feller. More precisely, for all φ ∈ Bb(Hc), n ∈ N and t > 0:

|Pn,c
t φ(x) − Pn,c

t φ(y)| ≤ 2eλ2t/4

λ
√
t

‖φ‖∞|x− y|−1, for all x, y ∈ Hc. (1.4)

Irreducibility follows from a control argument. By Doob Theorem we deduce that there exists an
unique and ergodic invariant measure νn

c .
It is classical that equation (1.3) is a gradient system in Hc and can be rewritten as:











dXn +
1

2
A(AXn −∇Un(Xn))dt = BdW,

Xn(0, x) = x ∈ L2(0, 1),

(1.5)

where ∇ denotes the gradient in the Hilbert space L2(0, 1), and:

Un(x) :=

∫ 1

0

Fn(x(θ))dθ, x ∈ L2(0, 1).
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The measure νn
c is therefore given by:

νn
c (dx) =

1

Zn
c

exp(−Un(x))µc(dx),

where Zn
c is a normalization constant.

We prove in section 2 that, for c ∈ (−1, 1), the sequence (νn
c )n∈N converges to the measure

νc(dx) =
1

Zc
exp(−U(x))1x∈Kµc(dx),

where

U(x) :=

∫ 1

0

F (x(θ))dθ, x ∈ L2(0, 1).

and
K = {x ∈ L2 : 1 ≥ x ≥ −1}.

In section 2, we prove the following result.

Theorem 1.1 Let c ∈ (−1, 1). Let x ∈ K such that x̄ = c, then there exists a continuous process

denoted (X(t, x))t≥0 and two nonnegative measures ηx
+ and ηx

− such that
(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

is the unique strong solution of (0.3) with X(0, x) = x a.s.
The Markov process (X(t, x), t ≥ 0, x ∈ K∩Hc) is continous and has P c for transition semigroup

which is strong Feller on Hc.
For all x ∈ K∩Hc and 0 = t0 < t1 < · · · < tm, (X(ti, x), i = 1, . . . , n) is the limit in distribution

of (Xn(ti, x))i=1,...,m.
Finally νc is an invariant measure for P c.

In all the article, C denotes a constant which may depend on T and its value may change from
one line to another.

2 Proof of Theorem 1.1

2.1 Pathwise uniqueness

We first prove that for any pair (X i, ηi
+, η

i
−,W ), i = 1, 2, of weak solutions of (0.3) defined on

the same probability space with the same driving noise W and with X1(0) = X2(0), we have
(

X1, η1
+, η

1
−

)

=
(

X2, η2
+, η

2
−

)

. This pathwise uniqueness will be used in the next subsection to
construct stationary strong solutions of (0.3).

Proposition 2.1 Let x ∈ C ([0, 1]; [−1, 1]). Let
(

X i, ηi
+, η

i
−,W

)

, i = 1, 2 be two weak solutions of

(0.3) with X1(0) = X2(0) = x. Then
(

X1, η1
+, η

1
−

)

=
(

X2, η2
+, η

2
−

)

.

Proof : We use the following Lemma from [23].

Lemma 2.1 Let ζ be a finite measure on Oδ,T and V ∈ C(Oδ,T ). Suppose that there exists a
positive continuous function cT : [0, T ] → R

+ such that :

i) for all r ∈ [δ, T ], for all h ∈ C([0, 1]), such that h̄ = 0, 〈h, ζ〉Or,T
= 0,

ii) for all r ∈ [δ, T ], V (r, ·) = cT (r) with 〈V, ζ〉Or,T
= 0,

then ζ is the null measure.

Let Y (t) = X1(t, x) − X2(t, x), ζ+ = η1
+ − η2

+ and ζ− = η1
− − η2

−, Y is the solution of the
following equation:











dY = −1

2
A
(

AY +
(

f(X1) − f(X2)
)

+ ζ− − ζ+
)

dt,

Y (0) = 0.

(2.1)
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Taking the scalar product in H with Y N = QNY and integrating in time, we obtain since Y has
zero average:

|Y N (t)|2−1 − |Y N (δ)|2−1 = −
∫ t

δ

(

|Y N (s)|21 − 〈f(X1) − f(X2), Y N 〉
)

ds + 〈ζ− − ζ+, Y
N 〉Oδ,t

. (2.2)

For all s ∈ [δ, t],

〈Y N (s) − Y (s), f(X1(s, x)) − f(X2(s, x))〉

≤ ‖Y N (s) − Y (s)‖L∞([0,1])‖f(X1(s, x)) − f(X2(s, x))‖L1([0,1]),

where ‖ · ‖L∞([0,1]) and ‖ · ‖L1([0,1]) are the classical norms on the space [0, 1]. The latter term

converges to zero since Y N (s) converges uniformly to Y (s) on [0, 1]. Since f(x)−λx is nonincreasing,
(

〈Y (s), f(X1(s, x)) − f(X2(s, x))〉
)

=
(

〈Y (s), f(X1(s, x)) − f(X2(s, x)) − λY (s)〉
)

+ (〈Y (s), λY (s)〉)
≤ λ|Y (s)|20.

Taking the limit in (2.2) as N grows to infinity, we obtain:

|Y (t)|2−1 − |Y (δ)|2−1 ≤
〈

Y, ζ− − ζ+
〉

Oδ,t
+ λ

∫ t

δ

|Y (s)|20 ds.

