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Abstract.

We construct geometric barriers for minimal graphs in Hn × R.

We prove the existence and uniqueness of a solution of the verti-
cal minimal equation in the interior of a convex polyhedron in Hn

extending continuously to the interior of each face, taking infinite
boundary data on one face and zero boundary value data on the
other faces.

In H
n × R, we solve the Dirichlet problem for the vertical min-

imal equation in a C0 convex domain Ω ⊂ Hn taking arbitrarily
continuous finite boundary and asymptotic boundary data.

We prove the existence of another Scherk type hypersurface,
given by the solution of the vertical minimal equation in the interior
of certain admissible polyhedron taking alternatively infinite values
+∞ and −∞ on adjacent faces of this polyhedron.

We establish analogous results for minimal graphs when the
ambient is the Euclidean space R

n+1.

Key words: Dirichlet problem, minimal equation, vertical graph,

Perron process, barrier, convex domain, asymptotic boundary, translation

hypersurface, Scherk hypersurface.

1. Introduction

In Euclidean space, H. Jenkins and J. Serrin [9] showed that in a
bounded C2 domain D the Dirichlet problem for the minimal equation
in D is solved for C2 boundary data if and only if the boundary is
mean convex. The theorem also holds in the case that boundary data
is C0 (but the domain is still C2) by an approximation argument [6,
Theorem 16.8]. On the other hand, the authors solved the Dirichlet
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problem in H3 for the vertical minimal surface equation over a C0

convex domain Ω in ∂∞H3, taking any prescribed continuous boundary
data on ∂Ω [13]. There are also in this context the general results
proved by M. Anderson [1] and [2].

In this paper we study the vertical minimal equation equation in
Hn × R (Definition 3.1) in the same spirit of our previous work when
n = 2 [14]. In this paper the authors have given a full description of the
minimal surfaces in H2 × R invariant by translations (cf [12]). After-
wards, inspired on this construction, P. Bérard and the first author [3]
have given the minimal translation hypersurfaces in Hn × R and they
showed that the geometric behavior is similar to the two dimensional
case. There is also a one parameter family of such hypersurfaces, de-
noted again by Md, d > 0. For instance, M1 is a vertical graph over
an open halfspace of Hn bounded by a geodesic hyperplane Π, tak-
ing infinite boundary value data on Π and zero asymptotic boundary
value data. We show that the hypersurface M1 provides a barrier to the
Dirichlet problem at any point of the asymptotic boundary of Ω. More-
over, we prove that the hypersurfaces Md (d < 1) give a barrier to the
Dirichlet problem at any strictly convex point of the finite boundary
of Ω.

We prove the existence and the uniqueness of rotational Scherk hy-
persurfaces in H

n × R and we prove that these hypersurfaces give a
barrier to the Dirichlet problem at any convex point.

Given an admissible convex polyhedron (Definition 5.2), we prove the
existence and uniqueness of a solution of the vertical minimal equation
in int(P) extending continuously to the interior of each face, taking
infinite boundary value on one face and zero boundary value data on
the other faces. We call these minimal hypersurfaces in Hn ×R by first

Scherk type (minimal) hypersurface. The hypersurface M1 above plays
a crucial role in the construction.

Using the rotational Scherk hypersurfaces as barriers, we solve the
Dirichlet problem for the minimal vertical equation in a bounded C0

convex domain Ω ⊂ Hn taking arbitrarily continuous boundary data.
Furthermore, using the hypersurface M1 as well, we are able to solve
the Dirichlet problem for the minimal vertical equation in a C0 convex
domain Ω ⊂ Hn taking arbitrarily continuous data along the finite and
asymptotic boundary.

We prove the existence of another Scherk type hypersurface, that
we call Scherk second type hypersurfaces, given by the solution of the
vertical minimal equation in the interior of a certain polyhedron tak-
ing alternatively infinite values +∞ and −∞ on adjacent faces of this
polyhedron. Those polyhedra may be chosen convex or non convex.
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We establish also that the above results, except the statements in-
volving the asymptotic boundary, hold for minimal graphs in Rn×R =
Rn+1.

