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[1] An analytical solution in the Laplace domain is derived for modeling anomalous
pressure diffusion during pumping tests in aquifer displaying hierarchical fractal
fracture networks. The proposed solution generalizes all of the analytical models for
fractal flow published previously by combining multifractal diffusion and nested
multiporosity with transient exchanges, interface skin effects, and well storage effect.
Solutions are derived for fracture-delimited blocks with planar, cylindrical, and spherical
shapes, as well as with any fractional dimensional shapes. Any combinations of these
shapes can be defined in order to model a large range of situations. Within each
permeability level, the fractal properties of the fracture network can be specified and the
fractal dimension can be distinct from the shape dimension of the block.

Citation: Lods, G., and P. Gouze (2008), A generalized solution for transient radial flow in hierarchical multifractal fractured

aquifers, Water Resour. Res., 44, W12405, doi:10.1029/2008WR007125.

1. Introduction

[2] Hydraulic properties of reservoirs are usually inferred
from well tests (either pumping or injection tests) by fitting
the parameters of heuristic models that account for the
assumed hydrodynamic features (e.g., heterogeneity) of
the medium. For instance, fractured reservoirs often display
distinct sets of conductive fractures which may be
connected to each other, and which usually delimit less
conductive zones. In their pioneering work, Barenblatt et al.
[1960] introduced the double-porosity concept, proposing
that reservoirs can be represented by two overlapping
continua with distinctly different porosity values. They
distinguished a main fracture network, where flow takes
place at the scale of the volume affected by the pumping
test, and porous blocks that can be drained by the fractures.
Mass transfers between fractures and blocks can be modeled
either by stationary [Warren and Root, 1963] or transient
[Boulton and Streltsova, 1977] formulations. Stationary
exchange models assume instantaneous diffusion in the
blocks, while the mass exchange rate is controlled by
the difference in head between the fracture and the block.
The transient exchange approach is much more realistic, and
has been improved by parameterization of the fracture skin
effect [Moench, 1984] that allows modeling of the expected
hydraulic impedance at the fracture-block interface due to
the presence of pre-existing mineral deposits or an alteration
layer. The introduction of the skin effect unifies the two
types of exchange, since fracture-block exchange tends to
be stationary if fracture-block impedance is high.
[3] Several models have been proposed to account for

more complex reservoir properties and specific shapes of
the drawdown or recovery curves derived from pumping

tests. The triple-porosity model was introduced by Closman
[1975], and further developed by Abdassah and Ershaghi
[1986], who proposed analytical solutions to model flow in
a fractured network exchanging water (transient) with two
matrix continua displaying distinct hydrodynamic proper-
ties. Rodriguez et al. [2004] proposed analytical solutions
with stationary exchanges between two nested sets of
fractures and a porous matrix. Pulido et al. [2006] addressed
solutions for modeling transient exchanges, including the
skin effect, between a fracture network, a microfracture
network and a porous matrix assuming that microfractures
are unconnected on a large scale.
[4] The presence of vugular cavities in reservoirs has also

been investigated. Liu et al. [2003] proposed analytical
solutions with stationary exchange between a fracture
network, vugular cavities and matrix blocks, assuming that
vugular cavities are unconnected at the large scale (i.e.,
fractures segregate both the matrix and the vugular cavities).
This model was extended to the possible large-scale con-
nectivity of vugular cavities (i.e., vugular cavities are
connected to the well) by Camacho-Velázquez et al.
[2005], while Pulido et al. [2007] gave solutions accounting
for transient exchanges and skin effect between fractures,
vugular cavities and matrix.
[5] A more general multicontinuum approach was pro-

posed by Bai et al. [1993]. However, although multicontin-
uum models may be appropriate for studying fluid flow in
systems with hierarchized permeability, they do not account
for the fractal properties of fracture networks as commonly
observed in natural reservoirs [Le Borgne et al., 2004;
Bernard et al., 2006]. For example, the models listed above
do not account for (1) the scale dependence of porosity and
permeability and (2) the nonuniform connectivity distribu-
tion of fracture networks and the presence of critical links
acting as bottlenecks that may generate anomalous diffusion
[see de Dreuzy and Davy, 2007, and references herein].
[6] Fractal properties of fractured reservoirs have been

studied intensively following the pioneering developments
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byMandelbrot [1983]. Fragmentation processes were related
to fractal properties by Turcotte [1986], and numerous field
measurements have shown that natural fracture networks
possess fractal properties [e.g., Barton and Hsieh, 1989;
Nolte et al., 1989; Chelidze and Gueguen, 1990; Sahimi et
al., 1993]. The calculation of radial diffusion in synthetic
fractal networks has revealed some specific features, such as
power law scaling of porosity and conductivity with the radial
distance from the source, which leads to anomalous diffusion
[O’Shaughnessy and Procaccia, 1985]. For example,
Figure 1 shows a fractal two-dimensional network with
porosity and conductivity scaling according to a power law
with the radial distance to the centre. The fractal distribution
has porosity and conductivity power law exponents of�0.22
and �0.29, respectively, while the exponents are nil in the
case of a uniform network occupying the whole grid.
[7] Barker [1988] has proposed analytical solutions for

modeling pumping tests without anomalous diffusion in a
single-porosity system, but characterized by a fractional
flow dimension. This model generalizes the Euclidean
dimension to nonintegral flow dimensions that accounts
for the fractal structure of the fracture network. The value of
flow dimension is unity for a parallel flow, such as flow in a
vertical fault intercepted by the pumping well. Flow dimen-
sion is 2 for cylindrical flow in a pumping test, for example,
when the well completely penetrates a homogeneous porous
aquifer; this is the underlying assumption of Theis’s model
[Theis, 1935]. Flow dimension is 3 for spherical flow as
expected in the case of pumping concentrated within a
single fracture (using a dual packer system) connected to
a dense and extended network. Note however that the fractal
scale dependence is restricted to identical exponents for
porosity and conductivity power law in the Barker’s model
[Walker and Roberts, 2003]. Barker’s model has been
extended by Hamm and Bidaux [1996] to double-porosity
systems with transient exchanges including fracture skin
parameterization. Models with a fractional flow dimension
have proved useful in cases where integral dimension
solutions are not satisfactory [Lods and Gouze, 2004], but
they do not account for anomalous diffusion. Analytical
solutions for anomalous diffusion have been put forward by
Chang and Yortsos [1990], generalizing the single-porosity
model of Barker [1988].
[8] The aim of the present study is to provide analytical

solutions for modeling anomalous pressure diffusion during

pumping tests in aquifer displaying hierarchical fractal
fractures sets. The proposed solutions generalize all the
models presented above (see Table 1). We consider a main
fracture network intercepted by the pumping well. This
fracture network delimits blocks in which fractal diffusion
is controlled by fractures at a lower level (Figure 2). This
hierarchy is implemented recursively, which eventually
leads to a hierarchical fractal permeability system (or multi-
fractal system). Each of the fracture levels exchanges water
with the blocks that are delimited in this way. Exchanges are
transient and take into account possible skin effects.
Solutions are derived for a block shape of dimension 1
for planar blocks, 2 for cylindrical blocks, and 3 for
spherical blocks [Boulton and Streltsova, 1977; Moench,
1984; Barker, 1985a, 1985b], as well as for any fractional
dimension. Any combination of these shapes is allowed.
Within each permeability level, the fractal properties of the
fracture network can be specified and the fractal dimension
can be different from the shape dimension of the block.
[9] In addition to the skin effect that may occur at the

fracture-block interfaces, our model also takes account of
the wellbore skin effect [van Everdingen, 1953]. This effect
is known to be potentially important, and is modeled here as
a singular head loss or gain at the well-reservoir interface. A
positive skin effect factor is used to model laminar and
turbulent head losses occurring in the well, in the equipment
(e.g., slotted tubing, gravel pack) or in close proximity to
the well due to eventual damage during drilling operations
(e.g., rock alteration or mud invasion). On the contrary,
negative skin factors must be used to account for the
increase in conductivity observed after well development
or when the aperture of the fractures intersecting the well is
large in the vicinity of the well.
[10] In addition, our model includes a parameterization of

the well storage effect [Papadopulos and Cooper, 1967]
due to the difference in storage and conductivity between
the well and the reservoir. Well storage effects are particu-
larly important for large-diameter wells and when the rock

Figure 1. Synthetic two-dimensional networks with
porosity and conductivity power law radial scaling,
modified from the work of Acuna and Yortsos [1995].
(a) Uniform regular network; scaling exponents are 0.
(b) Fractal distribution; negative, distinct scaling exponents
of porosity and conductivity.

Figure 2. Schematic representation for two fracture levels.
Fractures of the first domain (thick lines) make up the
porosity domain P1 and delimit blocks (by volume
complementation) that are drained via the embedded
fracture network (thin lines) forming the second porosity
domain P2.
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formation conductivity is low. Note that this effect cannot
be taken into account in models assuming an infinitesimal
source, such as in Theis’s model.
[11] In the next section, we present the governing equa-

tions and solutions in the Laplace domain (the full mathe-
matical treatments are given in Appendix A). The
application and parameterization of the model is discussed
and illustrated in section 3, along with examples of increas-
ing complexity as well as a parameter sensitivity analysis.
Section 4 provides some concluding remarks emphasizing
the improvements and some limitations of the model.