We now write
〈

Y, ζ− − ζ+
〉

Oδ,t

=
〈

1 +X1, η1
−

〉

Oδ,t
−
〈

1 +X2, η1
−

〉

Oδ,t
−
〈

1 +X1, η2
−

〉

Oδ,t
+
〈

1 +X2, η2
−

〉

Oδ,t

+
〈

1 −X1, η1
+

〉

Oδ,t
−
〈

1 −X2, η1
+

〉

Oδ,t
−
〈

1 −X1, η2
+

〉

Oδ,t
+
〈

1 −X2, η2
+

〉

Oδ,t

≤ 0

by the contact condition and the positivity of the measures. It follows:

|Y (t)|2−1 − |Y (δ)|2−1 ≤ λ

∫ t

δ

|Y (s)|20 ds.

By Gronwall Lemma, and letting δ → 0, we have |Y (t)|−1 = 0 for all t ≥ 0. Since Ȳ (t) = 0, we
deduce X1(t, x) = X2(t, x) for all t ≥ 0. Moreover, with the definition of a weak solution, we see
that :

for all h ∈ D(A2),
〈

Ah, ζ+ − ζ−
〉

Oδ,t
= 0.

By density, we obtain that ζ := ζ− − ζ+ and V := (1 −X1)(1 +X1) = (1 −X2)(1 +X2) satisfy
the hypothesis of Lemma 2.1, and therefore ζ = ζ− − ζ+ is the null measure. And since ζ− and ζ+
have disjoint supports, then ζ− and ζ+ are the null measure, i.e. η1

− = η2
− and η1

+ = η2
+.

�

2.2 Convergence of invariants measures

We know (see [18]) that µc is the law of Y c = B − B + c, where B is brownian motion. Then for
0 ≤ c < 1, we remark the following inclusion :

{Bθ ∈
[

c− 1

2
,
1 − c

2

]

, for all θ ∈ [0, 1]} ⊂ {Y c ∈ K},

and we have a similar result for −1 < c ≤ 0. Therefore µc(K) > 0 with −1 < c < 1. Let us define
U the potential associated to the function f :

U(x) =







∫ 1

0

F (x(θ))dθ if x ∈ K,

+∞ else.

We have the following result :
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Proposition 2.2 For −1 < c < 1,

νn
c ⇀ νc :=

1

Zc
exp−U(x)

1x∈Kµc(dx), when n→ +∞,

where Zc is a normalization constant.

Proof : Let ψ ∈ Cb(L
2,R). We want to prove that

∫

H

ψ(x) exp(−Un(x))µc(dx) −→
n→+∞

∫

H

ψ(x) exp(−U(x))1x∈Kµc(dx). (2.3)

We first prove,
exp(−Un(x)) −→

n→+∞
exp(−U(x))1x∈K , µc a.s. (2.4)

Since µc(C([0, 1])) = 1, we can restrict our attention to x ∈ C([0, 1]). Then if x /∈ K there exists
δx > 0 such that m({θ ∈ [0, 1] : x(θ) ≤ −1 − δx}) > 0 or m({θ ∈ [0, 1] : x(θ) ≥ 1 + δx}) > 0,
m being the Lebesgue measure. Suppose m({θ ∈ [0, 1]/x(θ) ≤ −1 − δx}) > 0, then we have since

F̃n(x) = Fn(x) +
λ

2
x2 is positive and non increasing on (−∞,−1)

0 ≤ exp(−Un(x)) ≤ exp

(

−
∫ 1

0

F̃n(x(θ))1{x≤−1−δx} −
λ

2
x(θ)2dθ

)

≤ exp

(

−
∫ 1

0

F̃n(−1 − δx)1{x≤−1−δx} −
λ

2
x(θ)2dθ

)

≤ exp

(

−F̃n(−1 − δx)m({x ≤ −1 − δx}) +

∫ 1

0

λ

2
x(θ)2dθ

)

.

And this latter term converges to zero as n grows to infinity.
Now for x ∈ K, Fn(x(θ)) converges to F (x(θ)) almost everywhere as n grows to infinity. More-

over −λ
2
x(θ)2 ≤ Fn(x(θ)) ≤ ln 2, and by the dominated convergence Theorem, we deduce (2.4).

Finally, (2.3) follows again by dominated convergence Theorem.

2.3 Existence of stationary solutions

In this section, we prove the existence of stationary solutions of equation (1.2) and that they are
limits of stationary solutions of (1.3), in some suitable sense. Fix −1 < c < 1 and consider the
unique (in law) stationary solution of (1.3) denote X̂n

c in Hc. We are going to prove that the laws
of X̂n

c weakly converge as n grows to infinity to a stationary strong solution of (0.3).

Proposition 2.3 Let −1 < c < 1 and T > 0, X̂n
c converges in probability as n grows to infinity

to a process X̂c in C(OT ). Moreover f(X̂c) ∈ L1(OT ) almost surely, and setting

dηn
+ = −fn(X̂n

c (t, θ))1X̂n
c (t,θ)>0dtdθ + f(X̂c(t, θ))10<X̂c(t,θ)≤1dtdθ,

and
dηn

− = fn(X̂n
c (t, θ))1X̂n

c (t,θ)≤0dtdθ − f(X̂c(t, θ))1−1≤X̂c(t,θ)≤0dtdθ,

then (ηn
+, η

n
−) converges in probability to (η+, η−) such that (X̂c, η+, η−,W ) is a stationary strong

solution of (0.3).