Given a non convex admissible domain Ω ⊂ Hn and given certain geo-
metric conditions on the asymptotic boundary data Γ∞ ⊂ ∂∞Hn × R,
we prove the existence of a minimal graph in Hn × R whose finite
boundary is ∂Ω and whose asymptotic boundary data is Γ∞.

A further interesting open problem is to prove a “Jenkins-Serrin”
type results in Hn × R. When n = 2 this task was carried out, for
instance, by B. Nelli and H. Rosenberg [11] or by L. Mazet, M. M.
Rodriguez and H. Rosenberg [10]. Recently, A. Coutant [5], under the
supervision of F. Pacard, has obtained Scherk type hypersurfaces in
Rn+1 using a different approach.

The knowledge of the n-dimensional hyperbolic geometry is usefull
in this paper. The reader is referred to [15].

2. minimal hypersurfaces invariant by hyperbolic

translations in Hn × R

We recall shortly the geometric description of the family Md of trans-
lation hypersurfaces. First consider a fixed geodesic hyperplane Π of
H

n. Let O ∈ Π be any fixed point and let γ ⊂ H
n be the complete

geodesic through O orthogonal to Π.
For any d > 0, the hypersurface Md is generated by a curve in the

vertical geodesic two-plane γ×R. The orbit of a point of the generating
curve at level t is the equidistant hypersurface of Π in H

n×{t} passing
through this point.

As we said in the introduction, for d = 1, the hypersurface M1 is
a complete non entire vertical graph over a half-space of Hn × {0}
bounded by Π, taking infinite value data on Π and zero asymptotic
boundary value data.

For any d < 1, the hypersurface Md is an entire vertical graph. For
d > 1, Md is a bi-graph over the exterior of an equidistant hypersurface
in Hn = Hn × {0}.

The generating curve of Md is given by the following explicit form:

(1) t = λ(ρ) =

∫ ρ

a

d√
cosh2n−2 u − d2

du, (a > 0)

where ρ denotes the signed distance on γ with respect to the point O.
More precisely: if d > 1 then a > 0 satisfies coshn−1(a) = d and ρ > a,
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if d = 1 then ρ > a > 0 and if d < 1 then a = 0 and ρ ∈ R. Observe
that for d < 1 then λ is an odd function of ρ ∈ R.

It can be proved in the same way as in Proposition 2.1 of [14] that
for any ρ > 0 we have

(2) λ(ρ) → +∞, if d → 1 (d 6= 1). (Md - Property)

3. Vertical minimal equation in Hn × R

Definition 3.1 (Vertical graph). Let Ω ⊂ M be a domain in a

n-dimensional Riemannian manifold M and let u : Ω → R be a C2

function on Ω. A vertical graph in the product space M × R is a set

G = {(x, u(x)) | x ∈ Ω}. We call u the height function.

Let X be a vector field tangent to M. We denote by ∇Mu and by

divM X the gradient of u and the divergence of X, respectively. We

define WMu :=
√

1 + ‖∇Mu‖2
M .

The following proposition is straightforward but we will write it in
a suitable form to establish the reflection principle we need.

Proposition 3.1 (Mean curvature equation in M ×R). Assume

that the domain Ω ⊂ M in coordinates (x1, . . . , xn) is endowed by a

conformal metric λ2(x1, . . . , xn) (dx2
1 + · · ·+ dx2

n). Let H be the mean

curvature of a vertical graph G. Then the height function u(x1, . . . , xn)
satisfies the following equation

nH = divM

(∇Mu

WMu

)
:= M(u)

=

n∑

i=1

nλxi
uxi

λ3
√

1 + λ−2‖∇u‖2
Rn

+

n∑

i=1

∂

∂xi

(
λ−2 uxi√

1 + λ−2‖∇u‖2
Rn

)

(Mean curvature equation)

(3)

Proof. Consider in the conformal coordinates (x1, . . . , xn) the frame
field Xk = ∂

∂xk
, k = 1, . . . , n. Then the upper unit normal field N is

given by

N =

−λ−2
n∑

i=1

uxi

∂
xi

+ ∂
∂t

√
1 + ‖∇u‖2

M

= −∇Mu

WMu
+

1

WMu

∂

∂t
.

