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We construct geometric barriers for minimal graphs in H n × R. We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in H n extending continuously to the interior of each face, taking infinite boundary data on one face and zero boundary value data on the other faces.

In H n × R, we solve the Dirichlet problem for the vertical minimal equation in a C 0 convex domain Ω ⊂ H n taking arbitrarily continuous finite boundary and asymptotic boundary data.

We prove the existence of another Scherk type hypersurface, given by the solution of the vertical minimal equation in the interior of certain admissible polyhedron taking alternatively infinite values +∞ and -∞ on adjacent faces of this polyhedron.

We establish analogous results for minimal graphs when the ambient is the Euclidean space R n+1 .

Introduction

In Euclidean space, H. Jenkins and J. Serrin [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF] showed that in a bounded C 2 domain D the Dirichlet problem for the minimal equation in D is solved for C 2 boundary data if and only if the boundary is mean convex. The theorem also holds in the case that the boundary data is C 0 (but the domain is still C 2 ) by an approximation argument [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Theorem 16.8]. On the other hand, the authors solved the Dirichlet problem in H 3 for the vertical minimal surface equation over a C 0 convex domain Ω in ∂ ∞ H 3 , taking any prescribed continuous boundary data on ∂Ω [START_REF] Sa Earp | Existence and uniqueness of minimal graphs in hyperbolic space[END_REF]. There are also in this context the general results proved by M. Anderson [START_REF] Anderson | Complete minimal varieties in hyperbolic space[END_REF] and [START_REF] Anderson | Complete minimal hypersurfaces in hyperbolic n-manifolds[END_REF].

In this paper we study the vertical minimal equation equation in H n × R (Definition 3.1) in the same spirit of our previous work when n = 2 [START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF]. In that paper the authors have given a full description of the minimal surfaces in H 2 × R invariant by translations (cf [START_REF] Earp | Parabolic and Hyperbolic Screw motion in H 2 × R[END_REF]). Afterwards, inspired on this construction, P. Bérard and the first author [START_REF] Bérard | Minimal hypersurfaces in H n × R, total curvature and index[END_REF] have given the minimal translation hypersurfaces in H n × R and they showed that the geometric behavior is similar to the two dimensional case. There is also a one parameter family of such hypersurfaces, denoted again by M d , d > 0. For instance, M 1 is a vertical graph over an open half-space of H n bounded by a geodesic hyperplane Π, taking infinite boundary value data on Π and zero asymptotic boundary value data. We show that the hypersurface M 1 provides a barrier to the Dirichlet problem at any point of the asymptotic boundary of Ω. Moreover, we prove that the hypersurfaces M d (d < 1) give a barrier to the Dirichlet problem at any strictly convex point of the finite boundary of Ω.

We prove the existence and the uniqueness of rotational Scherk hypersurfaces in H n × R and we prove that these hypersurfaces give a barrier to the Dirichlet problem at any convex point.

Given an admissible convex polyhedron (Definition 5.2), we prove the existence and uniqueness of a solution of the vertical minimal equation in int(P) extending continuously to the interior of each face, taking infinite boundary value on one face and zero boundary value data on the other faces. We call these minimal hypersurfaces in H n × R by first Scherk type (minimal) hypersurface. The hypersurface M 1 above plays a crucial role in the construction.

Using the rotational Scherk hypersurfaces as barriers, we solve the Dirichlet problem for the minimal vertical equation in a bounded C 0 convex domain Ω ⊂ H n taking arbitrarily continuous boundary data. Furthermore, using the hypersurface M 1 as well, we are able to solve the Dirichlet problem for the minimal vertical equation in a C 0 convex domain Ω ⊂ H n taking arbitrarily continuous data along the finite and asymptotic boundary.

We prove the existence of another Scherk type hypersurface, that we call Scherk second type hypersurfaces, given by the solution of the vertical minimal equation in the interior of a certain polyhedron taking alternatively infinite values +∞ and -∞ on adjacent faces of this polyhedron. Those polyhedra may be chosen convex or non convex.

We establish also that the above results, except the statements involving the asymptotic boundary, hold for minimal graphs in R n × R = R n+1 .

Given a non convex admissible domain Ω ⊂ H n and given certain geometric conditions on the asymptotic boundary data Γ ∞ ⊂ ∂ ∞ H n × R, we prove the existence of a minimal graph in H n × R whose finite boundary is ∂Ω and whose asymptotic boundary data is Γ ∞ .

A further interesting open problem is to prove a "Jenkins-Serrin" type results in H n × R. When n = 2 this task was carried out, for instance, by B. Nelli and H. Rosenberg [START_REF] Nelli | Minimal Surfaces in H 2 × R, Bull[END_REF] or by L. Mazet, M. M. Rodriguez and H. Rosenberg [START_REF] Mazet | The Dirichlet problem for the minimal surface equation -with possible infinite boundary data-over domains in a Riemannian manifold[END_REF]. Recently, A. Coutant [START_REF] Coutant | Hypersurfaces de type Scherk[END_REF], under the supervision of F. Pacard, has obtained Scherk type hypersurfaces in R n+1 using a different approach.

The knowledge of the n-dimensional hyperbolic geometry is usefull in this paper. The reader is referred to [START_REF] Sa Earp | Introduction à la géométrie hyperbolique et aux surfaces de Riemann[END_REF].

The authors are grateful to the referee for his valuable observations.

minimal hypersurfaces invariant by hyperbolic translations in

H n × R
We recall shortly the geometric description of the family M d of translation hypersurfaces. First consider a fixed geodesic hyperplane Π of H n . Let O ∈ Π be any fixed point and let γ ⊂ H n be the complete geodesic through O orthogonal to Π.

For any d > 0, the hypersurface M d is generated by a curve in the vertical geodesic two-plane γ ×R. The orbit of a point of the generating curve at level t is the equidistant hypersurface of Π in H n × {t} passing through this point.

As we said in the introduction, for d = 1, the hypersurface M 1 is a complete non entire vertical graph over a half-space of H n × {0} bounded by Π, taking infinite value data on Π and zero asymptotic boundary value data.

For any d < 1, the hypersurface M d is an entire vertical graph. For d > 1, M d is a bi-graph over the exterior of an equidistant hypersurface in

H n = H n × {0}.
The generating curve of M d is given by the following explicit form:

(1)

t = λ(ρ) = ρ a d cosh 2n-2 u -d 2 du, ( a 0) 
where ρ denotes the signed distance on γ with respect to the point O.

More precisely: if d > 1 then a > 0 satisfies cosh n-1 (a) = d and ρ a,

if d = 1 then ρ a > 0 and if d < 1 then a = 0 and ρ ∈ R. Observe that if d < 1 then λ is an odd function of ρ ∈ R.
It can be proved in the same way as in Proposition 2.1 of [START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF] that for any ρ > 0 we have

(2) λ(ρ) → +∞, if d → 1 (d = 1). (M d -Property) 3. Vertical minimal equation in H n × R Definition 3.1 (Vertical graph). Let Ω ⊂ M be a domain in a n-dimensional Riemannian manifold M and let u : Ω → R be a C 2 function on Ω. A vertical graph in the product space M × R is a set G = {(x, u(x)) | x ∈ Ω}.
We call u the height function. Let X be a vector field tangent to M. We denote by ∇ M u and by div M X the gradient of u and the divergence of X, respectively. We define

W M u := 1 + ∇ M u 2 M .
The following proposition is straightforward but we will write it in a suitable form to establish the reflection principle we need.

Proposition 3.1 (Mean curvature equation in M × R). Assume that the domain Ω ⊂ M in coordinates (x 1 , . . . , x n ) is endowed by a conformal metric λ 2 (x 1 , . . . , x n ) (dx 2 1 + • • • + dx 2 n ).
Let H be the mean curvature of a vertical graph G. Then the height function u(x 1 , . . . , x n ) satisfies the following equation

nH = div M ∇ M u W M u := M(u) = n i=1 nλ x i u x i λ 3 1 + λ -2 ∇u 2 R n + n i=1 ∂ ∂x i λ -2 u x i 1 + λ -2 ∇u 2 R n (Mean curvature equation) (3) 
Proof. Consider in the conformal coordinates (x 1 , . . . , x n ) the frame field

X k = ∂ ∂x k , k = 1, . . . , n.
Then the upper unit normal field N is given by

N = -λ -2 n i=1 u x i ∂ ∂x i + ∂ ∂t 1 + ∇u 2 M = - ∇ M u W M u + 1 W M u ∂ ∂t .
We call N h := -∇ M u W M u the horizontal component of N (lifting of a vector field tangent to M). Now using the properties of the Riemannian connection, we infer that the divergence of N in the ambient space M × R is given by div M ×R N = div M N h . On the other hand we have, div M ×R N = -nH, hence we obtain the first equation in the statement of the proposition. Finally, the second equation follows from a simple derivation.

From Proposition 3. 