Proof : Proceeding exactly as in [18] (see Lemma 5.2), we prove that the laws of (X̂n
c ,W

n)n∈N

are tight in C(OT ) × C([0, T ];Vγ), γ < −1/2. We have set Wn = W , n ∈ N. We therefore can

extract convergent subsequences. Let (X̂nk
c ,Wnk)k∈N be such a subsequence. Using Skohorod

theorem, one may find a probability space and a sequence of random variables (X̃k
c ,Wk)k∈N on

this probability space with the same laws as (X̂nk
c ,Wnk)k∈N which converge almost surely.
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Below, we show in Step 1 that its limit X̃c satisfies f(X̃c) ∈ L1(OT ) almost surely. Then in
Step 2, we prove that the measures η̃k

±, defined as above with X̂nk
c replaced by X̃k

c , converges to

two positive measures η̃± and that (X̃c, η̃+, η̃−) is a weak solution in the probabilistic sense. It
then remains to use pathwise uniqueness to conclude in Step 3. In this proof, we only treat the
case λ = 0. This assumption is not essential at all but lightens the computations. For λ 6= 0, an
extra term has to be taken into account. It is very easy to deal with.

Step 1.

Applying Ito formula to |QN X̂
n
c (t)|2−1, we obtain

|QNX̂
n
c (T )|2−1 − |QN X̂

n
c (0)|2−1 +

∫ T

0

|QN X̂
n
c (t)|21dt − 2

∫

OT

fn(X̂n
c )
(

QN X̂
n
c − c

)

dsdθ

= 2

∫ T

0

(QN X̂
c
n, BdW (s)) + T Tr(QNB)

Note that

E





(

∫ T

0

(QN X̂
n
c , BdW (s))

)2


 = E

∫ T

0

|QNX̂
n
c |2−1ds = T

∫

H

|QNx|2−1ν
n
c (dx) ≤ C T

We set

ϕN
n = |QN X̂

n
c (T )|2−1 − |QN X̂

n
c (0)|2−1 +

∫ T

0

|QNX̂
n
c (t)|21dt

−2

∫

OT

fn(X̂n
c )
(

QNX̂
n
c − c

)

dsdθ − T Tr(QNB)

and deduce

P(|ϕN
n | ≥M) ≤ C T

M2
.

Thus, for all N ∈ N, the laws of (ϕN
n )n∈N are tight. Therefore the laws of (X̂n

c ,W
n, (ϕN

n )N∈N)n∈N

are tight and using Skohorod theorem on this sequence, we can assume that X̃k
c , Wk and, for

N ∈ N, ϕ̃N
k converge almost surely. We have defined ϕ̃N

k as above with X̃k
c instead of X̂n

c . In
particular, ϕ̃N

k is bounded almost surely:

|QN X̃
k
c (T )|2−1 − |QN X̃

k
c (0)|2−1 +2

∫ T

0

|QN X̃
k
c (t)|21dt

−2

∫

OT

fk(X̃k
c )
(

QN X̃
k
c − c

)

dsdθ − T Tr(QNB)

≤ C(N,T, c)

where C(N,T, c) is random. The first three terms are clearly also bounded almost surely. This
uses the fact that QN is a bounded operator from H to V1. Since QN has finite dimensional range,
we obtain

−
∫

OT

fnk
(X̃k

c )
(

QNX̃
k
c − c

)

dsdθ ≤ C(N,T, c) (2.5)

for a different random constant C(N,T, c).

Let us choose ǫ0 = min

{

1 − c

4
,
1 + c

4

}

and take N ∈ N such that

|QNX̃c − X̃c|C(OT ) ≤
1

2
ǫ0

and K0 such that for k ≥ K0

|X̃k
c − X̃c|C(OT ) ≤

1

4
ǫ0.

9



Then, for all k ≥ K0,
|QN X̃

k
c − X̃k

c |C(OT ) ≤ ǫ0.

Moreover, if X̃k
c ≥ 1 + c

2
then fnk

(X̃k
c ) ≤ 0 and

QN X̃
k
c − c ≥ −ǫ0 +

1 + c

2
− c ≥ 1 − c

4
≥ ǫ0.

Similarly, if X̃k
c ≤ −1 + c

2
then fnk

(X̃k
c ) ≥ 0 and

QN X̃
k
c − c ≤ −ǫ0.

Finally, noticing that fn is uniformly bounded by a constant K(c) on [
−1 + c

2
,
1 + c

2
], we deduce

∫

OT

|fnk
(X̃k

c )|dsdθ ≤ − 1

ǫ0

∫

X̃k
c ≥ 1+c

2

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ

− 1

ǫ0

∫

X̃k
c ≤−1+c

2

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ +K(c)

≤ − 1

ǫ0

∫

OT

fnk
(X̃k

c )
(

QN X̃
k
c − c

)

dsdθ

+
1

8
(max{1 − c, 1 + c})2K(c) +K(c).

Thanks to (2.5), we obtain
∫

OT

|fnk
(X̃k

c )|dsdθ ≤ C(N,T, c), (2.6)

where the value of the random constant C(N,T, c) has again changed. It easily deduced from this
uniform bound that |X̃c| ≤ 1 almost everywhere with respect to t and ω and by Fatou Lemma that
f(X̃c) ∈ L1(OT ) almost surely.

�

Step 2.

Let now ξk be the following measure on OT :

dξk := −fnk(X̃k
c (t, θ))dtdθ.

and ξk
+ and ξk

− the positive and negative parts:

dξk
+ := −fnk(X̃k

c (t, θ))1X̃k
c >0dtdθ, dξk

− := fnk(X̃k
c (t, θ))1X̃k

c ≤0dtdθ.