We call NH := −∇Mu

WMu
the horizontal component of N (lifting of a

vector field tangent to M). Now using the properties of the Riemannian
connection, we infer that the divergence of N in the ambient space
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M × R is given by divM×R N = divM NH . On the other hand we have,
divM×R N = −nH, hence we obtain the first equation in the statement
of the proposition. Finally, the second equation follows from a simple
derivation. �

From Proposition 3.1, we deduce the minimal vertical equation or
simply minimal equation in Hn × R (M(u) = 0).

Corollary 3.1 (Minimal equation in Hn × R). Let us consider

the upper half-space model of hyperbolic space: Hn = {(x1, . . . , xn) ∈
Rn | xn > 0}. If H = 0, then the height function u(x1, . . . , xn) of a

vertical minimal graph G satisfies the following equation

M(u) := divRn

(
∇Rnu√

1 + x2
n(u2

x1
+ · · ·+ u2

xn
)

)

+
(2 − n)uxn

xn

√
(1 + x2

n(u2
x1

+ · · ·+ u2
xn

)
= 0,

or equivalently

n∑

i=1

(
1 + x2

n(u2
x1

+ · · ·+ û2
xi

+ · · ·+ u2
xn

)
)

uxixi

+
(2 − n)

(
1 + x2

n(u2
x1

+ · · ·+ u2
xn

)
)
uxn

xn
− 2x2

n

∑

i<k

uxi
uxk

uxixk

− xnuxn

(
u2

x1
+ · · · + u2

xn

)
= 0 (Minimal equation)

(4)

For example the hypersurfaces Md, d ∈ (0, 1), are entire vertical
graphs whose the height function satisfies Equation (4). Other exam-
ples are provided by the half part of the hypersurfaces Md, d > 1, and
the half part of the n-dimensional catenoid, [3] and [14].

Now we state the classical maximum principle and uniqueness for
the equation (4).

Remark 3.1 (Classical maximum principle). Let Ω ⊂ Hn be a
bounded domain and let g1, g2 : ∂Ω → R be continuous functions
satisfying g1 6 g2. Let ui : Ω → R be a continuous extension of gi on Ω
satisfying the minimal equation (4) on Ω, i = 1, 2, then we have u1 6 u2

on Ω. Consequently, setting g1 = g2, there is at most one continuous
extension of g1 on Ω satisfying the minimal surface equation (4) on Ω.

We will need also a maximum principle involving the asymptotic
boundary.
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Let Ω ⊂ Hn be an unbounded domain and let g1, g2 : ∂Ω∪∂∞Ω → R

be bounded functions satisfying g1 6 g2. Assume that g1 and g2 are
continuous on ∂Ω. Let ui : Ω ∪ ∂Ω → R be a continuous extension of
gi satisfying the minimal equation (4) on Ω, i = 1, 2, such that for any
p ∈ ∂∞Ω we have

lim sup
q→p

u1(q) 6 g1(p) 6 g2(p) 6 lim inf
q→p

u2(q),

then we have u1 6 u2 on Ω.
We observe that this maximum principle holds assuming the weaker

assumptions M(u1) > 0 and M(u2) 6 0 in Ω (instead of M(u1) =
M(u2) = 0).

We shall need in the sequel the following important result of J.
Spruck.

Remark 3.2 (Spruck’s result on graphs in Hn ×R). We remark
that among other pioneering and general results on H-graphs in M×R,
J. Spruck obtained interior a priori gradient estimates depending on a
priori hight estimates and the distance to the boundary, [16, Theorem
1.1]. Combining this with classical elliptic theory one obtains a com-

pactness principle: any bounded sequence (un) of solutions of Equation
(4) on a domain Ω ⊂ Hn admits a subsequence that converges uniformly
on any compact subset of Ω to a solution u of Equation (4) on Ω.