H n = {(x 1 , . . . , x n ) ∈ R n | x n > 0}. If H = 0, then the height function u(x 1 , . . . , x n ) of a vertical minimal graph G satisfies the following equation M(u) := div R n ∇ R n u 1 + x 2 n (u 2 x 1 + • • • + u 2 xn ) + (2 -n)u xn x n (1 + x 2 n (u 2 x 1 + • • • + u 2 xn ) = 0, or equivalently n i=1 1 + x 2 n (u 2 x 1 + • • • + u 2 x i + • • • + u 2 xn ) u x i x i + (2 -n) 1 + x 2 n (u 2 x 1 + • • • + u 2 xn ) u xn x n -2x 2 n i<k u x i u x k u x i x k -x n u xn u 2 x 1 + • • • + u 2 xn = 0 (Minimal equation) (4) 
For example the hypersurfaces M d , d ∈ (0, 1), are entire vertical graphs whose the height function satisfies Equation (4). Other examples are provided by the half part of the hypersurfaces M d , d > 1, and the half part of the n-dimensional catenoid, [START_REF] Bérard | Minimal hypersurfaces in H n × R, total curvature and index[END_REF] and [START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF]. Now we state the classical maximum principle and uniqueness for the equation (4).

Remark 3.1 (Classical maximum principle).

Let Ω ⊂ H n be a bounded domain and let g 1 , g 2 : ∂Ω → R be continuous functions satisfying g 1 g 2 . Let u i : Ω → R be a continuous extension of g i on Ω satisfying the minimal equation (4) on Ω, i = 1, 2, then we have u 1 u 2 on Ω. Consequently, setting g 1 = g 2 , there is at most one continuous extension of g 1 on Ω satisfying the minimal surface equation (4) on Ω.

We will need also a maximum principle involving the asymptotic boundary.

Let Ω ⊂ H n be an unbounded domain and let g 1 , g 2 : ∂Ω∪∂ ∞ Ω → R be bounded functions satisfying g 1 g 2 . Assume that g 1 and g 2 are continuous on ∂Ω. Let u i : Ω ∪ ∂Ω → R be a continuous extension of g i satisfying the minimal equation ( 4) on Ω, i = 1, 2, such that for any p ∈ ∂ ∞ Ω we have lim sup

q→p u 1 (q) g 1 (p) g 2 (p) lim inf q→p u 2 (q), then we have u 1 u 2 on Ω.
We observe that this maximum principle holds assuming the weaker assumptions M(u 1 ) 0 and M(u 2 ) 0 in Ω (instead of M(u 1 ) = M(u 2 ) = 0). We shall need in the sequel the following important result of J. Spruck.

Remark 3.2 (Spruck's result on graphs in H n × R). We remark that among other pioneering and general results on H-graphs in M × R, J. Spruck obtained interior a priori gradient estimates depending on a priori height estimates and the distance to the boundary, [START_REF] Spruck | Interior Gradient Estimates and Existence Theorems for Constant Mean Curvature Graphs in M n × R[END_REF]Theorem 1.1]. Combining this with classical elliptic theory one obtains a compactness principle: any bounded sequence (u n ) of solutions of Equation (4) on a domain Ω ⊂ H n admits a subsequence that converges uniformly on any compact subset of Ω to a solution u of Equation (4) on Ω. Lemma 3.1 (Reflection principle for minimal graphs in H n ×R).

Let Ω ⊂ H n be a domain whose boundary contains an open set V Π of a geodesic hyperplane Π of H n . Assume that Ω is contained in one side of Π and that ∂Ω ∩ Π = V Π .

Let I be the reflection in H n with respect to Π and let u : Ω → R be a solution of the minimal equation (4) that is continuous up to V Π and taking zero boundary value data on V Π . Then u can be analytically extended across

V Π to a function u : Ω ∪ V Π ∪ I(Ω) → R satisfying the minimal equation (4), setting u = u(p), if p ∈ Ω∪V Π and u = -u(I(p)), if p ∈ I(Ω).
Proof. Without loss of generality, we will consider the upper half-space model for H n . Let u : Ω ⊂ H n → R be a C 2 solution of the minimal equation [START_REF] Courant | Hilbert Methods of Mathematical Physics[END_REF].

We first note that the proof of the assertion does not depend on the choice of the geodesic hyperplane Π. Therefore, by applying an ambient horizontal isometry to the minimal graph G, if necessary, we may assume that, without loss of generality, Π = {(x 1 , x 2 . . . , x n ) ∈ H n | x 1 = 0} and we assume that Ω ⊂ Π

+ := {(x 1 , x 2 . . . , x n ) ∈ H n | x 1 > 0}.
Notice that setting w(x 1 , x 2 , . . . , x n ) := -u(-x 1 , x 2 , . . . , x n ) for any (x 1 , . . . , x n ) ∈ I(Ω), then it is simple to verify, on account of (4), that w also satisfies the minimal equation on I(Ω). Now let p be an interior point of V Π and let B r (p) ⊂ H n be a small ball around p of radius r entirely contained in Ω ∪ V Π ∪ I(Ω). Let ∂B + r (p) := ∂B r (p) ∩ Π + and let f : ∂B + r (p) → R be the restriction of u to ∂B + r (p). We now extend continuously f to the whole sphere ∂B r (p) of radius r by odd extension. For simplicity we still denote this extension by f . We call v the minimal extension of f on B r (p) given by Spruck [START_REF] Spruck | Interior Gradient Estimates and Existence Theorems for Constant Mean Curvature Graphs in M n × R[END_REF]Theorem 1.5], and also by the proof of Theorem 4.1-(1). Notice that the maximum principle ensures that v is the unique solution of the minimal equation in B r (p) taking the continuous boundary value data f at ∂B r (p). Therefore we have v(-x 1 , x 2 , . . . , x n ) = -v(x 1 , . . . , x n ) for any (x 1 , . . . , x n ) ∈ B r (p) and thus v(0, x 2 , . . . , x n ) = 0 for any (0, x 2 , . . . , x n ) ∈ V Π .

The maximum principle again guarantees that v coincides with u on Ω∩B r (p), hence the existence of the minimal extension of f ensures the desired analytic extension of u to B r (p). This completes the proof.

Perron process for the minimal equation in

H n × R
The notions of subsolution, supersolution and barrier for equation (4) are the same as in the two dimensional case, which is treated with details by the authors in [START_REF] Sa Earp | Existence and uniqueness of minimal graphs in hyperbolic space[END_REF] and [START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF]. Definition 4.1 (Problem (P )). In the product space H n × R, we consider the ball model for the hyperbolic plane H n . Let Ω ⊂ H n , be a domain.

Let g : ∂Ω ∪ ∂ ∞ Ω → R be a bounded function. We consider the Dirichlet problem, say problem (P ), for the vertical minimal hypersurface equation (4) taking at any point of ∂Ω ∪ ∂ ∞ Ω prescribed boundary (finite and asymptotic) value data g. More precisely, (P )

     u ∈ C 2 (Ω) and M(u) = 0 in Ω, for any p ∈ ∂Ω ∪ ∂ ∞ Ω
where g is continuous, u extends continuously at p setting u(p) = g(p). Now, let u : Ω ∪ ∂Ω → R be a continuous function.

Let U ⊂ Ω be a closed round ball in H n . We then define the continuous function M U (u) on Ω ∪ ∂Ω by:

M U (u)(x) u(x) if x ∈ Ω ∪ ∂Ω \ U ũ(x) if x ∈ U (5)
where ũ is the minimal extension of u |∂U on U given by Spruck [START_REF] Spruck | Interior Gradient Estimates and Existence Theorems for Constant Mean Curvature Graphs in M n × R[END_REF]Theorem 1.5] and also by the proof of Theorem 4.1-(1).

We say that u is a subsolution (resp. supersolution) of (P ) if: i) For any closed round ball U ⊂ Ω we have

u M U (u) (resp. u M U (u)). ii) u |∂Ω g (resp. u |∂Ω g). iii)
We have lim sup q→p u(q) g(p) (resp. lim inf q→p u(q) g(p)) for any p ∈ ∂ ∞ Ω.

Remark 4.1. We now give some classical facts about subsolutions and supersolutions (cf. [START_REF] Courant | Hilbert Methods of Mathematical Physics[END_REF], [START_REF] Sa Earp | Existence and uniqueness of minimal graphs in hyperbolic space[END_REF], [START_REF] Sa Earp | An asymptotic theorem for minimal surfaces and existence results for minimal graphs in H 2 × R[END_REF]).

(1) It is easily seen that if u is C 2 on Ω, the condition i) above is equivalent to M(u) 0 for subsolution or M(u) 0 for supersolution.

(2) As usual if u and v are two subsolutions (resp. supersolutions) of (P ) then sup(u, v) (resp. inf(u, v)) again is a subsolution (resp. supersolution). (3) Also if u is a subsolution (resp. supersolution) and U ⊂ Ω is a closed round ball then M U (u) is again a subsolution (resp. supersolution). (4) Let φ (resp. u) be a supersolution (resp. a subsolution) of problem (P ), then we have u φ on Ω. Moreover, for any closed round ball U ⊂ Ω we have u M U (u) M U (φ) φ. Definition 4.2 (Barriers). We consider the Dirichlet problem (P ), see Definition 4.1. Let p ∈ ∂Ω ∪ ∂ ∞ Ω be a boundary point where g is continuous.