By step 1, f(X̃c) ∈ L1(OT ) and we can define the following measure:

dλ := −f((X̃c(t, θ))1−1≤X̃c≤1dtdθ,

and the positive and negative parts:

dλ+ := −f((X̃c(t, θ))10<X̃c≤1dtdθ, dλ− := f((X̃c(t, θ))1−1≤X̃c≤0dtdθ.

By (2.6), fnk(X̃k
c )− f(X̃c) is bounded in L1(OT ). We deduce that ξk has a subsequence ξkℓwhich

converges to a measure ζ. Note that this subsequence may depend on the random parameter ω.
We set η̃ = ζ − λ.

10



Thanks to Fatou Lemma we have the following inequality for all h ∈ C(OT ) nonnegative:

∫

OT

h(s, θ)
[

− f(X̃c(s, θ))10<X̃c≤1

]

dsdθ =

∫

OT

lim inf
ℓ→+∞

[

− h(s, θ)fnkℓ (X̃kℓ
c (s, θ))1

0<X̃
kℓ
c ≤1

]

dsdθ

≤ lim inf
ℓ→+∞

∫

OT

[

− h(s, θ)fnkℓ (X̃kℓ
c (s, θ))1

0<X̃
kℓ
c ≤1

]

dsdθ.

Therefore η̃kℓ

+ = ξkℓ

+ − λ+ converges to a positive measure. Similarly, η̃kℓ

− = ξkℓ

− − λ− converges to
a positive measure. It follows:

ξkℓ

+ − λ+ ⇀ η̃+ and ξkℓ

− − λ− ⇀ η̃−,

where η̃+ and η̃− are the positive and negative parts of η̃.

Let us now show that the contact conditions holds for
(

1 − X̃c, η̃+

)

and
(

1 + X̃c, η̃−

)

. Let us

define the following measures for ε > 0 and k ∈ N.

dξk
+,ε := −fnk(X̃k

c (t, θ))11−ε≤X̃k
c
dtdθ, dτk

+,ε := −fnk(X̃k
c (t, θ))10<X̃k

c <1−εdtdθ,

dλ+,ε := −f(X̃c(t, θ))11−ε≤X̃c
dtdθ, dτ+,ε := −f(X̃c(t, θ))10<X̃c<1−εdtdθ.

Clearly τk
+,ε converges to τ+,ε, it follows

lim sup
ℓ→+∞

〈

1 − X̃kℓ
c , ξkℓ

+ − λ+

〉

OT

= lim sup
ℓ→+∞

(

〈

1 − X̃kℓ
c , ξkℓ

+,ε

〉

OT
−
〈

1 − X̃kℓ
c , λ+,ε

〉

OT

+
〈

1 − X̃kℓ
c , τkℓ

+,ε

〉

OT
−
〈

1 − X̃kℓ
c , τ+,ε

〉

OT

)

= lim sup
ℓ→+∞

(∫

OT

(

X̃kℓ
c − 1

)

fnkℓ (X̃kℓ
c )1

1−ε≤X̃
kℓ
c

dtdθ

+

∫

OT

(

1 − X̃kℓ
c

)

f(X̃c)11−ε≤X̃c
dtdθ

)

≤ lim sup
ℓ→+∞

(∫

OT

(

X̃kℓ
c − 1

)

fnkℓ (X̃kℓ
c )1

1−ε≤X̃
kℓ
c ≤1

dtdθ

)

+ lim sup
ℓ→+∞

(∫

OT

(

1 − X̃kℓ
c

)−

f(X̃c)11−ε≤X̃c
dtdθ

)

Since (1 − X̃kℓ
c )− converges uniformly to zero, we deduce:

lim sup
ℓ→+∞

〈1 − X̃kℓ
c , ξkℓ

+ − λ+

〉

OT
≤ T sup

x∈[1−ε,1]

|(x− 1)f(x)|

≤ −Tε ln

(

ε

2 − ε

)

.

Letting ε → 0, we obtain the first contact condition since the left hand side clearly converges to
〈1 − X̃c, η̃+〉. The second is obtained similarly.

We now prove that ξk − λ does not have more than one limit point so that in fact the whole
sequence converge to η̃. Let η̃i, i = 1, 2 be two limit points.

For all h ∈ D(A2) and for all 0 ≤ t ≤ T :

〈

Ah, ξk − λ
〉

Ot
= 〈X̃k

c (t, .), h〉 − 〈x, h〉 +

∫

Ot

X̃k
c (s, θ)A2h(θ)dsdθ

+

∫ t

0

〈Bh, dWk〉 +

∫

Ot

f(X̃c(s, θ))Ah(θ)dsdθ.
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We deduce

〈

Ah, η̃i

〉

Ot
= −〈X̃c(t, .), h〉 + 〈x, h〉 −

∫

Ot

X̃c(s, θ)A
2h(θ)dsdθ

−
∫ t

0

〈Bh, dW〉 −
∫

Ot

f(X̃c(s, θ))Ah(θ)dsdθ.

And by density
〈

h, η̃1
〉

Ot
=
〈

h, η̃2
〉

Ot

for any h ∈ C([0, 1]) such that h̄ = 0. Since by the contact condition

〈

(1 − X̃c)(1 + X̃c), η̃1
〉

Ot
=
〈

(1 − X̃c)(1 + X̃c), η̃2
〉

Ot
.