Lemma 3.1 (Reflection principle for minimal graphs in Hn×R).
Let Ω ⊂ Hn be a domain whose boundary contains an open set VΠ of a

geodesic hyperplane Π of Hn. Assume that Ω is contained in one side

of Π and that ∂Ω ∩ Π = VΠ.
Let I be the reflection in Hn with respect to Π and let u : Ω → R

be a solution of the minimal equation (4) that is continuous up to VΠ

and taking zero boundary value data on VΠ. Then u can be analytically

extended across VΠ to a function ũ : Ω ∪ VΠ ∪ I(Ω) → R satisfying the

minimal equation (4), setting ũ = u(p), if p ∈ Ω∪VΠ and ũ = −u(I(p)),
if p ∈ I(Ω).

Proof. Without loss of generality, we will consider the upper half-space
model for Hn. Let u : Ω ⊂ Hn → R be a C2 solution of the minimal
equation (4).

We first note that the proof of the assertion does not depend on
the choice of the geodesic hyperplane Π. Therefore, by applying an
ambient horizontal isometry to the minimal graph G, if necessary, we
may assume that, without loss of generality, Π = {(x1, x2 . . . , xn) ∈
Hn | x1 = 0} and we assume that Ω ⊂ Π+ := {(x1, x2 . . . , xn) ∈ Hn |
x1 > 0}.
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Notice that setting w(x1, x2, . . . , xn) := −u(−x1, x2, . . . , xn) for any
(x1, . . . , xn) ∈ I(Ω), then it is simple to verify, on account of (4), that
w also satisfies the minimal equation on I(Ω). Now let p be an interior
point of VΠ and let Br(p) ⊂ Hn be a small ball around p of radius r
entirely contained in Ω ∪ VΠ ∪ I(Ω). Let ∂B+

r (p) := ∂Br(p) ∩ Π+ and
let f : ∂B+

r (p) → R be the restriction of u to ∂B+
r (p). We now extend

continuously f to the whole sphere ∂Br(p) of radius r by odd extension.
For simplicity we still denote this extension by f . We call v the minimal
extension of f on Br(p) given by Spruck [16, Theorem 1.5], and also
by the proof of Theorem 4.1-(1). Notice that the maximum principle
ensures that v is the unique solution of the minimal equation in Br(p)
taking the continuous boundary value data f at ∂Br(p). Therefore we
have v(−x1, x2, . . . , xn) = −v(x1, . . . , xn) for any (x1, . . . , xn) ∈ Br(p)
and thus v(0, x2, . . . , xn) = 0 for any (0, x2, . . . , xn) ∈ VΠ.

The maximum principle again guarantees that v coincides with u on
Ω∩Br(p), hence the existence of the minimal extension of f ensures the
desired analytic extension of u to Br(p). This completes the proof. �

4. Perron process for the minimal equation in Hn × R

The notions of subsolution, supersolution and barrier for equation
(4) are the same as in the two dimensional case, which is treated with
details by the authors in [13] and [14].

Definition 4.1 (Problem (P )). In the product space Hn × R, we
consider the ball model for the hyperbolic plane H

n. Let Ω ⊂ H
n, be

a domain.
Let g : ∂Ω ∪ ∂∞Ω → R be a bounded function. We consider the

Dirichlet problem, say problem (P ), for the vertical minimal hypersur-
face equation (4) taking at any point of ∂Ω∪∂∞Ω prescribed boundary
(finite and asymptotic) value data g. More precisely,

(P )





u ∈ C2 (Ω) and M(u) = 0 in Ω,

for any p ∈ ∂Ω ∪ ∂∞Ω where g is continuous, u extends

continuously at p setting u(p) = g(p).

Now, let u : Ω ∪ ∂Ω → R be a continuous function.
Let U ⊂ Ω be a closed round ball in H

n. We then define the contin-
uous function MU(u) on Ω ∪ ∂Ω by:

MU(u)(x)

{
u(x) if x ∈ Ω ∪ ∂Ω \ U

ũ(x) if x ∈ U
(5)
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where ũ is the minimal extension of u|∂U on U given by Spruck [16,
Theorem 1.5] and also by the proof of Theorem 4.1-(1).