(1) • Assume first that p ∈ ∂Ω. Suppose that for any M > 0 and for any k

∈ N there is an open neighborhood N k of p in H n and a function ω + k (resp. ω - k ) in C 2 (N k ∩ Ω) ∩ C 0 (N k ∩ Ω) such that i) ω + k (x) |∂Ω∩N k g(x) and ω + k (x) |∂N k ∩Ω M (resp. ω - k (x) |∂Ω∩N k g(x) and ω - k (x) |∂N k ∩Ω -M). ii) M(ω + k ) 0 (resp. M(ω - k ) 0) in N k ∩ Ω. iii) lim k→+∞ ω + k (p) = g(p) (resp. lim k→+∞ ω - k (p) = g(p)). • If p ∈ ∂ ∞ Ω,
then we choose for N k an open set of H n containing a half-space with p in its asymptotic boundary. We recall that a half-space is a connected component of H n \ Π for any geodesic hyperplane Π. Then the functions ω

+ k and ω - k are in C 2 (N k ∩ Ω) ∩ C 0 (N k ∩ Ω)and satisfy: i) ω + k (x) |∂Ω∩N k g(x) and ω + k (x) |∂N k ∩Ω M (resp. ω - k (x) |∂Ω∩N k g(x) and ω - k (x) |∂N k ∩Ω -M). ii) For any x ∈ ∂ ∞ (Ω ∩ N k ) we have lim inf y→x ω + k (y) g(x) (for y ∈ N k ∩ Ω) (resp. lim sup y→x ω - k (y) g(x)). iii) M(ω + k ) 0 (resp. M(ω - k ) 0) in N k ∩ Ω. iv) lim k→+∞ lim inf q→p ω + k (q) = g(p) and lim k→+∞ lim sup q→p ω - k (q) = g(p).
(2) Suppose that p ∈ ∂Ω and that there exists a supersolution φ

(resp. a subsolution η) in C 2 (Ω) ∩ C 0 (Ω) such that φ(p) = g(p) (resp. η(p) = g(p)).
In both cases (1) or ( 2) we say that p admits an upper barrier

(ω + k , k ∈ N or φ) (resp. lower barrier ω - k , k ∈ N or η)
for the problem (P ). If p admits an upper and a lower barrier we say more shortly that p admits a barrier. (1) We say that a C 0 domain Ω is convex at p ∈ ∂Ω, if a neighborhood of p in Ω lies in one side of some geodesic hyperplane of H n passing through p. (2) We say that a C 0 domain Ω is strictly convex at p ∈ ∂Ω if a neighborhood U p ⊂ Ω of p in Ω lies in one side of some geodesic hyperplane Π of H n passing through p and if U p ∩ Π = {p}.

We are then able to state the following result.

Theorem 4.1 (Perron process). Let Ω ⊂ H n be a domain and let g : ∂Ω ∪ ∂ ∞ Ω → R be a bounded function. Let φ be a bounded supersolution of the Dirichlet problem (P ), for example the constant function φ ≡ sup g. Set S φ = {ϕ, subsolution of (P ), ϕ φ}. We define for each

x ∈ Ω u(x) = sup ϕ∈S φ ϕ(x).
(Observe that S φ = ∅ since the constant function ϕ ≡ inf g belongs to S φ .)

We have the following:

(1) The function u is C 2 on Ω and satisfies the vertical minimal equation (4).

(2) Let p ∈ ∂ ∞ Ω be an asymptotic boundary point where g is continuous. Then p admits a barrier and therefore u extends continuously at p setting u(p) = g(p); that is, if (q m ) is a sequence in H n such that q m → p, then u(q m ) → g(p). In particular, if g is continuous on ∂ ∞ Ω then the asymptotic boundary of the graph of u is the restriction of the graph of g to ∂ ∞ Ω. (3) Let p ∈ ∂Ω be a finite boundary point where g is continuous.

Suppose that p admits a barrier. Then the solution u extends continuously at p setting u(p) = g(p). (4) If ∂Ω is C 0 strictly convex at p then u extends continuously at p setting u(p) = g(p).

Proof. The proof of (1) follows as in [START_REF] Sa Earp | Existence and uniqueness of minimal graphs in hyperbolic space[END_REF]Theorem 3.4]. We will give now some details. To obtain the solution u we need a compactness principle and we also need that for any y ∈ Ω there exists a round closed ball B ⊂ Ω such that y ∈ int(B) and such that the Dirichlet problem (P ) can be solved on B for any continuous boundary data on ∂B.

The compactness principle was shown by Spruck, see [START_REF] Spruck | Interior Gradient Estimates and Existence Theorems for Constant Mean Curvature Graphs in M n × R[END_REF]. The resolution of the Dirichlet problem on B may also be encountered in [START_REF] Spruck | Interior Gradient Estimates and Existence Theorems for Constant Mean Curvature Graphs in M n × R[END_REF], nevertheless we give some details for an alternative proof. Working in the half space model of H n , B can be seen as an Euclidean ball centered at y of radius R > 0. Assume first that h is a C 2,α function on ∂B. Observe that the eigenvalues of the symmetric matrix of the coefficients of u x i x j in Equation ( 4) are 1 and

(W M u) 2 = 1 + x 2 n (u 2 x 1 + • • • + u 2 xn
), the last with multiplicity n -1. Therefore, if R is small enough, then the equation ( 4) satisfies the structure conditions (14.33) in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Chapter 14]. Thus Corollary 14.5 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] shows that there exist a priori boundary gradient estimates. Then the classical elliptic theory provides a C 2,α solution of (P ), see for example [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Chapter 11]. Finally, for continuous boundary data h on ∂B, we use an approximation argument.

Let us proceed the proof of the assertion (2). Let p ∈ ∂ ∞ Ω, we want to show that the minimal hypersurface M 1 provides an upper and a lower barrier at p. Let k ∈ N * , since g is continuous at p, there exists a neighborhood U of p in H n ∪∂ ∞ H n such that for any q ∈ ∂Ω∪∂ ∞ Ω ∩U we have g(p) -1/2k < g(q) < g(p) + 1/2k.

Let Π be a geodesic hyperplane such that Π ⊂ U and such that the connected component of H n \ Π lying entirely in U contains p in its asymptotic boundary. We choose an equidistant hypersurface Π k of Π in the same connected component of H n \ Π. We denote by N k the connected component of H n \ Π k containing p in its asymptotic boundary.

We can choose Π k such that there exist two copies M + 1 and M - 1 of M 1 satisfying:

• M + 1 takes the asymptotic boundary value data g(p) + 1/2k on ∂ ∞ N k , the value data +∞ on Π and a finite value data A > max g(p)

+ 1/2k, sup Ω φ on Π k . • M - 1 takes the asymptotic boundary value data g(p) -1/2k on ∂ ∞ N k , the value data -∞ on Π and a finite value data B < inf g on Π k . Let us denote by ω + k (resp. ω - k ) the function on N k ∩Ω whose graph is the copy M + 1 (resp. M - 1 ) of M 1 . We extend ω - k on Ω setting ω - k (q) = B for any q ∈ Ω \ N k , keeping the same notation. Claim 1. ω - k ∈ S φ , that is ω - k is a subsolution such that ω - k φ. Claim 2.
For any subsolution ϕ ∈ S φ we have ϕ |N k ∩Ω ω + k . We assume momentarily that the two claims hold. We then have for any q ∈ N k ∩Ω: ω - k (q) u(q) (since ω - k ∈ S φ and by the very definition of u) and ϕ(q) ω + k (q) for any subsolution ϕ ∈ S φ . We deduce that ω - k (q) u(q) ω + k (q) for any q ∈ N k ∩ Ω and for any k ∈ N * . The rest of the argument is straightforward but we will provide the details for the readers convenience.

We thus have for any q ∈ N k ∩ Ω:

ω - k (q) -g(p) - 1 2k - 1 2k u(q) -g(p) ω + k (q) -g(p) + 1 2k + 1 2k .
Let (q m ) be a sequence in Ω such that q m → p. By construction, for m big enough we have q m ∈ N k ∩ Ω and

|ω + k (q m ) -g(p) + 1 2k | 1 2k , |ω - k (q m ) -g(p) - 1 2k | 1 2k .
We then have |u(q m )g(p)| 1/k for m big enough, hence u(q m ) → g(p). We conclude therefore that u extends continuously at p setting u(p) = g(p).