We deduce from Lemma 2.1 that η̃1 = η̃2.

�

Step 3.

We use a result form [25] that allows to get the convergence of the approximated solutions in
probability in any space in which these approximated solutions are tight.

Lemma 2.2 Let {Zn}n≥1 be a sequence of random elements on a Polish space E endowed by its
borel σ-algebra. Then {Zn}n≥1 converges in probability to an E-valued random element if and any
if from every pair of subsequences {(Zn1

k
, Zn2

k
)k≥1, one can extract a subsequence which converges

weakly to a random element supported on the diagonal {(x, y) ∈ E × E, x = y}.

Assume (n1
k)k∈N and (n1

k)k∈N are two arbitrary subsequences. Clearly, the process
(

X̂
n1

k
c , X̂

n2
k

c ,W k
)

is tight in a suitable space. By Skorohod’s theorem, we can find a probability space and a sequence

of processes
(

X̃1,k
c , X̃2,k

c ,Wk
)

such that
(

X̃1,k
c , X̃2,k

c ,Wk
)

→
(

X̃1
c , X̃

2
c ,W

)

almost surely and
(

X̃1,k
c , X̃2,k

c ,Wk
)

has the same distribution as
(

X̂
n1

k
c , X̂

n2
k

c ,W k
)

for all k ∈ N. In the Skorohod’s

space, the approximated measures respectively converge to two contact measures η̃1 and η̃2. By
the second step, (X̃1

c , η̃1,W) and (X̃2
c , η̃2,W) are both weak solutions of (0.3). By uniqueness,

necessarily X̃1
c = X̂2

c and η̃1 = η̃2. Therefore the subsequence
(

X̂
n1

k
c , X̂

n2
k

c

)

k∈N

converges in distri-

bution to a process supported on the diagonal. We use Lemma 2.2 to prove that the sequence (X̂n
c )

converges in probability to a process X̂c. Clearly X̂c is stationary. Reproducing the argument of
Step 1 and Step 2, we prove that it is a strong solution of (0.3) and the convergence of the contact
measures.

�

2.4 Convergence of the semigroup

First we state the following result which is a corollary of Proposition 2.3.

Corollary 2.1 Let c > 0.

i) There exists a continuous process (X(t, x), t ≥ 0, x ∈ K ∩Hc) with X(0, x) = x and a set K0

dense in K ∩Hc, such that for all x ∈ K0 there exists a unique strong solution of equation

(0.3) given by
(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

.

ii) The law of
(

X(t, x)t≥0, η
x
+, η

x
−

)

is a regular conditional distribution of the law of
(

X̂c, η+, η−

)

given X̂c(0) = x ∈ K ∩Hc.
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Proof : By Proposition 2.3, we have a stationary strong solution X̂c in Hc, such that W and

X̂c(0) are independent. Conditioning
(

X̂c, η+, η−

)

on the value of X̂c(0) = x, with c = x, we

obtain for νc-almost every x a strong solution that we denote
(

X(t, x), ηx
+, η

x
−

)

for all t ≥ 0 and for
all x ∈ K ∩Hc. This process is the desired process. Indeed, since the support of νc is K ∩Hc, we
have a strong solution for a dense set K0 in K ∩Hc.
Notice that all processes (X(t, x))t≥0 with x ∈ K0 are driven by the same noise W and are
continuous with values in H . Moreover, we have the following obvious identity:

|Xn(t, x) −Xn(t, y)|−1 ≤ eλt|x− y|−1, x, y ∈ L2
c , t ≥ 0,

and by density we obtain a continuous process (X(t, x))t≥0 in Hc for all x ∈ K ∩Hc.

�

Proposition 2.4 Let c > 0, for all φ ∈ Cb(H) and x ∈ K ∩Hc:

lim
n→+∞

Pn,c
t φ(x) = E[φ(X(t, x))] =: P c

t φ(x). (2.7)

Moreover the Markov process (X(t, x), t ≥ 0, x ∈ K ∩ Hc) is strong Feller and its transition
semigroup P c is such that:

|P c
t φ(x) − P c

t φ(y)| ≤ 2eλ2t/4

λ
√
t

|x− y|−1, for all x, y ∈ K ∩Hc, for all t > 0. (2.8)

Proof : Since (νn
c )n≥1 is tight in Hc, then there exists an increasive sequence of compact sets

(Jp)p∈N in H such that:
lim

p→+∞
sup
n≥1

νn
c (H \ Jp) = 0.

Set J := ∪
p∈N

Jp∩K. Since the support of νc is in K∩Hc and νc(J) = 1, then J is dense in K∩Hc.

Fix t > 0, by (1.4), for any φ ∈ Cb(H) :

sup
n∈N

(‖Pn,c
t φ‖∞ + [Pn,c

t φ]Lip(Hc)) < +∞.

Let (nj)j∈N be any sequence in N. With a diagonal procedure, by Arzelà-Ascoli Theorem, there
exists (njl

)l∈N a subsequence and a function Θt : J → R such that:

lim
l→+∞

sup
x∈Jp

|Pnjl
,c

t φ(x) − Θt(x)| = 0, for all p ∈ N.

By density, Θt can be extended uniquely to a bounded Lipschitz function Θ̃t on K ∩Hc such that

Θ̃t(x) = lim
l→+∞

P
njl

,c
t φ(x), for all x ∈ K ∩Hc.