2. Governing Equations

[12] In the following, we assume a confined isotropic
aquifer, radially infinite and initially at rest. Flow occurs in
a hierarchical fractured system containing m levels of
fractures. The first fracture network level is fully connected
within the entire domain, and consequently to the pumping
well. This fracture network forms the porosity domain P1

and delimits blocks defined by volume complementation.
The blocks within P1 are fractured by fractures that form the
porosity domain P2. The porosity domain P2 is not fully
connected since it is segregated by the fractures forming the
porosity domain P1, but the properties of P2 are assumed to
be statistically identical in each of the blocks. The same
hierarchical organization is applied recursively for i = 2, . . .,
m � 2, where porosity domain Pi is made up of fractures
delimiting blocks that are drained peripherally. These blocks
are affected by fractures forming the fracture network of
level i + 1 (i.e., the porosity domain Pi + 1). The porosity
domain Pm�1 delimits the smallest permeable blocks (the
porosity domain Pm) and drains them peripherally. The

properties are assumed statistically identical in each of the
segregated blocks embedding the porosity domain Pi for 2 <
i � m. By convention, the blocks embedding domain Pi are
referred to in the following as Pi blocks.
[13] To account for fractal flow, Acuna and Yortsos

[1995] proposed that hydraulic properties (i.e., porosity
and permeability) should be set as homogeneous or scaling
with the radial coordinate in each porosity domain. The first
domain P1 is formed of the most extensive fractures and is
inserted in the Euclidean limit of dimension n1, which can
be regarded as a single block occupying the entire system.
Domain P1 is drained radially by a diffusion source,
corresponding to the pumping chamber, which can represent
the entire saturated part of the well, or alternatively a part of
the well if the pumping chamber is delimited by one or two
packers. For domains Pi >1, the block shape has an inner
symmetry centre of dimension 3 � ni. Values of 1, 2 and 3
for ni (Figures 3 and 4) correspond to planar, cylindrical and
spherical shapes, respectively. We generalize this approach
for nonintegral values of ni. Consequently, any combination
of block shape can be investigated. For each block, using
the standard assumption of uniform peripheral pressure
stress, flow is radial and the symmetry centre acts as a
no-flow boundary.

2.1. Diffusion Equations and Fractal Properties

[14] In each domain Pi, the drawdown hi [m] satisfies the
differential mass balance equation with standard approxi-
mations for a slightly compressible fluid:

Ssfi rið Þ @hi
@t

¼ 1

rni�1
i

@

@ri
rni�1
i Kfi rið Þ @hi

@ri

� �
þ qfi; ð1Þ

Table 1. Comparison of Modelsa

Porosity
Domain 1

Porosity
Domain 2

Porosity
Domains i > 2

(a) (b) (a) (b) (c) (d) (a) (b) (c) (d)

Barker [1988] yes no - - - - - - - -
Chang and Yortsos
[1990]

yes yes - - - - - - - -

Hamm and Bidaux
[1996]

yes no no no yes no - - - -

This paper yes yes yes yes yes yes yes yes yes yes

aAnalytical solutions accounting for fractal properties: (a) fractional flow dimension, (b) anomalous diffusion, (c) fracture skin, (d) fractional block shape
dimension.

Figure 3. Orthoradial projection scheme. (a) Left figure schematizes the first domain with a finite
source and one block of the second domain. (b) Right figure schematizes one block of domains i � 2.
Dashed circle indicates equipotential of radius ri. Parameters characterizing each domain are reported.
Note that em is not used for domain m.
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where ri [m] is the radial Euclidean distance from the source
centre for Pi = 1, and the radial Euclidean distance from the
centre of the embedding blocks for the other domains Pi > 1

(Figure 3), t [s] is the elapsed time, Ssfi [m
�1] is the specific

storage, Kfi [m s�1] is the hydraulic conductivity and qfi
[s�1] is the exchange flow rate density between Pi and Pi + 1.
By construction, qfm = 0. Following the approach by Acuna
and Yortsos [1995], we can define the fractal scaled values
(denoted by f subscript) for specific storage Ssfi and hydraulic
conductivity Kfi as follows:

Kfi rið Þ ¼ Kir
Ni�ni�qi
i ; ð2Þ

and:

Ssfi rið Þ ¼ Ssir
Ni�ni
i ; ð3Þ

where Ssi and Ki are the values of the specific storage and the
hydraulic conductivity on the unit radius hypersphere.
Similarly, this scaling can be applied for porosity:

ffi rið Þ ¼ fir
Ni�ni
i ð4Þ

where fi is the porosity value on the unit-radius hypersphere.
In this study, we implement the standard relations (as used in
petroleum engineering, for example) between Ssi, Ki and fi:
Ssi = �rfici and Ki = �rfiki/m, where �r [kg m�2 s�2] denotes
the product of the fluid density and the gravity acceleration,
m [m�1 s�1 kg] is the dynamic viscosity of the fluid, ci [m s2

kg�1] is the total compressibility and ki [m
2+qi] is the fractal

permeability. In equations (2) to (4), Ni is the (fractal)
density dimension of the fracture network (Ni � ni) and qi is
the anomalous diffusion exponent (qi � 0). Anomalous
diffusion arises, for example, from null-aperture distributed
zones in individual fractures or from pore-space connectiv-
ity of the fracture network [de Dreuzy and Davy, 2007]. The
anomalous diffusion exponent is related to the random walk
dimension q0i on a fractal lattice, by qi = 2 � q0i [Havlin and
Ben-Avraham, 1987]. Conversely, the fractal density
dimension Ni is related to the spectral dimension N0

i (1 �
N0

i � Ni), which corresponds to the flow dimension of
Barker’s model [Barker, 1988]:

N 0
i ¼ 2Ni= 2þ qið Þ: ð5Þ

Initial and boundary conditions are defined by:

hi t ¼ 0ð Þ ¼ 0; ð6Þ

lim
r1!1

h1 ¼ 0; ð7Þ

and

lim
ri!0

Kfi

@hi
@ri

� �
¼ 0; i > 1: ð8Þ

2.2. Exchange Terms

[15] The exchange flow rate density qfi is the product of
the exchange area density and the local velocity. Assuming
that the hydraulic conductivities of domain Pi and Pi+1 are
distinctly different, the local velocity is controlled by the
conductivity value of the less conductive porosity domain.
Then, taking Kf i+1 < Kfi by construction, we obtain the
exchange flow rate density, qfi, for porosity domains Pi<m:

qfi ¼ �cfiþ1 Kfiþ1

@hiþ1

@riþ1

� �
riþ1¼liþ1

; ð9Þ

where cfi+1 [m
�1] is the exchange area density, and li+1 is

the hyperspherical block radius of domain Pi+1>1. The
exchange areas are equipotentials that have a hyperspherical
symmetry (generalization of spherical symmetry to an
arbitrary dimension). However, fractured media are usually
modeled by suborthogonal fractures that form planar,
parallelepipedal or cubic blocks [Boulton and Streltsova,
1977; Moench, 1984; Barker, 1985a, 1985b]. We generalize
here the block shape to account for hypercubic symmetry,
i.e., the generalization of cubic symmetry to an arbitrary
dimension (Figure 4). To maintain geometrical coherence
between hypercubes and hyperspheres, we can either
conserve the volume or the peripheral area, so these two
possibilities are considered in the following. The shape
factor bi is defined as the ratio of the half thickness of the
equivalent hypercubic block �li [m] to the hyperspherical
block radius li [m]. We consider here that the ratio of
fracture exchange area to fracture volume is the same as in
the equivalent hypercubic block distribution. By definition,
for each domain Pi, cfi+1 is the total exchange area with the
domain Pi+1 in a unit volume of the medium, while the
porosity ffi is the total volume of the fractures in a unit

Figure 4. Truncated hyperspherical blocks (dashed) of domains i � 2, with their hypercubic equivalent
for integral dimensions (a) ni = 1, (b) ni = 2, (c) ni = 3. bi is the orthoradial truncation length.
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volume of the medium. Consequently, the ratio of fracture
exchange area to fracture volume can be written as:

cfiþ1

ffi rið Þ ¼
Liþ1

1�Diþ1

; ð10Þ

where Li [m
�1] andDi [�] denote the exchange area density

and the volume density, respectively, of the Pi blocks for an
hypercubic block distribution. Li+1/(1 � Di+1) is the
exchange area between domains Pi and Pi+1 divided by the
fracture volume of domain Pi. This relation is valid because,
by volumetric complementation, 1 � Di+1 is the fracture
volume density of Pi.
[16] The exchange area density cfi+1 defined by equation

(10) scales radially, as expected for an area embedding a
fractal volume that scales with the radial distance. This
scaling of the exchange area density with the exponent of
the porosity is in agreement with the findings by Delay et al.
[2007], who observed a similar scaling property of the
exchange coefficient with porosity. Their results were based
on the analysis of pumping tests using a fractal double-
porosity model with stationary exchange. This scaling
accounts for the fact that, when porosity of domain Pi

decreases, the exchange area density decreases because of
the radius increase of the Pi+1 block.
[17] The calculation of bi, Li and Di is given in Table 2.