Let us prove Claim 1. By construction, ω - k is continuous on Ω and satisfies ω - The proof of Claim 2 can be accomplished in the same way as the proof of Claim 1, but we give another proof as follows. Let ϕ ∈ S φ . Assume by contradiction that sup

k |∂Ω g and lim sup y→p ω - k (y) g(p) (y ∈ Ω) for any p ∈ ∂ ∞ Ω. It is straightforward to show that for any closed round ball U ⊂ Ω we have M U (ω - k ) ω - k , see ( 
|N k ∩Ω (ϕ -ω + k ) > 0. Since ϕ and ω + k are bounded on N k ∩ Ω we have sup |N k ∩Ω (ϕ -ω + k ) < +∞. Let (q m ) be a sequence in N k ∩ Ω such that (ϕ -ω + k )(q m ) → sup |N k ∩Ω (ϕ -ω + k ). Let q ∈ N k ∩ Ω ∪ ∂ ∞ (N k ∩ Ω) be any limit point of this sequence. Since ϕ φ < A = ω + k on Π k and ϕ g < g(p) + 1/2k ω + k on ∂Ω ∩ N k , we must have q ∈ Ω ∩ N k or q ∈ ∂ ∞ N k .
The first possibility is discarded by the maximum principle. The second possibility is also discarded since ω We remark that the proof of the assertion (3) is analogous to the proof of the assertion [START_REF] Anderson | Complete minimal hypersurfaces in hyperbolic n-manifolds[END_REF], see also [START_REF] Sa Earp | Existence and uniqueness of minimal graphs in hyperbolic space[END_REF]Theorem 3.4].

+ k g(p) + 1/2k on N k and ϕ(q m ) < g(p) + 1/2k if q m ∈ N k ∩ Ω is close enough of ∂Ω ∪ ∂ ∞ Ω. We conclude that ω + k (resp. ω - k ) is
Finally, the proof of the assertion (4) is a consequence of the following. Claim. The family M d , d ∈ (0, 1), provides a barrier at any boundary point where Ω is strictly convex and g is continuous.

We proceed the proof of the claim as follows. We choose the ball model for H n and we may assume that p = 0. As p is a strictly convex point, there is a geodesic hyperplane Π ⊂ H n such that, locally, we have:

Π ∩ ∂Ω = {0} and, locally, Ω lies in one side, say Π + , of Π. Let M > 0 and k ∈ N * . We now construct a upper barrier at 0. Let E(ρ) be the equidistant hypersurface to Π at distance ρ lying in Π + . Let E + (ρ) be the connected component of

H n \ E(ρ) that contains 0. We call N the connected component of E + (ρ) ∩ Ω such that 0 ∈ N .
Consider the hypersurfaces M d , d < 1, given by equation [START_REF] Anderson | Complete minimal varieties in hyperbolic space[END_REF]. We choose ρ > 0 such that g(q) g(0) + 1/k on N ∩ ∂Ω.

Using the M d -Property (2), we may choose d near 1, 0 < d < 1, such that λ(ρ) > M -(g(0) -1/k). We set w + k to be the function on N whose the graph is (a piece of) the vertical translated copy of M d by g(0) + 1/k.

Clearly, the functions w + k are continuous up to the boundary of N and give a upper barrier at p in the sense of Definition 4.2-(1). In the same way we can construct a lower barrier at p. This completes the proof of the theorem.

5. Scherk type minimal hypersurfaces in H n × R Definition 5.1 (Special rotational domain). Let γ, L ⊂ H n be two complete geodesic lines with L orthogonal to γ at some point B ∈ γ ∩ L. Using the half-space model for H n , we can assume that γ is the vertical geodesic such that ∂ ∞ γ = {0, ∞}. We call P ⊂ H n the geodesic two-plane containing L and γ. We choose A 0 ∈ (0, B) ⊂ γ and A 1 ∈ L \ γ and we denote by α ⊂ P the euclidean segment joining A 0 and A 1 . Therefore the hypersurface Σ generated by rotating α with respect to γ has the following properties.

(1) int(Σ) is smooth except at point A 0 .

(2) Σ is strictly convex in hyperbolic meaning and convex in euclidean meaning. (3) int(Σ) \ {A 0 } is transversal to the Killing field generated by the translations along γ. Consequently Σ lies in the mean convex side of the domain of H n whose boundary is the hyperbolic cylinder with axis γ and passing through A 1 . Let us call Π ⊂ H n the geodesic hyperplane orthogonal to γ and passing through B. Observe that the boundary of Σ is a n -2 dimensional geodesic sphere of Π centered at B.

We denote by U Σ ⊂ Π the open geodesic ball centered at B whose boundary is the boundary of Σ. We call D Σ ⊂ H n the closed domain whose boundary is U Σ ∪ Σ. Observe that ∂D Σ is strictly convex at any point of Σ and convex at any point of U Σ . Such a domain will be called a special rotational domain.

Proposition 5.1. Let D Σ ⊂ H n be a special rotational domain. For any number t ∈ R, there is a unique solution v t of the vertical minimal equation in int(D Σ ) which extends continuously to int(Σ) ∪ U Σ , taking prescribed zero boundary value data on the interior of Σ and prescribed boundary value data t on U Σ .

More precisely, for any t ∈ R, the following Dirichlet problem (P t ) admits a unique solution v t .

(P t )          M(u) = 0 in int(D Σ ), u = 0 on int(Σ), u = t on U Σ , u ∈ C 2 (int(D Σ )) ∩ C 0 (D Σ \ ∂Σ) .
Furthermore, the solutions v t are strictly increasing with respect to t and satisfy 0 < v t < t on int(D Σ ).

Proof. Before beginning the proof of the existence part of the statement, we would like to remark that, as the ambient space has dimension n (arbitrary), we cannot use classical Plateau type arguments to obtain a regular minimal hypersurface in

H n × R whose the boundary is Σ × {0} ∪ U Σ × {t} ∪ ∂Σ × [0, t] .
We are not able to apply directly Perron process (Theorem 4.1) to solve this Dirichlet problem. For this reason, in order to prove the existence part of our statement, we need to consider an auxiliary Dirichlet problem, as follows.

We can assume that t > 0. For k ∈ N * we set

V k := {p ∈ Σ | dist (p, Π) 1 k },
where we recall that Π ⊂ H n is the geodesic hyperplane containing U Σ and where dist means the distance in H n . We choose a translated copy

M d k of the hypersurface M d , see section 2, with d k < 1, given by a function λ k (ρ) satisfying λ k (0) = t and λ k (1/k) -1. Since λ k is an odd function for d k ∈ (0, 1), the M d - Property (2) insures that such a M d k exists for d k < 1 close enough to 1. Then we choose a continuous function f k : V k → [0, t] such that (1) f k = t on ∂Σ = V k ∩ Π. ( 2 
) f k = 0 on ∂V k ∩ int(Σ). ( 3 
)
The graph of f k stands above the hypersurface M d k , that is f k λ k on V k . Now we define a function g k : ∂D Σ → [0, t] setting:

g k (p) =      0 if p ∈ Σ \ V k , f k if p ∈ V k , t if p ∈ U Σ .
Note that g k is a continuous function on ∂D Σ . Then we consider an auxiliary Dirichlet problem ( P k ) as follows:

( P k )      M(u) = 0 in int(D Σ ), u = g k on ∂D Σ , u ∈ C 2 (int(D Σ )) ∩ C 0 (D Σ ) .
Observe that the hypersurface M d k provides a lower barrier at any point of U Σ and that at such a point the constant function ω + ≡ t is an upper barrier in the sense of Definition 4.2-(2). Furthermore, ∂D Σ is C 0 strictly convex at any other point, that is at any point of Σ. Therefore the hypersurfaces M d , d < 1, provide a barrier at these points, see the proof of Theorem 4.1-(4). Thus, any point of ∂D Σ has a barrier. Applying Perron Process (Theorem 4.1), considering the set of subsolutions to problem ( P k ) below the constant supersolution identically equal to t, we find a solution w k of the Dirichlet problem ( P k ). Observe that the zero function is a subsolution of ( P k ). Therefore we have 0 w k t for any k > 0.

Using the reflection principle with respect to Π (Lemma 3.1), it follows that each point of U Σ can be considered as an interior point of the domain of a function, denoted again by w k , satisfying the minimal equation, bounded below by 0 and bounded above by 2t. Observe that this estimate is independent of k > 0.

Consequently, using the compactness principle, we can find a subsequence that converges to a function v t ∈ C 2 (int(D Σ ))∩C 0 (int(D Σ )∪U Σ ) satisfying the minimal equation M(v t ) = 0 and such that v t (p) = t at any p ∈ U Σ . Since any point of int(Σ) has a barrier the function v t extends continuously there, setting v t (p) = 0 at any p ∈ int(Σ). We have therefore proved the existence of a solution v t of the Dirichlet problem (P t ). Observe that by construction we have 0 < v t < t on int(D Σ ).

Let us prove now uniqueness of the solution of (P t ). Let u and v be two solutions of the Dirichlet problem (P t ). We will adapt the proof of [7, Theorem 2.2] to our situation.