Note that the subsequence depends on t. Therefore, we have to prove that the limit defines a
semigroup and does not depend on the chosen subsequence.
By Proposition 2.3, we have for all φ, ψ ∈ Cb(H) :

E

[

ψ
(

X̂c(0)
)

φ
(

X̂c(t)
)]

= lim
l→+∞

E

[

ψ
(

X̂
njl
c (0)

)

φ
(

X̂
njl
c (t)

)]

= lim
l→+∞

∫

H

ψ(y)E
[

φ
(

X̂
njl
c (t)

) ∣

∣

∣X̂
njl
c (0) = y

]

ν
njl
c (dy)

= lim
l→+∞

∫

H

ψ(y)P
njl

,c
t φ(y)ν

njl
c (dy)

=

∫

H

ψ(y)Θ̃t(y)νc(dy).

Thus, by Corollary 2.1, we have the following equality:

E [φ (X(t, x))] = Θ̃t(x), for νc-almost every x. (2.9)

Since E[φ(X(t, .))] and Θ̃t are continuous on K ∩ Hc, and νc(K ∩ Hc) = 1, the equality (2.9) is
true for all x ∈ K ∩Hc. Moreover the limit does not depend on the chosen subsequence, and we
obtain (2.7). Letting n→ ∞ in (1.4), we deduce (2.8).

�
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2.5 End of the proof of Theorem 1.1

We have proved that there exists a continous process X which is a strong solution of equation (0.3)
for an x in a dense space. In this section, we prove existence for an initial condition in K ∩ Hc

with c > 0.
By Corollary 2.1 we have a process (X(t, x), t ≥ 0, x ∈ K ∩Hc), such that for all x in a set K0

dense in K ∩Hc we have a strong solution
(

(X(t, x))t≥0 , η
x
+, η

x
−,W

)

of (0.3) with initial condition

x. By Proposition 2.3, the Markov process X has transition semigroup P c on Hc.
The strong Feller property of P c implies that for all x ∈ K ∩ Hc and s > 0 the law of X(s, x)
is absolutely continous with respect to the invariant measure νc. Indeed, if νc(Γ) = 0, then
νc(P

c
s (1Γ)) = νc(Γ) = 0. So P c

s (1Γ)(x) = 0 for νc-almost every x and by continuity for all
x ∈ K ∩Hc.
Therefore almost surely X(s, x) ∈ K0 for all s > 0 and x ∈ K ∩ Hc. Fix s > 0, denote for all
θ ∈ [0, 1]:

X̃ := t 7→ X(t+ s, x), W̃ (·, θ) := t 7→W (t+ s, θ) −W (s, θ)),

and the measures η̃x
± such that for all T > 0, and for all h ∈ C(OT ):

〈

h, η̃±
x
〉

OT
:=

∫

OT+s
s

h(t− s, θ)ηx
±(dt, dθ).

So we have a process X̃ ∈ C([0, T ];H)∩ C(OT ) and two measures η̃x
+ and η̃x

− on OT which is finite

on [δ, T ]× [0, 1] for all δ ≥ 0, such that
(

(X̃(t, x))t≥0, η̃
x
+, η̃

x
−, W̃

)

is a strong solution of (0.3) with

initial condition X(s, x). By continuity X(s, x) → x in H as s→ 0, so
(

(X(t, x))t≥0, η
x
+, η

x
−,W

)

is
a strong solution of (0.3) with initial condition x in the sense of the definition 1.1.

3 Ergodicity and mixing

When λ is small, it can be easily shown that νc is the unique invariant measure and is ergodic.
We now prove that this is in fact true for any λ. Note that since (P c

t )t≥0 is Strong Feller, the
results follows from Doob theorem if we prove that (P c

t )t≥0 is irreducible (see for instance [15]).
For additive noise driven SPDEs, this is often proved by a control argument and continuity with
respect to the noise. This latter property is not completely trivial in our situation but we are able
to adapt the argument.

Proposition 3.1 For any c ∈ (−1, 1), the semigroup (P c
t )t≥0 is irreducible.

Proof :

Let x, y ∈ C∞([0, 1]) be such that |x|L∞(0,1) ≤ 1− δ and |y|L∞(0,1) ≤ 1 − δ for some δ > 0 and
x̄ = ȳ = c. We set

u(t) =
t

T
y +

(

1 − t

T

)

x

and define g0 by

g0(θ, t) =

∫ θ

0

(

1

T
(y − x) +

1

2
A(Au + f(u))

)

(ϑ, t)dϑ

Then g0 is in C∞([0, T ]× [0, 1]), g0(t) ∈ D(B), t ∈ [0, T ], and:

d

dt
u = −1

2
A(Au+ f(u)) +Bg0.

Moreover
d

dt
u = −1

2
A(Au + fδ(u)) +Bg0 (3.1)

where fδ is any Lipschitz function equal to f on [−1 + δ/2, 1 − δ/2].
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Let Xδ(·, x) be the solution of (0.3) with f replaced by fδ and set Y δ(·, x) = Xδ(·, x) − Z,
where Z = Z(·, 0) is the solution of the linear equation with 0 as initial data. Then

d

dt
Y δ = −1

2
A
(

AY δ + fδ(Y
δ + Z)

)

, Y δ(0, x) = x.

Let also

z0(t) =

∫ t

0

e−A2(t−s)/2Bg0(s)ds.