Li is defined as the product of the elementary exchange area
(i.e., the exchange area of each block) and the number of
blocks per unit volume (i.e., the block density). The density
of Pi blocks is a function of fracture aperture ei�1 [m] of
domains Pi�1 with i � 2 (Figures 3 and 5). Similarly, Di is
defined as the product of the elementary volume (i.e., the
volume of each block) and the block density. If blocks have
at least one infinite dimension (i.e., for ni = 1 or 2), it is not
possible to calculate the exchange area and volume of a
single block. Hence the values of Li and Di are calculated
on an equivalent system of blocks, obtained by truncation of
the infinite blocks into finite blocks (Figure 4). Table 2
presents the calculated values, for integral and fractional
dimensions, of the truncated block density Di [m�3],
the elementary exchange area AiS and AiC [m2], and
the elementary volume ViS and ViC [m3], with S and C
subscripts denoting hyperspherical and hypercubic shapes,
respectively. Values of bi are given for both cases of identity
of exchange area (AiS = AiC) and volume (ViS = ViC).
The formulation of Li and Di is given as a function of li
and bi.

2.3. Fracture Skin

[18] The hydraulic impedance of a mineral deposit or
alteration layer occurring on the fracture walls of domain
Pi<m can be modeled as a singular head loss characterized by
the dimensionless fracture skin factor coefficient si+1. In this
case, we obtain:

hi ¼ hiþ1 þ liþ1siþ1

@hiþ1

@riþ1

� �
riþ1¼liþ1

: ð11Þ

2.4. Pumping Well

[19] Exchange between the pumping well and the aquifer
is restricted to the higher conductivity domain, i.e., domain
P1. The well mass balance differential equation is as
follows:

Sw
@hw
@t

¼ Gn1 b1ð Þrn1�1
w Kf 1

@h1
@r1

� �
r1¼rw

þQ; ð12Þ

where hw [m] is the well drawdown, Q [m3 s�1] is the
injection flow rate, Sw [m2] is the well capacity and rw [m] is
the well radius in the zone of exchange with the aquifer. For
convenience, we define the characteristic length l1 [m] of
the first domain P1 as equal to the well exchange radius rw.
The pumping chamber exchange area is represented by an
equipotential with a hyperspherical symmetry. The para-
meter b1 [m] is the orthoradial length of the pumping

Table 2. Geometric Properties of the Truncated Blocks (Figures 4 and 5) Containing the Porosity Domain i (i � 2)a

Density (m�3) Exchange Area (m2) Volume (m3)

Di (cubic) AiS (spherical) AiC (cubic) ViS (spherical) ViC (cubic)

ni = 1 [(2�li + ei�1)bi
2]�1 2bi

2 2bi
2 (2li) bi

2 (2�li)bi
2

ni = 2 [(2�li + ei�1)
2 bi]

�1 2pli bi 4(2�li)bi pli
2 bi (2�li)

2 bi
ni = 3 [(2�li + ei�1)

3]�1 4p li
2 6(2�li )

2 (4/3)pli
3 (2�li)

3

ni fractional [(2�li + ei�1)
ni bi

3�ni]�1 Gni
(bi)li

ni�1 2ni (2�lI)
ni �1 bi

3�ni Gni
(bi)li

ni/ni (2�lI)
ni bi

3�ni

Shape factor bi = �li/li [�] AiS = AiC : bi =
ani

2ni ni

� � 1
ni�1

ViS = ViC : bi =
ani

2ni ni

� � 1
ni

Density Li = AiSDi =
ani

li 2bi þ ei�1

li

� �ni [m�1] Di = ViSDi =
ani

ni 2bi þ ei�1

li

� �ni [�]

aGn(b) = anb
3 � n is the area of the unit-radius hyperspherical block of dimension n, with an = 2pn/2/G(n/2), and G is the gamma function.

Figure 5. Orthoradial projection scheme for ni = 2,
showing four volume-equivalent hypercubic and hyper-
spherical (dashed) blocks. The fractures of the porosity
domain i delimit blocks that contain the fractures forming
the porosity domain i + 1.
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chamber, that is to say, the conductive thickness in
dimension 2. Gn1

(b1) is the area of a unit-radius hyper-
spherical pumping chamber of dimension n1 and orthoradial
length b1 (see Table 2). The well-skin effect is represented
by a singular head loss, using the dimensionless well skin
factor sw, which is also denoted as s1 for convenience. The
formulation is similar to equation (11) and can be written as:

hw ¼ h1 � rwsw

@h1
@r1

� �
r1¼rw

: ð13Þ

If a nonlinear skin effect occurs due to turbulent flow, the
value of the skin factor increases with the flow rate. We
introduce a value for critical flow rate Qc [m

3 s�1; Qc > 0],
delimiting laminar and turbulent flow, such that the Q
derivative of sw is continuous [Lods and Gouze, 2004]:

sw ¼ sw‘ þ swtH Qj j � Qcð Þ Qj j � Qcð Þpw= Qj j; ð14Þ

where sw‘ [�] and swt [m
3(1 � pw) spw�1] are the linear

(laminar) and nonlinear (turbulent) skin factor coefficients,
respectively, setting swt > 0, while pw [�] is the nonlinear
head loss exponent [Rorabaugh, 1953], with pw > 1, and H
is the Heaviside function. The initial condition is defined
by:

hw t ¼ 0ð Þ ¼ 0: ð15Þ

2.5. Scaling Law Substitution

[20] By substituting the scaling laws (equations (2) to (4))
in equations (1), (9), (10), and (12), we obtain diffusion
equations having the same constant parameters as those
defined on the unit-radius hypersphere:

Ssi
@hi
@t

¼ 1

rNi�1
i

@

@ri
rNi�1�qi
i Ki

@hi
@ri

� �
þ qi; ð16Þ

qm ¼ 0; ð17Þ

qi ¼ �ciþ1l
Niþ1�niþ1�qiþ1

iþ1 Kiþ1

@hiþ1

@riþ1

� �
riþ1¼liþ1

; i < m; ð18Þ

ciþ1 ¼
fiLiþ1

1�Diþ1

; i < m; ð19Þ

Sw
@hw
@t

¼ Gn1 b1ð ÞrN1�1�q1
w K1

@h1
@r1

� �
r1¼rw

þQ: ð20Þ

The transformation of equations (1), (9), (10), and (12) to
equations (16)–(20) eliminates the radial scaling of storage
and exchange area, while changing the diffusion dimension-
ality, and cancels the infinite-porosity inconsistency at the
centre of the blocks (see section 3.4.1). Equation (16) is the
standard diffusion equation in a space of dimension Ni with
uniform specific storage Ssi. However, the hydraulic
conductivity is scaled by Kiri

�qi, so the diffusivity Kiri
�qi/Ssi

is scaled accordingly. In the case of anomalous diffusion, the
hydraulic conductivity tends to infinity at the centre of the
blocks, but the no-flow boundary condition (8) maintains a
finite flux. The exchange area density (19) can be rewritten as
follows by using Li+1 = Di+1ni+1/li+1:

ciþ1 ¼ tiLiþ1 ¼ ti � fið Þniþ1=liþ1; i < m; ð21Þ

where ti is the effective fracture volume ratio, i.e., the
ratio of porosity subject to diffusion to the fracture volume
bounded by the complementary block distribution:

ti ¼ fi= 1�Diþ1ð Þ; i < m: ð22Þ

A value of ti = 1 corresponds to a fully accessible fracture
volume, while a value of fi < ti < 1 is used to model the
existence of a nonaccessible fraction of the fracture
volume (e.g., precipitation features or fracture filling).

2.6. Analytical Solutions

[21] In the Laplace domain, we obtain the following
solutions for ~hw, the drawdown in the well, and ~h1, the
drawdown at any location in domain P1:

~hw ¼ Q

p

Kn1 g1l
E1

1

� �
þ swg1E1l

E1

1 Kn1�1 g1l
E1

1

� �
pSwKn1 g1l

E1

1

� �
þ g1E1 Gn1 b1ð ÞK1l

N1�E1

1 þ pSwswl
E1

1

� �
Kn1�1 g1l

E1

1

� �

and

~h1 ¼
Q

p

rn1E1

1 Kn1 g1r
E1

1

� �
pSwl

n1E1

1 Kn1 g1l
E1

1

� �
þ g1E1 Gn1 b1ð ÞK1l

N1=2
1 þ pSwswl

n1E1þE1

1

� �
Kn1�1 g1l

E1

1

� � ;

where p is the Laplace variable and K is the modified Bessel
function of the second kind. In equations (23) and (24) and
later in equation (31) auxiliary variables are defined by:

Ei ¼ 2þ qið Þ=2 ¼ q0i=2; ð25Þ

ni ¼ 1� Ni=2Ei ¼ 1� N 0
i =2 ð26Þ

gm ¼
ffiffiffiffiffiffiffiffiffiffi
p=xm

p
=Em; ð27Þ

gi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

xi
þ

liþ1giþ1Eiþ1l
Eiþ1�1
iþ1 I1�niþ1

giþ1l
Eiþ1

iþ1

� �
I�niþ1

giþ1l
Eiþ1

iþ1

� �
þ siþ1giþ1Eiþ1l

Eiþ1

iþ1 I1�niþ1
giþ1l

Eiþ1

iþ1

� �
vuuut

,
Ei; i < m;

where I is the modified Bessel function of the first kind, xi is
the diffusivity on the unit-radius hypersphere:

xi ¼ Ki=Ssi; ð29Þ

and li + 1 is the exchange coefficient:

liþ1 ¼ ciþ1l
Niþ1�niþ1�qiþ1

iþ1 Kiþ1=Ki; i < m: ð30Þ

ð23Þ

ð24Þ

ð28Þ
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The solutions ~hi for the drawdown at any location in
domains Pi (2 � i � m) are obtained recursively for qi � �2
and Ni � ni � 1:

~hi ¼ ~hi�1

rniEi

i I�ni gir
Ei

i

� �
lniEi

i I�ni gil
Ei

i

� �
þ sigiEil

Ei

i I1�ni gil
Ei

i

� �� � ; ð31Þ

where the auxiliary variables are defined by equations (25)–
(28). Time-resolved drawdowns hw and hi, 1 � i � m, can
be obtained using the algorithm by Stehfest [1970].
Appendix A presents a full derivation of the solutions
presented above, while Appendix B gives an analysis of the
consistency of these solutions with numerical considera-
tions. Note that, although qi is usually considered positive in
hydrology applications, the above solutions are valid for
negative values of qi (i.e., superdiffusion).

3 Discussion

3.1 Examples of Application

[22] Appropriately, thismodel is applicable when the pump-
ing chamber intercepts the most conductive fracture network.
Indeed, thehydrodynamicconsistencyof themodel implies that
Ki<m � Ki+1, because we assume by construction that
exchanges between the pumping well and domains Pi >1 are
minor compared to exchanges with P1. Similarly, we assume
that exchanges between domainPi and the domainsPj >i + 1 are
minor compared to exchange with Pi+1.
[23] This approach gives rise to two important remarks.

Firstly, fracture network is used here as a generic term for
any type of structured network of planar drains delimiting
permeable regions where hydrodynamic properties are dis-
tinctly different. This model can handle specific network
geometries and properties for each conductive level. Note
that linear drains cannot be modeled because they do not
subdivide the embedding rock into segregated blocks, and
thus they do not drain them peripherally. Secondly, in this
model, the fractal behavior of the flow in a given domain
reflects the fractal diffusion properties in a similar way to
the approach proposed by Acuna and Yortsos [1995].
However, our model differentiates the properties for each
conductive domain level, so it is suitable for simulating a
hierarchy of discontinuities that can have distinctly different
origins and ages leading to contrasted properties. In the
following, we give some examples of field applications.
[24] 1. In stratified aquifers, permeability discontinuities

are common at the layer interfaces. Each layer may corre-
spond to a fractured medium. The fracture network in the
layers have clearly different origins and flow properties from
the horizontal permeable discontinuity at the layer interface.
When intersected by a pumping well, the (fractal) density
dimension of the subparallel horizontal planar drains is N1 �
2. These planar drains delimit blocks with N2 = 1. Blocks
delimited by the fracture network embedded in the layers are
drained peripherally, so that N3 � 3. Fractal flow in the layer
discontinuities will result, for example, from the distribution
of connected zones with non-null aperture, whereas the
fractal flow in blocks will result from fracture properties
including length, aperture, orientation and density.
[25] 2. If a pumping well crosses a (sub)vertical fault

(N1 = 1), the fault may delimit two large-fractured blocks
(N2 = 1), whose half-thickness is the mean distance to an

impervious boundary. The fracture network of porosity
domain P2 peripherally drains the matrix blocks (N3 � 3).
The vertical fault can result from present-day shear forces,
while P2 fracture networks can result, for example, from a
previous episode of large-scale distension.
[26] 3. Karstified fracture networks are formed by disso-

lution of preexisting discontinuities. In many cases, the
entire aquifer is later subject to extensional stresses that
create a secondary fracture network delimiting permeable
matrix blocks. Pumping tests in such hierarchized systems
show that karstified fracture networks usually dominate
flow at the large scale (N1 � 3), while local flow is
controlled by small fractures (N2 � 3) delimiting matrix
blocks (N3 � 3).

3.2. Fracture Aperture Determination

[27] The fracture aperture ei is obtained from equation (22):

ei ¼ liþ1

aniþ1

niþ1 1� fi=tið Þ

� �1=niþ1

�2biþ1

" #
; i < m: ð32Þ

Note that ei is the geometrical aperture, but this does not
correspond in general to the hydraulic aperture. The fracture
aperture ei depends on the complementation model (either
block volume or exchange area equivalence) used to
transform hypercubic blocks to hyperspheric blocks
(equation (32) and Table 2). Figures 6 shows the relation
between the dimensionless groups ei/li+1, fi/ti and ni+1, for
equivalence of volume and exchange area between hyper-
spheric and hypercubic blocks. In fractured media, the
region of interest for the parameters is typically defined by
ei/li+1 < 10�1, fi < 10�1 and ti = 1. Consequently, the
volume equivalence model is the most relevant for
modeling fractured media, because ei/li+1 > 10�1 for
the exchange area equivalence model. Furthermore, the
exchange area equivalence model presents an important
defect: the shape factor b is not defined for n = 1 because
the exchange area does not depend on the block thickness,
and therefore any value of the shape factor satisfies the
exchange area equivalence. In the following simulations we
will use the volume equivalence model.

3.3. Parameter Equivalence With Other Published
Models

[28] The present study generalizes all the previous
published models accounting for fractal properties and
anomalous diffusion (Table 1). Compared with the single-
porosity fractal model by Chang and Yortsos [1990], i.e.,
equation (16) with q1 = 0, our model adds a theoretically
unbounded number of nested fractal porosity levels. The
more restricted model by Barker [1988] is reproduced by
setting a fractional dimension shape for the well exchange
chamber, while considering q1 = 0 and n1 = N1 which is the
fractional flow dimension.
[29] Compared with the double-porosity fractional flow

model by Hamm and Bidaux [1996], our model takes
into account the anomalous diffusion in the first porosity
domain, adding generalized block shape along with fractal
diffusion in the blocks and further fractal porosity levels.
The model by Hamm and Bidaux [1996] is reproduced by
setting q1 6¼ 0, q2 = 0, n2 = N2 = 1 and q2 = 0. The exchange
coefficient implemented in their model (i.e., c2 = 1/l2) is
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obtained by setting in equation (21) e1 � l2 in L2 or f1 �
t1, and t1 = 1.
[30] The triple-porosity model proposed by Rodriguez et

al. [2004] does not account for fractal properties. Their
approach is reproduced in our model by assuming q1 6¼ 0,
q2 6¼ 0, q3 = 0, N1 = n1 = 2, q1 = 0, and high fracture skin
factors s2 and s3. Since the type of exchange modeled by
Rodriguez et al. is stationary, it does not take of account for
flow dimensions N2 and N3, anomalous diffusion exponents
q2 and q3, or block shape dimensions n2 and n3.

3.4. Model Consistency

3.4.1. Porosity Scaling
[31] By construction, the scaling law (equation (4)) leads

to an inconsistency in the definition of porosity ffi, which
tends to infinity if Ni < ni when ri tends to 0. This occurs at
the centre of the blocks or at the source in the case of an
infinitesimal source. Note that a lower scale cutoff would
prevent this effect, but so far there are no analytical
solutions accounting for scale cutoffs. This inconsistency
disappears when projecting the diffusion equations (1), (9),
(10), and (12) into the space of dimension Ni (equations
(16)–(20)), while applying a rigorous match of the flow
equipotential and the exchange area at the exchange inter-
faces. This matching is applied between the source and the
domain P1, as well as between each domain pair Pi, Pi+1.
An exact match is obtained by accepting fractional values to
characterize the dimension of the well exchange chamber
and the block, and fixing ni = Ni, similarly to the approach
proposed in the models by Barker [1988] and Hamm and
Bidaux [1996]. This cancels the porosity scaling and pro-
vides the advantage of eliminating the fitting parameters ni,
which are not known a priori.
3.4.2. Parameter Simplification in Domain P1

[32] Pumping chamber shape parameters n1 and b1 can
always be reduced conveniently and without loss of gener-
ality. This is because, for any model characterized by
distinct values of n1 and N1, there is an equivalent model
with n1 = N1 but with a different value of b1. Since n1 and b1

are used to parameterize the well (for aquifer exchange only,
i.e., equation (20)), both models are equivalent if they
define the same exchange rate. This condition is satisfied
when

Gn1 b1ð Þ ¼ GN1
�b1
� �

; ð33Þ

where �b1 is the orthoradial length of the pumping chamber
for n1 = N1. For nonintegral dimensions, the physical
meaning of the orthoradial length is obscure. A practical
way to apply equation (33) is to set �b1 = 1 and n1 = N1. In
this way, we eliminate parameters n1 and b1 while ensuring
a rigorous match of the equipotentials at the pumping
chamber periphery.
3.4.3. Miscellaneous Remark
[33] Although commonly used, the assumption of uni-

form pressure stress at the periphery of the blocks is clearly
not valid for large block radius when pressure gradients are
high. This situation may occur particularly close to the
source for P2 blocks or close to the periphery of the Pi

blocks in the case of Pi+1 blocks with m > i � 2.