We are going to use the notations of Definition 5.1. Let us recall that P is the geodesic two-plane containing the geodesic lines γ and L. Let ε > 0 and let us call c ε ⊂ P the intersection of the circle or radius ε centered at A 1 with the compact subset of P delimited by γ, L and the euclidean segment α. We denote by C ε ⊂ H n the compact hypersurface obtained by rotating c ε with respect to γ. Let V ε be the n -1 volume of C ε . Observe that V ε → 0 when ε → 0. From now the arguments follow as in [START_REF] Hauswirth | Spruck Infinite boundary value problems for constant mean curvature graphs in H 2 × R and S 2 × R[END_REF], so we just sketch the proof.

For N > 0 large we define

ϕ =      N -ε if u -v N u -v -ε if ε < u -v < N 0 if u -v ε Let us call D ε the connected component of D Σ \ C ε containing A 0 (we have D ε → D Σ when ε → 0). Observe that ϕ ≡ 0 along ∂D ε \ C ε .
So that, applying the divergence theorem and using the fact that u and v are solutions of the minimal graph equation, we obtain

Cε ϕ ∇u W M u - ∇v W M v , ν ds = Dε ∇ϕ, ∇u W M u - ∇v W M v dV where ν is the exterior normal to ∂C ε . It is shown in [7, Lemma 2.1] that ∇u -∇v, ∇u W M u -∇v W M v
0 with equality at a point if, and only if, ∇u = ∇v. Therefore

0 Dε ∇ϕ, ∇u W M u - ∇v W M v dV = Cε ϕ ∇u W M u - ∇v W M v , ν ds 2NV ε
Letting ε → 0, we get that ∇u ≡ ∇v in the set where 0 < uv < N.

Letting N → +∞ we obtain that ∇u ≡ ∇v in the set {u > v}.

Assume that int{u > v} = ∅, then there exists a constant λ > 0 such that u = v + λ on an open subset of D Σ . By analyticity we deduce that u = v + λ everywhere on D Σ \ ∂Σ, which is absurd since u = v on ∂D Σ \ ∂Σ. Therefore we get that int{u > v} = ∅, that is u v on D Σ \ ∂Σ. The same argument shows also that v u on D Σ \ ∂Σ. Therefore u = v and the proof of the uniqueness of the solution of Dirichlet problem (P t ) is completed.

At last, let us prove that the family {v t } of the solutions of Dirichlet problem (P t ) is strictly increasing on t. We could adapt the same arguments of [7, Theorem 2.2] as before, but we will give another proof.

Let 0 < t 1 < t 2 and let v 1 and v 2 be the solutions of the Dirichlet problems (P t 1 ) and (P t 2 ) respectively. Let p be a fixed arbitrary point in the interior of D Σ .

For ε small enough consider a ε-translated copy of the graph of v 1 along γ in the orientation A 0 → B. This graph is given by a function v ε 1 over a translated copy D Σ (ε) of D Σ . Taking into account the properties on Σ stated in Definition 5.1, we have D Σ (ε) ∩ Σ = ∅. We may assume that ε is chosen small so that p belongs to int(D Σ (ε)). Since 0 < v 1 < t 1 on int D Σ , we get that v ε 1 is less than v 2 along the boundary of

D Σ ∩ D Σ (ε). Using maximum principle we deduce that v ε 1 (p) < v 2 (p), for ε small enough, since v ε 1 < v 2 along ∂ D Σ ∩ D Σ (ε) .
Thus letting ε → 0 we have therefore that v 1 (p) v 2 (p), this accomplishes the proof.

Theorem 5.1 (Rotational Scherk hypersurface). Let D Σ ⊂ H n be a special rotational domain. There is a unique solution v of the vertical minimal equation in int(D Σ ) which extends continuously to int(Σ), taking prescribed zero boundary value data and taking boundary value ∞ for any approach to U Σ . More precisely, the following Dirichlet problem (P ) admits a unique solution v ∞ .

(P )          M(u) = 0 in int(D Σ ), u = 0 on int(Σ), u = +∞ on U Σ , u ∈ C 2 (int(D Σ )) ∩ C 0 D Σ \ U Σ .
We call the graph of v in H n × R a rotational Scherk hypersurface.

Proof. First, we will prove the existence part of the Theorem. We consider the family of functions v t , t > 0, given by Proposition 5.1. Recall that Π ⊂ H n is the totally geodesic hyperplane containing U Σ . We consider a suitable copy of M 1 (see section 2) as barrier as follows: choose M 1 such that M 1 is a graph of a function u 1 whose domain is the component of H n \ Π that contains D Σ , with u 1 taking boundary value data +∞ on Π and taking zero asymptotic boundary value data. By applying maximum principle we have that u 1 (p) > v t (p) for all p ∈ D Σ and all t > 0.

Using compactness principle we obtain that a subsequence of the family converges uniformly on any compact subsets of int(D Σ ) to a solution v ∞ of the minimal equation. Since the family is strictly increasing v ∞ takes the value +∞ on U Σ . That is, for any sequence (q k ) in int(D Σ ) converging to some point of U Σ we have v ∞ (q k ) → +∞.

Let p ∈ int(Σ), since ∂D Σ is C 0 strictly convex at p, the hypersurfaces M d , d < 1, provide a barrier at p, see the proof of Theorem 4.1-(4). Consequently v ∞ extends continuously at p setting v ∞ (p) = 0. Therefore v ∞ is a solution of the Dirichlet problem (P ).

The proof of uniqueness of v ∞ proceeds in the same way as the proof of the monotonicity of the family {v t } in Proposition 5.1. This completes the proof of the Theorem. Theorem 5.2 (Barrier at a C 0 convex point). Let Ω ⊂ H n be a domain and let p 0 ∈ ∂Ω be a boundary point where Ω is C 0 convex. Then for any bounded data g : ∂Ω ∪ ∂ ∞ Ω → R continuous at p 0 , the family of rotational Scherk hypersurfaces provides a barrier at p 0 for the Dirichlet problem (P ). In particular, in Theorem 4.1-(4) the assumption C 0 strictly convex can be replaced by C 0 convex.

Proof. We use the same notations as in the definition of a special rotational domain, Definition 5.1.

We will prove that the rotational Scherk hypersurfaces with -∞ boundary data on the boundary part U Σ provide an upper barrier at p 0 . For the lower barrier the construction is similar.

Let D Σ be a special rotational domain. Let ω be the height function of the rotational Scherk hypersurface S taking -∞ boundary data on U Σ and 0 boundary data on the interior of Σ, given by Theorem 5.1. We first prove the theorem assuming that the two claims hold.

Let D ∈ (A 0 , B) and let Π D ⊂ H n be the geodesic hyperplane through D orthogonal to the geodesic segment [A 0 , B]. Let D + Σ be the connected component of D Σ \ Π D containing the point A 0 . Let q be any point belonging to the closure of D + Σ . The claims ensure that ω(q) ω(D).

Let p 0 ∈ ∂Ω be a C 0 convex point and let g be a bounded data continuous at p 0 . Let M > 0 be any positive real number. It suffices to show that for any k ∈ N * there is an open neighborhood N k of p 0 in H n and a function ω

+ k in C 2 (N k ∩ Ω) ∩ C 0 (N k ∩ Ω) such that i) ω + k (x) |∂Ω∩N k g(x) and ω + k (x) |∂N k ∩Ω M, ii) M(ω + k ) = 0 in N k ∩ Ω, iii) ω + k (p 0 ) = g(p 0
) + 1/k. By continuity there exists ε > 0 such that for any p ∈ ∂Ω with dist(p, p 0 ) < ε we have g(p) < g(p 0 ) + 1/k.

By assumption there exist a geodesic hyperplane Π p 0 through p 0 and an open neighborhood W ⊂ Π p 0 of p 0 such that W ∩ Ω = ∅. We set Ω ε = {p ∈ Ω | dist(p 0 , p) < ε}. Up to choosing ε small enough, we can assume that Ω ε is entirely contained in a component of H n \ Π p 0 . Let γ be the geodesic through p 0 orthogonal to Π p 0 .

We choose a special rotational domain D Σ such that:

• the hyperplane Π is orthogonal to γ, (recall that

U Σ ⊂ Π) • the diameter of D Σ is lesser than ε 4 , • Ω ∩ U Σ = ∅, • A 0 ∈ γ, dist(p 0 , A 0 ) < ε 8 and A 0 belongs to the same component of H n \ Π p 0 than Ω ε .
Let M ′ > max{M, g(p 0 ) + 1/k}. We consider the rotational Scherk hypersurface (graph of ω) taking M ′ boundary value data on the interior of Σ and -∞ on U Σ . By continuity, there exists a point p 1 ∈ γ where ω(p 1 ) = g(p 0 )+1/k. Up to a horizontal translation along γ sending p 1 to p 0 , we may assume that ω(p 0 ) = g(p 0 ) + 1/k. Then we set

N k = int(D Σ ) ∩ Ω and ω + k = ω |N k , the restriction of ω to N k . Therefore we have ω + k (x) |∂N k ∩Ω = M ′ M, furthermore Claim 1 and Claim 2 show that ω + k (x) |∂Ω∩N k g(p 0 ) + 1/k g(x)
, as desired.