Since the gaussian process Z is almost surely continuous and has a non degenerate covariance, we
clearly have

P
(

|Z − z0|C(OT ) ≤ ε
)

> 0

for any ε > 0. Let us denote by Y z the solution of

d

dt
Y z = −1

2
A (AY z + fδ(Y

z + z)) , Y z(0, x) = x. (3.2)

We prove below that the mapping
Φδ : z 7→ Y z

is continuous from C(OT ) into C(OT ). Since u = Φδ(z0) + z0 and Xδ = Φδ(Z) + Z, we deduce
that there exists ε such that

P
(

|Xδ − u|C(OT ) ≤ δ/2
)

≥ P
(

|Z − z0|C(OT ) ≤ ε
)

> 0

Let us now observe that |Xδ −u|C(OT ) ≤ δ/2 implies |Xδ|C(OT ) ≤ 1− δ/2 so that fδ(X
δ) = f(Xδ)

and Xδ is fact solution of (0.3). By pathwise uniqueness, we deduce that |Xδ − u|C(OT ) ≤ δ/2

implies Xδ = X . It follows

P
(

|X − u|C(OT ) ≤ δ/2
)

≥ P
(

|Xδ − u|C(OT ) ≤ δ/2
)

> 0

In particular
P (|X(T, x) − y| ≤ δ/2) > 0.

If we assume now that x, y ∈ Hc , we choose x̃, ỹ ∈ C∞([0, 1]) such that

|x− x̃| ≤ δ, |y − ỹ| ≤ δ, |x̃|L∞(0,1) ≤ 1 − δ and |ỹ|L∞(0,1) ≤ 1 − δ,

and ¯̃x = ¯̃y = c. We have
|X(T, x) −X(T, x̃)| ≤ eλT |x− x̃|.

Therefore
P
(

|X(T, x) − y| ≤ δ/2 + (1 + eλT )δ
)

≥ P (|X(T, x̃) − ỹ| ≤ δ/2) > 0.

This proves the results.
It remains to prove that Φδ is continuous. This follows form the mild form of equation (3.2):

Y z(t) = e−tA2/2x+

∫ t

0

e−(t−s)A2/2Afδ(Y
z(s) + z(s))ds.

It is classical that, for t > 0, Ae−tA2/2 maps C([0, 1]) into itself and

∣

∣

∣Ae−tA2/2
∣

∣

∣

L(C([0,1]))
≤ Ct−1/2.

This can be seen from the formula

Ae−tA2/2u = −
∑

i∈N

λie
−λ2

i t/2〈u, ei〉ei,
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where (ei)i∈N and (λi)i∈N are the eigenvectors and eigenvalues of −A. Since |ei|C([0,1] are equi-
bounded, we deduce

∣

∣

∣Ae−tA2/2u
∣

∣

∣

C([0,1]
≤ C

(

∑

i∈N

λie
−λ2

i t/2

)

|u|L1(0,1)

≤ C t−1/2|u|C([0,1])

We deduce

|Y z1(t) − Y z2(t)|C([0,1])

≤ C Lδ

∫ t

0

(t− s)−1/2
(

|Y z1(s) − Y z2(s)|C([0,1]) + |z1(s) − z2(s)|C([0,1])

)

ds

where Lδ is the Lipschitz constant of fδ. Gronwall Lemma implies the result for T sufficiently
small. Iterating the argument we obtain the continuity of Φδ.

�

Corollary 3.1 For every c ∈ (−1, 1), νc is the unique invariant measure of the transition semi-
group (P c

t )t≥0. Moreover it is ergodic.

Using classical arguments, it is easily seen that, for λ = 0, νn
c satisfies a log-Sobolev inequality and

therefore a Poincaré inequality. The constant in these inequality do not depend on n so that we
have the same result for νc. For λ 6= 0, we can argue as in [13] and prove that this is still true.

We now want to prove a stronger result : exponential mixing. We use coupling arguments
developped by Odasso in [34].

Theorem 3.1 For every c ∈ (−1, 1), there exist a small β > 0 and a constant C > 0 such that for
all ϕ ∈ Bb(K ∩Hc), t > 0 and x ∈ Hc

|E[ϕ(X(t, x))] − νc(ϕ)| ≤ C‖ϕ‖∞e−βt. (3.3)

Proof : By (2.8), we know that for any ϕ ∈ Bb(K ∩Hc), T > 0, ε > 0,

|P c
Tϕ(x) − P c

Tϕ(y)| ≤ 4eλ2T/4

λ
√
T

ε‖ϕ‖∞

if x, y ∈ Hc, |x|−1 ≤ ε and |y|−1 ≤ ε. By definition of the total variation norm, we deduce

‖ (P c
T )

∗
δx − (P c

T )
∗
δy‖var = sup

‖ϕ‖∞≤1

|P c
Tϕ(x) − P c

Tϕ(y)| ≤ 4eλ2T/4

λ
√
T

ε (3.4)

for T > 0, x, y ∈ Hc, |x|−1 ≤ ε and |y|−1 ≤ ε. We have denoted by δx the Dirac mass at x ∈ Hc

so that (P c
T )

∗
δx is the law of X(T, x).

Recall that a coupling of ((P c
T )∗ δx, (P

c
T )∗ δy) is a couple of random variable (X1, X2) such that

the law of X1 is (P c
T )

∗
δx and the law of X2 is (P c

T )
∗
δy. By standard results on couplings (see for

instance [26] section 4, or [30]), we know there exists a maximal coupling of ((P c
T )

∗
δx, (P

c
T )

∗
δy).