3.5. Sensitivity Analysis and Parameter Reduction

[34] In the next sections, we use synthetic examples to
illustrate the effects of fractal dimension, anomalous diffu-
sion, flow dimension, multiporosity and well storage.

Figure 6. Relation between the parameters ei/li+1 and fi/ti
assuming exchange area equivalence and volume equiva-
lence between hyperspherical and hypercubic blocks. For
better visibility, only the curves for integral values of the
block shape dimension are represented: ni+1 = 1 (solid), ni+1 =
2 (dashed), ni+1 = 3 (dot). The region denoting the commonly
used values for the parameters in fractured media is shaded.

Figure 7. Example of time-resolved head responses in a
piezometer (r1 = 40 m) assuming a single-porosity system.
Results show the effect of changing N1 and q1. Simulations
are performed using an infinitesimal source solution with
K1 = 10�4 m s�1, Ss1 = 10�6 m�1, Q = 5 � 10�4 m3 s�1,
and by default N1 = 2 and q1 = 0.
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[35] In the following examples, fracture apertures are
determined by equation (32), with ti = 1 by default, and
we apply the shape factor (Table 2) such that hyperspherical
and hypercubic blocks have the same volume rather than the
same exchange area (see section 3.2). Moreover, we apply
an exact match of the flow equipotential and exchange area
at the exchange interfaces (ni = Ni), while setting the
orthoradial length of the pumping chamber as �b1 = 1.
3.5.1. Single Porosity
[36] Results for single porosity are given in Figures 7

and 8 for different values of N1 and q1 using the infinites-
imal source solution (equation (C6)). This solution assumes
that well storage is nil (Sw = 0) and source size is negligible
compared to the distance from the well. In these examples,
skin effects are not considered.
[37] Figure 7 shows the different effects on the drawdown

produced by changing N1 and q1. By decreasing N1 and
increasing q1, we obtain a similar increase in the late-stage
drawdown. This is because both changes lead to a decrease
in the flow dimension (equation (5)). These effects can be
best discriminated on the basis of the early response.
Decreasing N1 causes an early response because it acts by
decreasing the fractal volume and therefore leads to a
prompt response, whereas increasing q1 delays the response
because it acts by decreasing the diffusion.
[38] In Figure 8, the curves labeled a refer to a piezometer

positioned 40 m from the source, while curves labeled b are
computed assuming a distance of 700 m. Curves a show the
effects of changing q1 on the drawdown at constant flow
dimension N0

1, according to equation (5). We observe that
the response time increases with q1 (because diffusion
decreases). As demonstrated in Appendix C, we can repro-
duce the curve a computed with q1 = 0, K1 = 10�4 m s�1

and Ss1 = 10�6 m�1, by increasing q1 (e.g., q1 = 0.5 or 1),
while keeping the same flow dimension, and also decreas-
ing K1 and Ss1, using equations (C7) and (C8), respectively.
Thus we obtain three simulations with the same flow

dimension and distinct values of q1, K1, Ss1 and N1 (see
Table 3). These three models display identical transient
drawdown at r1 = 40 m, but different drawdown at r1 =
700 m (curves b in Figure 9). This emphasizes that, to
determine q1, we require at least two piezometers situated at
distinctly different distances from the pumping well (Table 4).
3.5.2. Double Porosity
[39] The double-porosity behavior can be investigated

using the curves presented in Figure 9a. This figure shows
the drawdown computed for a piezometer at a given small
distance from the pumping well.
[40] For a piezometer intercepting the first porosity

(curve 2PorPz1 in Figure 9), mainly the first porosity
network is drained at the beginning of the test, and the
double-porosity response is identical to that exhibited by a
single porosity (curve 1Por (S1)) with conductivity K1 and
specific storativity Ss1. Then, the second porosity is pro-
gressively drained and the response becomes that of a single

Figure 8. Example of time-resolved head responses in a
piezometer, assuming a single-porosity system. Results show
the effect of changing q1 while the flow dimension is kept
constant (N0

1 = 2). Simulations are performed using an infi-
nitesimal source solution withQ = 5� 10�4 m3 s�1. (a) Thick
curves are computed for r1 = 40 m with K1 = 10�4 m s�1,
Ss1 = 10�6 m�1. (b) Thin curves are computed for r1 = 700m
with the parameters presented in Table 3.

Figure 9. Example of time-resolved head responses in a
piezometer assuming a double-porosity system. Results
show the effects of double porosity and well storage.
Simulations are performed with the parameters presented in
Table 4 with normal transport, no skin effect, Sw = 2.82 �
10�4 m2, rw = 5� 10�2 m, andQ = 5� 10�4 m3 s�1 (for fi =
10�3, e1 = 2 � 10�3 m). Drawdowns (a) and logarithmic
derivatives of drawdown (b) are presented for a piezometer
intercepting the first porosity alone (curve 1Por(S1)), the
first porosity draining the second porosity (curve 2PorPz1),
the first porosity alone with storage equal to Ss1 + Ss2 (curve
1Por(S1 + S2)) and for a piezometer in the second porosity
(curve 2PorPz2).
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porosity model (curve 1Por(S1 + S2)) with conductivity K1

and specific storage Ss1 + Ss2. For a piezometer in the
second porosity (curve 2PorPz2), the response is delayed
and the late-time behavior is that of the model producing
curve 1Por(S1 + S2).
[41] The logarithmic derivative of drawdown (@h/@ln(t))

is more sensitive than its primitive, thus providing another
fitting curve that is helpful for discriminating the model
type [Bourdet et al., 1983]. Figure 9b shows a plot of the
logarithmic derivatives. Wellbore storage produces an initial
linear increase, which, in the course of time, is followed by
a decrease of the drawdown derivative. For a piezometer
intercepting the first porosity, the double-porosity effect is
expressed as a U-shaped perturbation corresponding to the
progressive drainage of the second porosity. It can be
superimposed onto the wellbore storage effect.
[42] Figure 10 presents curves illustrating the effects of

the parameters on the transition period without wellbore
storage. This figure shows the drawdown logarithmic
derivative for a piezometer intercepting the first porosity
at a given small distance from the pumping well.
[43] We observe that the U-shaped curves are related to

high values of Ss2 (Figures 10a, 10b, and 10e) and high
values of t1 (Figure 10h). The end of the transition is
delayed when Ss2 increases because of the smaller block
diffusivity. The time at which the transition starts decreases
when Ss2 increases. Indeed, higher values of Ss2 induce
higher exchanges caused by the smaller diffusivity in the
blocks, which leads to higher head gradient at the interface.
Similarly, higher values of t1 induce higher exchanges
caused by the higher exchange area density. The effect of
changing the exchange area density c2 can be parameterized
by t1 because t1 only appears in c2 (equation (21)). Higher
values of c2 (higher t1 in Figure 10h) brings forward the
start of the transition while not affecting the end of the
transition.
[44] The V-shaped curves are related to high skin factors

(Figure 10i), and a high anomalous diffusion exponent
(Figure 10f). The V shape is typical of the stationary
exchange model, which assumes instantaneous diffusion
in the blocks. For high values of s2, the exchange is
controlled by the reduction in permeability at the interface,
rather than by the diffusive properties of the block. On the
other hand, the diffusion increases with q2 because diffu-
sivity increases from the block periphery to the centre. Note
the important advantage of using transient rather stationary
exchange model, since the latter allows V-shaped curves
only.
[45] A shift in time is produced by changing parameters

N2, s2, K2 and l2. The parameters N2 and s2 influence the
amplitude of the transition perturbation, with higher N2

smoothing the transition (Figure 10c) and higher s2 pro-
ducing a sharper transition (Figure 10i). K2 and l2 are the

only parameters that do not influence the amplitude of the
transition perturbation, since they produce a simple hori-
zontal translocation (Figures 10d and 10g). Their effect on
the transition is the same. Indeed, in the first porosity
drawdown (equation (24)), K2 and l2 only have an influence
on g1 (equation (28) with i = 1) via the terms l2g2l2

E2�1

and g2l2
E2. In these terms, K2 and l2 can be combined

together into
ffiffiffiffiffiffi
K2

p
/l2
1+q2/2, such that, for any value �K2 we

can find a value �l2 that keeps the first porosity drawdown
unchanged:

�l2 ¼ l2 �K2=K2ð Þ1= 2þq2ð Þ ð34Þ

The curves (Figure 10g) are generated from Figure 10d
using equation (34). However, this procedure affects the
drawdown in the second porosity. Thus to carry out fitting
when no data is available in the second porosity, one of
these parameters can be assigned a fixed value. Otherwise,
if data is available in the second porosity, the first porosity
drawdown can be fitted first with one parameter fixed, and
then the second porosity drawdown can be fitted by relaxing
that parameter and adapting the other with equation (34).
[46] The onset of the transition is affected by all the

parameters but q2 (Figure 10f). In detail, the onset of the
transition is delayed (1) by setting a smaller value of Ss2 or
t1 as stated above, (2) by setting a smaller value of K2 or a
higher value of s2 which both decrease the exchange rate,
and (3) by setting a smaller value of N2 or a higher value of
l2, which act as decreasing the exchange area density (21).
[47] The end of the transition is affected by all the

parameters, except if K2 or Ss2 are modified while keeping
x2 constant (Figure 10e) and by modifying t1 (Figure 10h).
These two modifications produce the same effect, since they
both ensure that the diffusivity equation (16, i = 2) remains
unchanged. Hence for any value of K2, it is possible to keep
l2 constant by assigning:

t1 ¼ f1 þ
l2K1l

q2þ1
2

K2n2
ð35Þ

The curves in Figure 10h are generated from Figure 10e
using equation (35). Thus for fitting, one of these
parameters can be fixed by assigning a value. However,
the value of t1 is limited by two bounds and can lead to
unrealistic fracture apertures. Since K2 is limited by only
one bound, it is more convenient to fix t1 and vary K2. Note
that, because x2 and l2 are kept constant, the end of the
transition is unaffected by Ss2 when Ss1 + Ss2 remains
constant for Ss1 � Ss2 (Figure 10b).
[48] The above considerations lead to the following steps

to iterate for the inversion of parameters: (1) fit the end of
the transition using K2, (2) fit the start of the transition using
Ss2 with constant x2, (3) fit the shape of the transition
perturbation using N2, q2, and s2, and (4) fit the second
porosity drawdown using l2 and K2 (equation (34)).

Table 3. Parameters Used in Figure 8 Producing the Same

Transient Drawdown at r1 = 40 m

N1 (�) q1 (�) K1 (m/s) Ss1 (m
�1)

2.0 0.0 10�4 10�6

2.5 0.5 5.446 � 10�5 1.345 � 10�7

3.0 1.0 3.333 � 10�5 1.875 � 10�8

Table 4. Parameters of Pi Domains Used for Figures 9 and 10

i Ki (m/s) Ssi (m
�1) Ni (�) li (m) ri (m)

1 10�4 10�6 2 0.05 1
2 4 � 10�11 1.9 � 10�5 1 1 0
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3.5.3. m Porosities (m > 2)
[49] Figure 11a shows the responses of a piezometer in

the first domain of a triple-porosity system at a given
distance from a pumping well in a sedimentary aquifer. In
these simulations, the well taps layer discontinuities (P1)
delimiting planar blocks (P2), while these blocks are them-
selves subdivided by vertical fractures that segregate porous
matrix sub-blocks (P3). The parameters given in Table 5
represent standard values for karstic aquifer. In contrast to
the double-porosity effect (Figure 9), the response displayed
by curve 3PorPz1(1) shows that the drainage of the third
porosity can produce a second drawdown inflexion and a
second transition of the drawdown logarithmic derivative
(Figure 11b). In a final stage, the behavior becomes iden-
tical to that exhibited by a single porosity system (curve
1Por(S1 + S2 + S3)), with conductivity K1 and specific
storage Ss1 + Ss2 + Ss3. The triple-porosity parameters have
effects on the second transition period that are analogous
with those illustrated above for the transition period of the
double-porosity model (Figure 10). The response displayed
by curve 3PorPz1(2) shows that it can be difficult to
investigate the triple-porosity effect using the drawdown
logarithmic derivative when there is a weak conductivity
contrast between domains.
[50] More generally, for system with m domains,

the response of a piezometer in the first domain can show

m � 1 transitions of the drawdown logarithmic derivative
before reaching a terminal behavior identical to that
observed for a single porosity with conductivity K1 and
specific storage Ss1 + Ss2 + . . . + Ssm.

4. Conclusion and Remarks

[51] In the present model, we assume a nested distribution
of fractured networks. Nested fracture models are a specific
case of multicontinuum models in which porosity domains
are hierarchically drained so the number of domain-to-
domain flow exchange interfaces is equal to the number
of domain minus one. In the case of pumping tests, the
higher permeability domain will exchange flow with the
pumping well. Each fractured network is characterized by
its porosity and permeability, and may not only display
fractal geometry but also produce anomalous diffusion.
Compared to others published models, the approach pre-
sented here combines multifractal diffusion and multiporos-
ity with transient exchanges, interface skin effects and well
storage effects.
[52] The proposed analytical solution in the Laplace

domain allows us to calculate drawdown at the pumping
well and at any distance from the well for each porosity
level. After numerical inversion, the solution in the time-
space domain yields a large spectrum of time-resolved

Figure 10. Example of time-resolved response of logarithmic derivatives of head in a piezometer
intercepting the first porosity of a double-porosity system. Results show the effect of parameters on the
transition period, without well storage. Simulations are performed using the parameters presented in
Table 4, with normal transport and no skin effect, rw = 5� 10�2 m andQ = 7.5� 10�4m3 s�1 (forf1 = 10

�3,
e1 = 2 � 10�3 m). The curves are computed by modifying only the parameters specified in the legend:
(a) Ss2, (b) Ss2 with constant SsTot = Ss1 + Ss2, (c) N2, (d) K2, (e) K2 and Ss2 with constant x2 = K2/Ss2,
(f) q2, (g) l2, (h) t1, (i) s2.

W12405 LODS AND GOUZE: MULTIFRACTAL HIERARCHICAL

11 of 17

W12405



drawdown curves, including those obtained using the mod-
els by Barker [1988], Chang and Yortsos [1990], and
Hamm and Bidaux [1996]. While hydrology applications
usually assume subdiffusion, with porosity, hydraulic con-
ductivity, specific storativity and diffusivity decreasing as a
function of increasing radial distance, our model allows the
study of superdiffusion in all the domains, with diffusivity
increasing as a function of increasing radial distance.
[53] To ensure geometrical consistency and reduce the

number of fitting parameters, we introduce two conceptual
approaches:
[54] 1. By applying the fractional dimension shape, we

generalize block and pumping well shapes to nonintegral
dimensions, allowing an exact match between block periph-
ery and within block equipotential, and also between the

pumping chamber periphery and external equipotentials. At
the same time, we can eliminate the orthoradial length of the
pumping chamber, which is an obscure parameter for
nonintegral dimensions.
[55] 2. Rules are defined for fracture-block complemen-

tation in order to ensure consistency between porosity,
fracture aperture and block shape, while also eliminating
one of the fitting parameters (usually the fracture aperture).
Equations are derived for both volume and exchange area
equivalence between hypercubic blocks and hyperspherical
blocks. Yet we show that the volume equivalence model
is more pertinent to model fractured aquifers than the
exchange area equivalence model. We point out that volume
complementation was not addressed in previous modeling
studies. Provided volume complementation is performed,
we can rigorously define the geometrical parameter ti
accounting for the occurrence of nonconductive zones
(e.g., due to precipitation features or clogging).
[56] While this model allows the simulation of a wide

range of situations, there are some remaining limitations.
The main one is certainly the obligatory hierarchy of the
properties; conductivity of each fracture network must be
distinctly different from the others networks, but it is worth
noticing that fracture sets with weakly different conductiv-
ities can be modeled by a single continuum with averaged
properties. Another limitation discussed in section 3.1 is the
impossibility to model linear drains because they do not
subdivide the embedding rock into segregated blocks, and
thus they do not drain them peripherally. Also, as usual in
the analytical models (i.e., listed in Table 1) fractal scale
cutoffs are not accounted for. In our model, the upper scale
cutoff in the blocks is implicitly greater than the block
radius, but fractal properties are assumed to have no lower
scale cutoff.

Appendix A: Solutions in the Laplace Domain

[57] By applying a Laplace transform with respect to time
and using the initial conditions (equations (6) and (15)), we
obtain from equations (16)–(19) the following diffusion
equations:

p

xi
rqii
~hi ¼

Ni � 1� qið Þ
ri

d~hi
dri

þ d2~hi
dr2i

� liþ1r
qi
i

d~hiþ1

driþ1

 !
riþ1¼1iþ1

; i < m; ðA1Þ

p

xm
rqmm

~hm ¼ Nm � 1� qmð Þ
rm

d~hm
drm

þ d2~hm
dr2m

; ðA2Þ

Table 5. Parameters of Pi Domains Used for Figure 11

i (1) Ki (m/s) (2) Ki (m/s) Ssi (m
�1) Ni (�) li (m)

1 10�2 10�2 10�6 2 0
2 10�8 10�5 10�5 1 50
3 10�14 10�8 10�4 1 5

Figure 11. Example of time-resolved head responses in a
piezometer (r1 = 200 m) intercepting the first porosity of a
triple-porosity system. Results show the triple-porosity
effect. Simulations are performed with the parameters
presented in Table 5 with normal transport, no skin effect,
no well effect, t1 = 1, rw = 5 � 10�2 m, and Q = 6.67 �
10�3 m3 s�1. For a porosity value of 10�4, the fracture
aperture values of the first and second porosities are 10�2

and 10�3 m, respectively. Drawdowns (a) and logarithmic
derivatives of drawdown (b) are computed for a piezometer
intercepting the first porosity alone (curve 1Por(S1)), the
first porosity alone with storage equal to Ss1 + Ss2 (curve
1Por(S1 + S2)), the first porosity alone with storage equal to
Ss1 + Ss2 + Ss3 (curve 1Por(S1 + S2 + S3)) and the first
porosity draining the second and third porosities, using the
conductivities in Table 5(1) (curve 3PorPz1(1)), and the
conductivities in Table 5(2) (curve 3PorPz1(2)).
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the boundary conditions (7) and (8) are:

lim
r1!þ1

~h1 ¼ 0 ðA3Þ

lim
r1!0

rNi�ni�qi
i

@~hi
@ri

 !
¼ 0; i > 1; ðA4Þ

the fracture skin equation (11) is:

~hi�1 ¼ ~hi þ lisid~hi=dri
� �

ri¼li
; i > 1; ðA5Þ

the pumping chamber mass balance differential equation (20)
is:

Swp~hw ¼ Gn1 b1ð ÞrN1�1�q1
w K1

d~h1
dr1

 !
r1¼rw

þ Q

p
; ðA6Þ

and the pumping chamber skin equation (13) is:

~hw ¼ ~h1 � rwswd~h1=dr1
� �

r1¼rw
: ðA7Þ

[58] For domain Pm, the general solution of equation (A2)
is:

~hm ¼ C1mr
nmEm

m Inm gmr
Em

m

� �
þ C2mr

nmEm

m Knm gmr
Em

m

� �
; ðA8Þ

where I and K are the modified Bessel functions of the first
and second kind, respectively, with C1i and C2i, i = 1, . . ., m,
are integration variables, while assuming the following:

Em ¼ 2þ qmð Þ=2; ðA9Þ

nm ¼ 1� Nm= 2Emð Þ; ðA10Þ

gm ¼
ffiffiffiffiffiffiffiffiffiffi
p=xm

p
=Em: ðA11Þ

The auxiliary variables nm and gm must be finite. This
implies that Em must be nonzero and therefore qm 6¼ �2.
Because qm should range in an interval containing 0, we
assume qm > �2 in the following. For x, y, Z real, we use:

d=dZð Þ ZxIx yZð Þð Þ ¼ yZxIx�1 yZð Þ; ðA12Þ

d=dZð Þ ZxKx yZð Þð Þ ¼ �yZxKx�1 yZð Þ; ðA13Þ

yielding:

d~hm=drm ¼ gmEmr
nmEmþEm�1
m

�
C1mInm�1 gmr

Em

m

� �
� C2mKnm�1 gmr

Em

m

� ��
:

ðA14Þ

Since nm � 1 < 0, and using the reflection formulae:

Kx Zð Þ ¼ K�x Zð Þ; Z > 0; ðA15Þ

Ix Zð Þ ¼ I�x Zð Þ þ 2 sin �xpð ÞK�x Zð Þ=p; Z � 0; ðA16Þ

we obtain, with sin(nmp) = sin((1 � nm)p):

d~hm=drm ¼ gmEmr
nmEmþEm�1
m C1mI1�nm gmr

Em

m

� ��
þ 2C1m sin nmpð Þ=p� C2mð ÞK1�nm gmr

Em

m

� ��
: ðA17Þ

Using the asymptotic behaviors:

Ix Zð Þ � Z=2ð Þx=G xþ 1ð Þ; x � 0; 0 � Z �
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
;

ðA18Þ

Kx Zð Þ � Z=2ð Þ�xG xð Þ=2; x > 0; 0 < Z �
ffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
;

ðA19Þ

we obtain for 0 < gmrm
Em �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� nm

p
:

d~hm=drm � h1C1mr
2Em�1
m þ h2 2C1m sin nmpð Þ=p� C2mð Þr2nmEm�1

m ;

ðA20Þ

where:

h1 ¼
g2�nm
m Em

21�nmG 2� nmð Þ ; ðA21Þ

h2 ¼
gnmm EmG 1� nmð Þ

2nm
: ðA22Þ

In equation (A20), h1 and h2 are not always zero because
Em > 0, 1 � nm > 0, and gm > 0 for p > 0, so the boundary
condition (A4), (i = m) is satisfied for:

C2m ¼ 2C1m sin nmpð Þ=p; ðA23Þ

because Nm � nm � qm + 2nmEm � 1 is negative or nil, and
for:

Nm > nm � 1; ðA24Þ

such that Nm � nm � qm + 2Em � 1 > 0. Hence we obtain:

d~hm=drm ¼ C1mgmEmr
nmEmþEm�1
m I1�nm gmr

Em

m

� �
; ðA25Þ

and with equation (A16):

~hm ¼ C1mr
nmEm

m I�nm gmr
Em

m

� �
: ðA26Þ

The fracture skin equation (A5, i = m) with equation (A25)
gives:

C1m ¼ ~hm�1=Am; ðA27Þ

where:

Am ¼ lnmEm

m I�nm gml
Em

m

� �
þ lEm

m smgmEmI1�nm gml
Em

m

� �� �
; ðA28Þ
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which gives:

~hm ¼ ~hm�1r
nmEm

m I�nm gmr
Em

m

� �
=Am: ðA29Þ

By substituting in the exchange term of domain Pm�1,
combining equation (A25) with equation (A27) gives:

d~hm=drm
� �

rm¼lm
¼ ~hm�1Bm; ðA30Þ

where:

Bm ¼ �Am=Am; ðA31Þ

�Am ¼ lnmEmþEm�1
m gmEmI1�nm gml

Em

m

� �
: ðA32Þ

Using equation (A30), the diffusion equation (A1, i = m� 1)
for domain Pm�1 can be written as:

p

xi
rqii
~hi ¼

Ni � 1� qið Þ
ri

d~hi
dri

þ d2~hi
dr2i

� liþ1r
qi
i
~hiBiþ1; i ¼ m� 1:

ðA33Þ

The general solution of equation (A33) is:

~hi ¼ C1ir
niEi

i Ini gir
Ei

i

� �
þ C2ir

niEi

i Kni gir
Ei

i

� �
; i ¼ m� 1;

ðA34Þ

where:

Ei ¼ 2þ qið Þ=2; i ¼ m� 1; ðA35Þ

ni ¼ 1� Ni=ð2EiÞ; i ¼ m� 1; ðA36Þ

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=xi þ liþ1Biþ1

p
=Ei; i ¼ m� 1: ðA37Þ

By applying the same reasoning as in domain Pm, we assume
qm � 1 > �2, so the boundary condition (A4, i = m � 1)
implies:

C2i ¼ 2C1i sin nipð Þ=p; i ¼ m� 1; ðA38Þ

Ni > ni � 1; i ¼ m� 1: ðA39Þ

The fracture skin equation (A5, i = m � 1) gives:

C1i ¼ ~hi�1=Ai; i ¼ m� 1; ðA40Þ

where:

Ai ¼ lniEi

i I�ni gil
Ei

i

� �
þ lEi

i sigiEiI1�ni gil
Ei

i

� �� �
; i ¼ m� 1;

ðA41Þ

which gives:

~hi ¼ ~hi�1r
niEi

i I�ni gir
Ei

i

� �
=Ai; i ¼ m� 1: ðA42Þ

For substituting in the exchange term of domain Pm � 2, we
obtain:

d~hi=dri
� �

ri¼li
¼ ~hi�1Bi; i ¼ m� 1; ðA43Þ

where:

Bi ¼ �Ai=Ai; i ¼ m� 1; ðA44Þ

�Ai ¼ lniEiþEi�1
i giEiI1�ni gil

Ei

i

� �
; i ¼ m� 1: ðA45Þ

[59] Applying the same reasoning for domain Pi, 1 < i <
m � 1 as for domain Pm�1, but with boundary conditions
(A4, 1 < i < m � 1) and fracture skin equation (A5, 1 < i <
m � 1), we obtain the following by recurrence, using i = m
� 2, . . ., 2, for qi > �2 and Ni > ni �1:

~hi ¼ ~hi�1r
niEi

i I�ni gir
Ei

i

� �
=Ai; i ¼ 2; . . .m� 2; ðA46Þ

d~hi=dri
� �

ri¼li
¼ ~hi�1Bi; i ¼ 2; . . . ;m� 2; ðA47Þ

where:

Ai ¼ lniEi

i I�ni gil
Ei

i

� �
þ lEi

i sigiEiI1�ni gil
Ei

i

� �� �
;

i ¼ 2; . . . ;m� 2;
ðA48Þ

Bi ¼ �Ai=Ai; i ¼ 2; . . . ;m� 2; ðA49Þ

�Ai ¼ lniEiþEi�1
i giEiI1�ni gil

Ei

i

� �
; i ¼ 2; . . . ;m� 2; ðA50Þ

and:

Ei ¼ 2þ qið Þ=2; i ¼ 2; . . . ;m� 2; ðA51Þ

ni ¼ 1� Ni= 2Eið Þ; i ¼ 2; . . . ;m� 2; ðA52Þ

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=xi þ liþ1Biþ1

p
=Ei; i ¼ 2; . . . ;m� 2: ðA53Þ

[60] For domain P1, with equation (A47, i = 2), the
diffusion equation (A1, i = 1) can be written as:

p

x1
rq11

~h1 ¼
N1 � 1� q1ð Þ

r1

d~h1
dr1

þ d2~h1
dr21

� l2r
q1
1
~h1B2: ðA54Þ

The general solution of equation (A54) is:

~h1 ¼ C11r
n1E1

1 In1 g1r
E1

1

� �
þ C21r

n1E1

1 Kn1 g1r
E1

1

� �
: ðA55Þ
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The boundary condition (A3) implies:

C11 ¼ 0: ðA56Þ

Using equation (A13), we obtain:

d~h1=dr1 ¼ �C21g1E1r
n1E1þE1�1
1 Kn1�1 g1r

E1

1

� �
: ðA57Þ

With equation (A57) and the pumping chamber skin
equation (A7), we obtain:

C21 ¼ ~hw=A1; ðA58Þ

~h1 ¼ ~hwr
n1E1

1 Kn1 g1r
E1

1

� �
=A1; ðA59Þ

where:

A1 ¼ ln1E1

1 Kn1 g1l
E1

1

� �
þ rwswg1E1l

E1�1
1 Kn1�1 g1l

E1

1

� �� �
: ðA60Þ

For substituting into the exchange term of the pumping
well:

d~h1=dr1
� �

r1¼rw
¼ �~hwr

n1E1þE1�1
w g1E1Kn1�1 g1r

E1

w

� �
=A1: ðA61Þ

[61] Using equation (A61) and the pumping chamber
mass balance differential equation (A6), we obtain the
drawdown for the pumping well:

~hw ¼ QA1= p pSwA1 þ �A1ð Þ½ � ðA62Þ

where:

�A1 ¼ Gn1 b1ð ÞK1r
N1=2
w g1E1Kn1�1 g1r

E1

w

� �
ðA63Þ

Appendix B: Consistency of Solutions

[62] In the drawdown solutions (equations (23), (24),
(31)), all the quantities are positive except for ni, the skin
factors and possibly some modified Bessel functions of the
first kind with negative order, which could lead to singu-
larities for null denominators and negative square root
arguments. Nevertheless, drawdown solutions are always
calculable since all Bessel functions arguments are finite:

qi > �2¼)Ei > 0¼)gi > 0¼)0 � gil
Ei

i < þ1
and 0 � gir

Ei

i < þ1

and the only term possibly including a modified Bessel
function of the second kind with null argument (block
centre) is finite. Indeed, for ni > 0, and using the reflection
formula (A16), this term becomes:

rniEi

i I�ni gir
Ei

i

� �
¼ rniEi

i Ini gir
Ei

i

� �
þ 2 sin pnið Þ

�
� Kni gir

Ei

i

� �
=p
�
; ðB1Þ

then, for 0 � giri
Ei �

ffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
, using the asymptotic

behaviors (equations (A18) and (A19)):

rniEi

i I�ni gir
Ei

i

� �
� gi=2ð Þni

G ni þ 1ð Þ r
2niEi

i þ 2

p
sin pnið Þ

� G nið Þ
2

gi
2

� ��ni
< þ1: ðB2Þ

Thus by recurrence, all drawdown solutions are finite.
[63] In the numerical calculation of equations (23), (24),

and (31), Bessel function overflows can be avoided by
applying analytical reductions using reflection formulae
(equations (A15) and (A16)) and asymptotic behaviors for
large arguments:

Ix Zð Þ � exp Zð Þ=
ffiffiffiffiffiffiffiffiffi
2pZ

p
; x � 0; x2 � 1=4

�� ��� Z; ðB3Þ

Kx Zð Þ � exp �Zð Þ=
ffiffiffiffiffiffiffiffiffiffiffi
p=2Z

p
; x � 0; x2 � 1=4

�� ��� Z:

ðB4Þ

Appendix C: Infinitesimal Source Solution
for a Single Porosity

[64] For a single porosity, the infinitesimal source solu-
tion is obtained from equation (24) by assuming a null well
storage (Sw = 0) and taking the well exchange radius rw as
tending to 0. With equation (A15) and:

lim
Z!0

ZxKx Zð Þð Þ ¼ 2x�1G xð Þ; z > 0; ðC1Þ

D1 ¼ Qrn1E1

1 = Gn1 b1ð ÞK1E
1�n1
1 D

n1=2
2 2�n1G 1� n1ð Þ

� �
; ðC2Þ

D2 ¼ 1=x1 þ l2B2=p; ðC3Þ

we obtain for a single porosity (l2 = 0):

~h1 ¼ D1p
�1�n1=2Kn1

ffiffiffiffiffiffiffiffi
pD2

p
rE1

1 =E1

� �
: ðC4Þ

This can be inverted analytically using:

L
1

2

Z

2

� �x

G �x;
Z2

4t

� �� �
¼ p�1�x=2Kx Z

ffiffiffi
p

p� �
; ðC5Þ

where G(x, Z) is the complementary incomplete gamma
function, which gives:

h1 ¼ Qr2n1E1

1 G �n1; r
2E1

1 =4E2
1x1t

� �
= 4pn1=2b3�n1

1 K1E1G N1=2E1ð Þ=
�

� G N1=2ð ÞÞ ðC6Þ

in which we usually assume n1 = N1 without loss of
generality, as stated in the discussion. Note that deriving the
infinitesimal source solution from a dimensionless finite
source solution is not possible because the dimensionless
radius r1/rw tends to infinity.
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[65] At any given distance r1 from the well, two distinct
models h1(N1, q1, K1, Ss1) and �h1(�N1, �q1, �K1, �Ss1) with the
same flow dimension (N0

1 = �N 0
1, n1 = �n1) have the same

transient drawdown h1(r1, t) = �h1(r1, t) for:

�K1 ¼ K1f �N 1; �q1
� �

=f N1; q1ð Þ; ðC7Þ

�Ss1 ¼
�K1

r
2 �E1�E1ð Þ
1 x1

�E1

E1

� �2

; ðC8Þ

where:

f N1; q1ð Þ ¼ r2n1E1

1 = pN1=2b3�N1E1G N1=2E1ð Þ=G N1=2ð Þ
� �

: ðC9Þ

Notation

Subscripts
c Critical
C Cubic
f Fractal scaling

i, j Porosity domain index
‘ Laminar
m Number of porosity domains
s Specific
S Spherical
t Turbulent
w Pumping well

Variables and functions
Ai Truncated block exchange area, m2

bi Orthoradial length, m
ci Total compressibility, m s2 kg�1

Di Truncated block density, m�3

ei Fracture aperture of domains Pi<m, m
G Unit-radius hyperspherical block or pumping

chamber area function
hi Drawdown in domains Pi=w,1,. . .,m, m
H Heaviside function
Ix Modified Bessel function of the first kind and

order x
ki Fractal permeability, m2 + qi

Kfi Hydraulic conductivity, m s�1

Ki Hydraulic conductivity on a unit-radius hyper-
sphere, m1�Ni+ni+qi s�1

Kx Modified Bessel function of the second kind and
order x

l1 rw, m
li Hyperspherical block radius of domains Pi>1, m
�li Hypercubic block half-thickness of domains

Pi>1, m
L Laplace transform
m Number of porosity domains, �
n1 Euclidean limit dimension of domain P1 and

pumping chamber shape dimension, �
ni Block shape dimension of domains Pi>1, �
Ni Fractal density dimension, �
N0

i Flow or spectral dimension, �
pw Pumping chamber nonlinear head loss exponent,

�
p Laplace variable

Pi Porosity domain i, �
Q Injection flow rate, negative for pumping, m3 s�1

Qc Critical flow rate, m3 s�1

qi Exchange flow rate density between Pi<m and
Pi+1, s

�1

r1 Radial Euclidean distance from the source center,
m

ri Radial Euclidean distance from the symmetry
centre of blocks embedding Pi>1, m

rw Pumping well exchange radius, m
Ssfi Specific storage, m�1

Ssi Specific storage on a unit-radius hypersphere,
m1�Ni+ni

Sw Pumping well capacity, m2

t Time elapsed from start of pump test, s
Vi Truncated block volume, m3

an 2pn/2/G(n/2)
bi Correction factors for block radius li>1, �
G Gamma function.
Di Volume density of blocks Pi>1, �
qi Anomalous diffusion exponent, �
q0i Random walk dimension, �

li+1 Exchange coefficient between Pi < m and
Pi+1, m

Ni � ni � qi � 1

Li Exchange area density of blocks embedding
Pi>1, m

�1

m Fluid dynamic viscosity, m�1 s�1 kg
ti Effective fracture volume ratio, �
xi Diffusivity on a unit radius hypersphere,

m2+qi s�1

�r Fluid voluminal weight, kg m�2 s�2

s1 sw, �
si Fracture skin factor between Pi > 1 and Pi � 1

sw Pumping chamber skin factor, �
sw‘ Pumping chamber linear (laminar) skin factor, �
swt Pumping chamber nonlinear (turbulent) skin

factor, m3(1�pw) spw�1

ffi Fracture fractal density or porosity, �
fi Fracture fractal density or porosity on a unit

radius hypersphere, mni�Ni

ci Exchange area density between Pi >1 and Pi�1,
m�1
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