We now proceed to the proof of Claim 1. Let p 1 , p 2 ∈ (A 0 , B) with p 1 < p 2 , we want to show that ω(p 1 ) ω(p 2 ). Let p 3 ∈ (p 1 , p 2 ) be the middle point of p 1 and p 2 and let Π p 3 ⊂ H n be the geodesic hyperplane through p 3 orthogonal to (A 0 , B). We denote by σ the reflection in H n with respect to Π p 3 . Let D + Σ be the connected component of D Σ \ Π p 3 containing A 0 and let D - Σ be the other component. We denote by S + the part of the rotational Scherk hypersurface which is a graph over D + Σ . Observe that the definition of a special rotational domain ensures that σ(D + Σ ) ∩ Σ = ∅. Hence a part of σ(S + ) is the graph of a function v over a part W of D - Σ such that v ω on ∂W . We conclude therefore with the aid of the maximum principle that v ω on W . This shows that ω(p 1 ) ω(p 2 ) as desired. Now let us prove Claim 2. Let q 1 , q 2 ∈ [D, C] with q 1 < q 2 , we want to show that ω(q 1 ) ω(q 2 ). Let q 3 ∈ (q 1 , q 2 ) be the middle point of q 1 and q 2 and let Π q 3 be the geodesic hyperplane through q 3 orthogonal to [D, C]. Let σ be the reflection in H n with respect to Π q 3 . Let D - Σ be the connected component of D Σ \ Π q 3 containing A 0 and let D + Σ be the other component.

Assertion. If U Σ ∩ Π q 3 = ∅ then there exists a point X 0 ∈ U Σ ∩ D + Σ such that σ(X 0 ) ∈ D Σ .
We assume this assertion for a while. If U Σ ∩ Π q 3 = ∅ then for any

Z ∈ U Σ ∩ D + Σ , with Z ∈ Π q 3 , we have σ(Z) ∈ D Σ . Indeed, if not, since σ(X 0 ) ∈ D Σ , we would find by continuity a point Y ∈ U Σ ∩ D + Σ , with Y ∈ Π q 3 , such that σ(Y ) ∈ Π and σ(Y ) = Y . Therefore the geodesic segment [Y, σ(Y )] is globally invariant with respect to σ. Thus [Y, σ(Y )]
is orthogonal to Π q 3 and therefore Π is also orthogonal to Π q 3 . Hence, we conclude that the whole hyperplane Π is invariant by the reflection σ, which contradicts the assertion.

We denote by Σ -the connected component of Σ\Π q 3 which contains A 0 and we denote by Σ + the other component.

Observe that for any p ∈ Σ + we have σ(p) ∈ Σ -. Indeed, assume first that p lies in the euclidean segment α ⊂ P (see Definition 5.1). By construction, σ(p) belongs to the equidistant curve E p ⊂ P , passing through p, of the geodesic line Γ containing the segment [D, C]. Recall that Γ and E p have the same asymptotic boundary. Furthermore, E p is symmetric with respect to any geodesic hyperplane orthogonal to Γ. Since D Σ is symmetric with respect to the geodesic hyperplane through D orthogonal to Γ, we have that σ(p) ∈ Σ -. Assume now that p ∈ Σ + \α. Let us denote by V the 3-dimensional geodesic submanifold of H n containing p and the geodesic two-plane P . Let H D ⊂ H n be the geodesic hyperplane through D orthogonal to the geodesic Γ. Then the symmetric of p with respect to H D , denoted by p * , is the same than the symmetric of p in V with respect to the geodesic two-plane V ∩H D . As before, σ(p) belongs to the equidistant curve E p ⊂ P , passing through p, of the geodesic line Γ. Furthermore E p is symmetric with respect to the geodesic hyperplanes H D and Π q 3 . Now E p is an arc of circle passing through p with the same asymptotic boundary than Γ. As D Σ ∩ V is a compact part of an euclidean cone we get that

E p ∩ Σ = {p, p * }. Since σ(p) = p * , we conclude that σ(p) ∈ Σ -.
Thus the reflected of ∂D + Σ by σ does not have any intersection with Σ -. We denote by S + the part of the rotational Scherk hypersurface which is a graph over D + Σ . Hence a part of σ(S + ) is the graph of a function v over the domain W = σ(D + Σ ) ∩ D - Σ such that v ω on ∂W . We now are able to conclude the proof of Claim 2, assuming the assertion, by applying the maximum principle, to infer that ω(q 2 ) ω(q 1 ).

Finally, if U Σ ∩ Π q 3 = ∅ by a similar and simpler argument we complete the proof of Claim 2.

To prove the assertion, let us denote by P C ⊂ H n the geodesic twoplane containing the geodesic segments [A 0 , B] and [D, C]. Thus P C is orthogonal to Π q 3 , since it contains [D, C], and is orthogonal to Π, since it contains [A 0 , B]. We consider the open geodesic segment γ 1 = P C ∩ U Σ and the geodesic line γ 2 = P C ∩ Π q 3 . Assume that U Σ ∩ Π q 3 = ∅. Then, since P C is orthogonal to Π and to Π q 3 we have

γ 2 ∩ U Σ = ∅. Therefore γ 2 intersects γ 1 at some point {z} = γ 1 ∩ γ 2 .
Observe that the points D, q 3 , z and B define a geodesic quadrilateral Q in P C with right angles at vertices B, D and q 3 . Therefore the interior angle of Q at z is strictly smaller than π/2. Let us denote by γ

+ 1 ⊂ γ 1 the connected component of γ 1 \{z} which does not contain B. Observe that γ + 1 ⊂ U Σ ∩ D + Σ .
Let s be the reflection in P C with respect to γ 2 . Then s(γ + 1 ) does not have intersection with D Σ , s(γ + 1 ) ∩ D Σ = ∅. Since P C is orthogonal to Π q 3 we have that s(γ + 1 ) = σ(γ + 1 ). Therefore for any X ∈ γ + 1 we have σ(X) ∈ D Σ as claimed, this completes the proof.

Definition 5.2 (Independent points and admissible polyhedra).

(1) We say that n + 1 points A 0 , . . . , A n in H n are independent if there is no geodesic hyperplane containing these points. If A 0 , . . . , A n in H n are independent then we remark that any choice of n points among them determines a unique geodesic hyperplane of H n . (2) Let A 0 , . . . , A n be n + 1 independent points in H n . We call Π i the geodesic hyperplane containing these points excepted A i , i = 0, . . . , n and we call Π + i the closed half-space bounded by Π i and containing A i . Then the intersection of these half-spaces is a polyhedron P: the convex closure of A 0 , . . . , A n . The boundary of P consists of n + 1 closed faces F i ⊂ Π i , the face F i contains in its boundary all the points A 0 , . . . , A n excepted A i . We call such a polyhedron an admissible polyhedron.

Corollary 5.1. Let P be an admissible polyhedron. For any number t ∈ R, there is a unique solution v t of the vertical minimal equation in int(P) which extends continuously to ∂P \ ∂F 0 , taking prescribed zero boundary value data on F 1 \ ∂F 0 , . . . , F n \ ∂F 0 and prescribed boundary value t on int(F 0 ). More precisely, for any t ∈ R, the following Dirichlet problem (P t ) admits a unique solution v t .

(P t )         
M(u) = 0 in int(P), u = 0 on F j \ ∂F 0 , j = 1, . . . , n, u = t on int(F 0 ), u ∈ C 2 (int(P)) ∩ C 0 (P \ ∂F 0 ) . Furthermore, the solutions v t are strictly increasing with respect to t and satisfy 0 < v t < t on int(P).

Proof. The existence part of the statement is a consequence of Theorem 5.2.

The uniqueness is proved in the same way as in Proposition 5.1.

To prove the monotonicity of the family {v t } we consider a point q ∈ int(F 0 ). Notice that ∂P is transversal to the Killing field generated by translations along the geodesic line γ containing A 0 and q. Then the proof proceeds as in the proof of Proposition 5.1.

Using the above proposition we are able to construct a Scherk type minimal hypersurface in H n × R.

Theorem 5.3 (First Scherk type hypersurface in H n ×R). Let P be an admissible convex polyhedron. There is a unique solution v ∞ of the minimal equation in int(P) extending continuously up to ∂P \ F 0 , taking prescribed zero boundary value data on F 1 \ ∂F 0 , . . . , F n \ ∂F 0 and prescribed boundary value ∞ for any approach to int(F 0 ). More precisely, we prove existence and uniqueness of the following Dirichlet problem (P ∞ ):

(P ∞ )          M(u) = 0 in int(P), u = 0 on F j \ ∂F 0 , j = 1, . . . , n, u = ∞ on int(F 0 ), u ∈ C 2 (int(P)) ∩ C 0 (P \ F 0 ) .
Proof. With the aid of Theorem 5.2 we may use the rotational Scherk hypersurfaces as barrier. Therefore, we obtain for any t ∈ R a solution v t of the vertical minimal equation in int(P) which extends continuously to ∂P\∂F 0 , taking prescribed zero boundary value data on ∂P\F 0 and prescribed boundary value t on int(F 0 ). Now letting t → ∞ as in the proof of Theorem 5.1 we have that a subsequence of the family {v t } converges to a solution as desired, taking into account that the rotational Scherk hypersurfaces give a barrier at any point of P.