Let us denote by (Y1(x, y), Y2(x, y)) this maximal coupling, it satisfies

P(Y1(x, y) 6= Y2(x, y)) = ‖ (P c
T )

∗
δx − (P c

T )
∗
δy‖var. (3.5)

Moreover (Y1(x, y), Y2(x, y)) depends measurably on (x, y).
By the Strong Feller property, we know that x 7→ P(|X(T, x)|−1 ≤ ε) is continuous on Hc.

Therefore, thanks to Proposition 3.1, for any x ∈ K ∩Hc, there exists a ηx > 0 and a κx > 0 such
that

P(|X(T, y)|−1 ≤ ε) > κx
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for all y ∈ K ∩Hc such that |x − y|−1 ≤ ηx. By compactness of K ∩Hc in Hc, we deduce that
that there exits κ0 > 0 such that

P(|X(T, y)|−1 ≤ ε) > κ0 (3.6)

for all y ∈ K ∩Hc.
Let W̃ a cylindrical Wiener process independent on W and denote by X̃ the associated solution

of the stochastic Cahn-Hilliard equation which has the same law as X . For arbitrary x, y ∈ K∩Hc,
we define the coupling (Z1(x, y), Z2(x, y) of ((P c

T )
∗
δx, (P

c
T )

∗
δy) as follows

(Z1(x, y), Z2(x, y)) =























(X(T, x), X(T, y)) if x = y,

(Y1(x, y), Y2(x, y)) if |x|−1 ≤ ε, |y|−1 ≤ ε and x 6= y,

(X(T, x), X̃(T, y)) otherwise.

We now construct recursively (X1(kT, x, y), X2(kT, x, y)) a coupling of ((P c
kT )

∗
δx, (P

c
kT )

∗
δy),

the laws of X(kT, x) and X(kT, y). For k = 0, we set (X1(kT, x, y), X2(kT, x, y)) = (x, y). For
k ≥ 0, we define (X1 ((k + 1)T, x, y) , X2 ((k + 1)T, x, y)) by

X1 ((k + 1)T, x, y) = Z1 (X1 (kT, x, y) , X2 (kT, x, y)) ,

X2 ((k + 1)T, x, y) = Z2 (X1 (kT, x, y) , X2 (kT, x, y)) .

Let us define
τ = inf{kT : |X1(kT, x, y)|−1 ≤ ε, |X2(kT, x, y)|−1 ≤ ε}

If |x|−1 ≤ ε and |y|−1 ≤ ε, then τ = 0 and E(eατ ) = 1.
If τ 6= 0 i.e. if |x|−1 ≥ ε or |y|−1 ≥ ε, then by construction of the coupling and (3.6)

P(τ > T ) < 1 − κ2
0.

More generally
P(τ > kT

∣

∣τ ≥ kT ) < 1 − κ2
0.

We deduce
P(τ > kT ) < (1 − κ2

0)
k

and
E(eατ ) =

∑

k∈N

eαkT
P(τ = kT ) ≤

∑

k∈N

eαkT (1 − κ2
0)

k−1 = M <∞

for α small enough. Similarly, if we define

τn = inf{kT > τn−1 : |X1(kT, x, y)|−1 ≤ ε, |X2(kT, x, y)|−1 ≤ ε},

for all n ≥ 2 and with τ1 := τ . We have

E(eα(τn−τn−1)) ≤M

so that
E(eατn) ≤Mn.

Define
k0 = inf{n ≥ 1 : X1(τn + T, x, y) = X2(τn + T, x, y)}.

By (3.4), (3.5), for all n ≥ 1

P(k0 = n) ≤ P(k0 > n− 1) ≤
(

4eλ2T/4

λ
√
T

ε

)n−1

.
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We choose ε small enough such that

(

4eλ2T/4

λ
√
T

ε

)

< 1.

Then we write

E(eβτk0 ) =
∑

n≥1

E
(

eβτn1k0=n

)

≤
∑

n≥1

(E(e2βτn))1/2(P(k0 = n))1/2

≤
∑

n≥1

Mnβ/α

(

4eλ2T/4

λ
√
T

ε

)(n−1)/2

= M <∞

for β small enough.
By Markov’s inequality, we conclude that for all k ≥ 1

|E(ϕ(X(kT, x))) − E(ϕ(X(kT, y)))|

= |E(ϕ(X1(kT, x, y))) − E(ϕ(X2(kT, x, y)))|

≤ 2‖ϕ‖∞P(X1(kT, x, y) 6= X2(kT, x, y))

≤ 2‖ϕ‖∞P(kT > τk0
+ T )

≤ 2‖ϕ‖∞Me−β(k−1)T .

We define k :=

⌊

t

T

⌋

such that we have P c
t = P c

kTP
c
t−kT . Thus we can write

|E[ϕ(X(t, x))] − νc(ϕ)| =

∣

∣

∣

∣

P c
t ϕ(x) −

∫

Hc

ϕ(y)νc(dy)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Hc

P c
t ϕ(x)νc(dy) −

∫

Hc

P c
t ϕ(y)νc(dy)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Hc

(

P c
kTP

c
t−kTϕ(x) − P c

kTP
c
t−kTϕ(y)

)

νc(dy)

∣

∣

∣

∣

≤
∫

Hc

2‖P c
t−kTϕ‖∞Me−β(k−1)T νc(dy)

≤ 2‖ϕ‖∞Me−β(k−1)T

≤ C‖ϕ‖∞e−βt.

�
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