The uniqueness is obtained as in the proof of the monotonicity of the family {v t } in Proposition 5.1, see also the proof of Corollary 5.1.

Theorem 5.4 (Second Scherk type hypersurface in H n × R). For any k ∈ N, k 2, there exists a family of polyhedron P k with 2 n-1 k faces and a solution w k of the vertical minimal equation in int P k taking alternatively infinite values +∞ and -∞ on adjacent faces of P k . Moreover, the polyhedron P k can be chosen to be convex and can also be chosen to be non convex.

Proof. Let us fix a point A 0 in H n . Let {e 1 , . . . , e n } be a positively oriented orthornormal basis of T A 0 H n . For k 2 we set u := sin(π/k)e 1 + cos(π/k)e 2 . Let γ + j , j = 2, . . . , n and γ + u be the oriented half geodesics issuing from A 0 and tangent to e 2 , . . . , e n and to u, respectively. Now we choose an interior point A 1 on γ + u and an interior point A j on γ + j , j = 2, . . . , n. Therefore, A 0 , A 1 , . . . , A n are independent points of H n . Let P be the polyhedron determined by these points. The faces are denoted by F 0 , . . . , F n , with the convention that the face F j does not contain the vertex A j , j = 0, . . . , n.

Let Π i the totally geodesic hyperplane containing the face F i . Observe that:

(1) F 1 and F 2 make an interior angle equal to π/k.

(2) F j ⊥ F 1 , F j ⊥ F 2 , j = 3, . . . , n.

(3) F j ⊥ F k , j, k = 3, . . . , n (j = k).

Therefore, the reflections in H n with respect to the geodesic hyperplanes Π 1 and Π 2 leave the other geodesic hyperplanes Π j , j = 3, . . . , n globally invariant. The first step of the construction of the polyhedron P k is the following: Doing reflection about F 2 we obtain another polyhedron with faces F * 1 (the symmetric of F 1 about F 2 ), and faces F j containing F j , F j ⊂ Π j , j = 3, . . . , n. Notice that in the process the face F 2 disappears and the interior angle between the faces F 1 and F * 1 is 2π/k. Furthermore, the reflection of F 0 about F 2 generates another face F 1 0 . Continuing this process doing reflections with respect to F * 1 and so on, we obtain a new polyhedron P + with faces F j ⊂ Π j , j = 3, . . . , n, F j containing F j , and 2k faces issuing from the successive reflections of F 0 . Notice that both faces F 1 and F 2 disappear at the end of the process, that is P + does not contain any face in the hyperplane Π 1 or Π 2 .

Next, let us perform the reflections about Π 3 . Doing this the face F 3 disappears and we get a new polyhedron with 2 • 2k faces issuing from F 0 and a face in each Π j , j = 4, . . . , n, by Property (3). Each such face contains F j , j = 4, . . . , n. Continuing this process doing reflections on Π 4 , . . . , Π n we finally get a polyhedron P k with 2 n-1 • k faces, each one issuing from F 0 . Now we discuss the convexity of P k . Let P ⊂ H n be the geodesic two-plane containing the points A 0 , A 1 and A 2 . Let Γ ⊂ P be the geodesic polygon obtained by the reflection of the segment [A 0 , A 1 ] with respect to [A 0 , A 2 ] and so on. Thus Γ is a polygon with 2k sides and 2k vertices, among them A 1 and A 2 , and A 0 is an interior point of Γ. Then, the polyhedron P k is convex if, and only if, the polygon Γ is convex too. For example, if d(A 0 , A 1 ) = d(A 0 , A 2 ) we get that Γ is a regular polygon and then is convex. On the other hand, if d(A 0 , A 1 ) is much bigger than d(A 0 , A 2 ) then Γ is non convex. Now, considering the polyhedron P of the beginning, with the aid of Theorem 5.3, we are able to solve the Dirichlet problem of the minimal equation taking +∞ value data on F 0 and zero value data on F j \ F 0 , j = 1, . . . , n. Using the reflection principle on the faces, in each step of the preceding process, we obtain at the end of the process a solution of the minimal equation on int P k , taking alternatively infinite values +∞ and -∞ on adjacent faces of P k , as desired. This accomplishes the proof of the theorem.

The following theorem are consequence of the previous results. Let Ω be a C 0 bounded convex domain and let g : ∂Ω → R be a continuous function.

Then, g admits a unique continuous extension u : Ω ∪ ∂Ω → R satisfying the vertical minimal hypersurface equation (4) on Ω.

Proof. The proof is a consequence of the Perron process (Theorem 4.1) and the construction of barriers at any convex point of a C 0 domain, using rotational Scherk hypersurfaces (Theorem 5.2). Uniqueness follows from the maximum principle. Let Ω ⊂ H n be a C 0 convex domain and let g : ∂Ω ∪ ∂ ∞ Ω → R be a continuous function.

Then g admits a unique continuous extension u : Ω ∪ ∂Ω ∪ ∂ ∞ Ω → R satisfying the vertical minimal hypersurface equation (4) on Ω.

Proof. Notice that working in the ball model of hyperbolic space, we have that g is a continuous function on a compact set, hence g is bounded. Therefore there exist supersolutions and subsolutions for the Dirichlet problem. The proof is a consequence of the Perron process (Theorem 4.1) and the constructions of barriers, using the rotational Scherk hypersurfaces (Theorem 5.2) at any point of ∂Ω, and using M 1 at any point of ∂ ∞ Ω (Theorem 4.1-(2)). Uniqueness follows from the maximum principle.

Existence of minimal graphs over non convex admissible domains

We will establish some existence of minimal graphs on certain admissible domains and certain asymptotic boundary, in the same way as in [15, Theorem 5.1 and Theorem 5.2]. The proofs are the same as in the two-dimensional situation, using the n-dimensional catenoids and the n-dimensional translation hypersurfaces M d obtained for n 3 in [START_REF] Bérard | Minimal hypersurfaces in H n × R, total curvature and index[END_REF]. Therefore we will just state the related definitions and the theorems without proof. Definition 6.1 (Admissible unbounded domains in H n ). Let Ω ⊂ H n be an unbounded domain. We say that Ω is an admissible domain if each connected component C 0 of ∂Ω satisfies the Exterior sphere of (uniform) radius ρ condition, that is, at any point p ∈ C 0 there exists a sphere S ρ of radius ρ such that p ∈ C 0 ∩S ρ and int S ρ ∩Ω = ∅.

If Ω is an unbounded admissible domain then we denote by ρ Ω the supremum of the set of these ρ.

Let us write down a formula obtained in [START_REF] Bérard | Minimal hypersurfaces in H n × R, total curvature and index[END_REF] that is useful in the sequel. Let t = λ(a, ρ), ρ a, be the height function of the upper half-catenoid in H n × R. Then as ρ goes to infinity λ(a, ρ) goes to R(a) where R(a) is given by

R(a) := sinh(a) ∞ 1 sinh 2 (a)s 2 + 1 -1/2 s 2n-2 -1 -1/2 ds.
Furthermore, the function R increases from 0 to π/(2n -2) when a increases from 0 to ∞. This means that the catenoids in the family have finite height bounded from above by π/(n -1) ([3, Proposition 3.2]). We set f (ρ) := R(ρ).

Theorem 6.1. Let Ω ⊂ H n be an admissible unbounded domain. Let Let Ω be an unbounded domain in H n and let ∂Ω be its boundary. We say that Ω is an E-admissible domain if there exists r > 0 such that each point of ∂Ω satisfies the exterior equidistant hypersurface of (uniform) mean curvature tanh r condition; that is, at any point p ∈ ∂Ω there exists an equidistant hypersurface E r of a geodesic hyperplane, of mean curvature tanh r (with respect to the exterior unit normal to Ω at p), with p ∈ ∂Ω ∩ E r and E r ∩ Ω = ∅.

g : ∂Ω ∪ ∂ ∞ Ω → R be a continuous function taking zero boundary value data on ∂Ω. Let Γ ∞ ⊂ ∂ ∞ H n × R be the graph of g restricted to ∂ ∞ Ω. If the height function t of Γ ∞ satisfies -f (ρ Ω ) t f (ρ Ω ),
If Ω is an unbounded E-admissible domain then we denote by r Ω 0 the infimum of the set of these r. If Ω is a convex E-admissible domain then r Ω = 0.

Thus every E-admissible domain is an admissible domain.

If Ω is a convex domain then Ω is an E-admissible domain. If each connected component C 0 of ∂Ω is an equidistant hypersurface then Ω is an E-admissible (maybe non convex) domain.

Let us write down again some formulas extracted from [START_REF] Bérard | Minimal hypersurfaces in H n × R, total curvature and index[END_REF]. Up to a vertical translation, the height t = µ + (a, ρ) of the translation hypersurface M d , d > 1, is given by µ + (a, ρ) = cosh(a) cosh(ρ)/ cosh(a) 1 (s 2n-2 -1) -1/2 (cosh 2 (a)s 2 -1) -1/2 ds.

These integrals converge at s = 1 and when ρ → +∞, with limit value T (a) := cosh(a) ∞ 1 (s 2n-2 -1) -1/2 (cosh 2 (a)s 2 -1) -1/2 ds.

T is a decreasing function of a, which tends to infinity when a tends to zero (when d > 1 tends to 1) and to π/(2n -2) when a (or d) tends to infinity ([3, Equations 3.55, 3.56, 3.57]).

We set H(r) := T (r). We will write-down in this section some natural extensions of the previous constructions to obtain minimal graphs in the n+1-Euclidean space. The proof of the related results for minimal graphs in R n+1 are mutatis mutandis the same as in H n × R, but simpler. So we will just summarize them.

The dictionary to perform the understanding of the structure of the proofs is as follows: The hypersurface corresponding to the family M d (d < 1) to provide barriers at a strictly convex point for minimal solutions when the ambient space is H n × R is the family of hyperplanes in R n+1 . The hypersurface corresponding to M 1 to get height estimates at a compact set in the domain Ω is now the family of n-dimensional catenoids.

The reflection principle for minimal graphs in Euclidean space can be proved in the same way as in Lemma 3.1. Finally we note that the Perron process is classical in Euclidean space.

We now consider special rotational domain in R n . The definition is analogous to Definition 5.1. Now the curve γ is a straight line and we choose a smooth curve α ⊂ P joining A 0 and A 1 such that the hypersurface Σ generated by rotating α with respect to γ has the following properties.

(1) Σ is smooth except possibly at point A 0 .

(2) Σ is strictly convex.

(3) int(Σ) \ {A 0 } is transversal to the parallel lines to γ.

We recall the minimal equation in R n+1 :

div ∇u W (u) := n i=1 ∂ ∂x i u x i 1 + ∇u 2 R n = 0
(just make λ = 1 and H = 0 in Equation ( 3)). Explicitly, we have that the minimal equation in R n+1 is given by We call the graph of v in R n+1 a rotational Scherk hypersurface.

n i=1 1 + (u 2 x 1 + • • • + u 2 x i + • • • + u 2 xn ) u x i x i -2 i<k u x i u x k u x i x k = 0
Proof. We first solve the auxiliary Dirichlet problem (P t ) taking zero boundary value data on the interior of Σ and prescribed boundary value t on U Σ , in the same way as in the Proposition 5.1. On account that the family of n-dimensional catenoids provides an upper and lower barrier to a solution over any compact set of int(D Σ ), letting t → ∞ we get the desired solution.

Uniqueness is shown in the same way as the proof of monotonicity in Proposition 5.1.

Definition 4 . 3 (

 43 C 0 convex domains).

  5) in Definition 4.1. Hence ω - k is a subsolution of our Dirichlet problem (P ). Observe that we have ω - k φ, see Remark 4.1-(4), thus ω - k ∈ S φ as desired.

  an upper (resp. a lower) barrier at any asymptotic point of Ω in the sense of Definition 4.2-(1).

Claim 1 .

 1 ω is decreasing along the oriented geodesic segment [A 0 , B] ⊂ γ (going from A 0 to B). Claim 2. Let D be any point on the open geodesic segment (A 0 , B), and let β ⊂ D Σ be a geodesic segment issuing from D, ending at some point C ∈ int(Σ) and orthogonal to [A 0 , B] at D. Then ω is increasing along β = [D, C], oriented from D to C.

Theorem 5 . 5 (

 55 Dirichlet problem for the minimal equation in H n × R on a C 0 bounded convex domain taking continuous boundary data).

Theorem 5 . 6 (

 56 Dirichlet problem for the minimal equation in H n × R on a C 0 convex domain taking continuous finite and asymptotic boundary data).

Theorem 6 . 2 . 7 .

 627 Let Ω ⊂ H n be an E-admissible unbounded domain. Letg : ∂Ω ∪ ∂ ∞ Ω → R be a continuous function taking zero boundary value data on ∂Ω. Let Γ ∞ ⊂ ∂ ∞ H n × R be the graph of g restricted to ∂ ∞ Ω. If the height function t of Γ ∞ satisfies -H(r Ω )t H(r Ω ), then there exists a vertical minimal graph over Ω with finite boundary ∂Ω and asymptotic boundary Γ ∞ . Minimal graphs in R n+1 = R n × R.

Theorem 7 . 1 (

 71 Rotational Scherk hypersurface). Let D Σ ⊂ R n be a special rotational domain. There is a unique solution v of the vertical minimal equation in int(D Σ ) which extends continuously to int(Σ), taking prescribed zero boundary value and taking prescribed boundary value ∞ for any approach to U Σ .More precisely, the following Dirichlet problem admits a unique solution vint(D Σ ),u = 0 on int(Σ), u = +∞ on U Σ , u ∈ C 2 (int(D Σ )) ∩ C 0 D Σ \ U Σ .

  1, we deduce the minimal vertical equation or simply minimal equation in H n × R (M(u) = 0). We observe that this equation was obtained in a more general setting by Y.-L. Ou [12, Proposition 3.1]. Corollary 3.1 (Minimal equation in H n × R). Let us consider the upper half-space model of hyperbolic space:

  then there exists a vertical minimal graph over Ω with finite boundary ∂Ω and asymptotic boundary Γ ∞ .Furthermore, there is no such minimal graph, if ∂Ω is compact and the height function t of Γ ∞ satisfies |t| > π/(2n -2). Definition 6.2 (E-admissible unbounded domains in H n ).

We remark that the above result is also obtained by A. Coutant [5]. Next theorem can be proved exactly as in Theorem 5.4.

Theorem 7.4 (Second Scherk type hypersurface in R n+1 ). For any k ∈ N, k 2, there exists a family of polyhedron P k with 2 n-1 k faces and a solution w k of the vertical minimal equation in int P k taking alternatively infinite values +∞ and -∞ on adjacent faces of P k . Moreover, the polyhedron P k can be chosen to be convex and can also be chosen to be non convex.

Remark 7.1. When the ambient space is R 4 with the aid of Theorem 7.4 we have a solution of the minimal equation in the interior of an octahedron in R 3 taking alternatively infinite values +∞ and -∞ on adjacent faces. Indeed, using the notations of the proof of Theorem 5.4, we set k = 2 and we choose A 1 , A 2 and A 3 so that d(A 1 , A 2 ) = d(A 1 , A 3 ) = d(A 2 , A 3 ). Thus the polyhedron P 2 obtained is an octahedron.

We observe that this result was also obtained by A. Coutant [START_REF] Coutant | Hypersurfaces de type Scherk[END_REF] using a different approach.

Theorem 7.2 (Barrier at a C 0 convex point). Let Ω ⊂ R n be a domain and let p 0 ∈ ∂Ω be a boundary point where Ω is C 0 convex. Then for any bounded data g : ∂Ω → R continuous at p 0 the family of rotational Scherk hypersurfaces provides a barrier at p 0 .

Proof. The proof is the same, but simpler, as the proof of Theorem 5.2. More precisely the proofs of the analogous of Claim 1 and 2 are simpler, passing first by the solution v t of the related auxiliary Dirichlet problem (P t ).

Corollary 7.1 (Rotational Scherk hypersurface). Let D Σ ⊂ R n be a special rotational domain generated by a segment α of a straight line. Then:

(1) There is a unique solution v of the vertical minimal equation in int(D Σ ) which extends continuously to int(Σ) ∪ U Σ , taking prescribed zero boundary value data on the interior of Σ and prescribed boundary value ∞ on U Σ . We also call the graph of v in R n+1 a rotational Scherk hypersurface.

(2) Let Ω ⊂ R n be a domain and let p 0 ∈ ∂Ω be a boundary point where Ω is C 0 convex. Then for any bounded data g : ∂Ω → R continuous at p 0 the family of rotational Scherk hypersurfaces given in the first statement provides a barrier at p 0 .

We define the notion of admissible polyhedron in R n in the same way as in hyperbolic space, see Definition 5.2. The following result is proved in the same way as in Theorem 5.3. Theorem 7.3 (First Scherk type hypersurface in R n+1 ). Let P be an admissible convex polyhedron in R n . There is a unique solution v ∞ of the vertical minimal equation in int(P) extending continuously to ∂P \ F 0 , taking prescribed zero boundary value data on F 1 \ ∂F 0 , . . . , F n \ ∂F 0 and prescribed boundary value +∞ for any approach to int(F 0 ). More precisely, we prove existence and uniqueness of the following Dirichlet problem (P ∞ ):

R n = 0 on int(P), u = 0 on F j \ ∂F 0 , j = 1, . . . , n, u = +∞ on int(F 0 ), u ∈ C 2 (int(P)) ∩ C 0 (P \ F 0 ) .