We say that u is a subsolution (resp. supersolution) of (P ) if:

i) For any closed round ball U ⊂ Ω we have
u 6 MU(u) (resp. u > MU(u)).

ii) u|∂Ω 6 g (resp. u|∂Ω > g).

iii) We have lim supq→p u(q) 6 g(p) (resp. lim infq→p u(q) > g(p))
for any p ∈ ∂∞Ω.

Remark 4.1. We now give some classical facts about subsolutions and
supersolutions (cf. [4], [13],[14]).

(1) It is easily seen that if u is C2 on Ω, the condition i) above
is equivalent to M(u) > 0 for subsolution or M(u) 6 0 for
supersolution.

(2) As usual if u and v are two subsolutions (resp. supersolutions)
of (P ) then sup(u, v) (resp. inf(u, v)) again is a subsolution
(resp. supersolution).

(3) Also if u is a subsolution (resp. supersolution) and U ⊂ Ω is
a closed round ball then MU(u) is again a subsolution (resp.
supersolution).

(4) Let φ (resp. u) be a supersolution (resp. a subsolution) of
problem (P ), then we have u 6 φ on Ω. Moreover, for any
closed round ball U ⊂ Ω we have u 6 MU(u) 6 MU(φ) 6 φ.

Definition 4.2 (Barriers). We consider the Dirichlet problem (P ),
see Definition 4.1. Let p ∈ ∂Ω ∪ ∂∞Ω be a boundary point where g is
continuous.

(1) • Assume first that p ∈ ∂Ω. Suppose that for any M > 0 and
for any k ∈ N there is an open neighborhood Nk of p in Hn and
a function ω+

k (resp. ω−
k ) in C2(Nk ∩Ω)∩C0(Nk ∩ Ω) such that

i) ω+
k (x)|∂Ω∩Nk

> g(x) and ω+
k (x)|∂Nk∩Ω > M

(resp. ω−
k (x)|∂Ω∩Nk

6 g(x) and ω−
k (x)|∂Nk∩Ω 6 −M).

ii) M(ω+
k ) 6 0 (resp. M(ω−

k ) > 0) in Nk ∩ Ω.
iii) limk→+∞ ω+

k (p) = g(p) (resp. limk→+∞ ω−
k (p) = g(p)).

• If p ∈ ∂∞Ω, then we choose for Nk an open set of Hn contain-
ing a half-space with p in its asymptotic boundary. We recall
that a half-space is a connected component of H

n \ Π for any
geodesic hyperplane Π. Then the functions ω+

k and ω−
k are in

C2(Nk ∩ Ω) ∩ C0(Nk ∩ Ω)and satisfy:
i) ω+

k (x)|∂Ω∩Nk
> g(x) and ω+

k (x)|∂Nk∩Ω > M

(resp. ω−
k (x)|∂Ω∩Nk

6 g(x) and ω−
k (x)|∂Nk∩Ω 6 −M).
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ii) For any x ∈ ∂∞(Ω ∩ Nk) we have lim infy→x ω+
k (y) > g(x)

(for y ∈ Nk ∩ Ω) (resp. lim supy→x ω−
k (y) > g(x)).

iii) M(ω+
k ) 6 0 (resp. M(ω−

k ) > 0) in Nk ∩ Ω.
iv) limk→+∞

(
lim infq→p ω+

k (q)
)

= g(p) and

limk→+∞

(
lim supq→p ω−

k (q)
)

= g(p).

(2) Suppose that there exists a supersolution φ (resp. a subsolution
η) in C2(Ω)∩C0(Ω) such that φ(p) = g(p) (resp. ϕ(p) = g(p)).

In both cases (1) or (2) we say that p admits an upper barrier (ω+
k , k ∈ N

or φ) (resp. lower barrier ω−
k , k ∈ N or ϕ) for the problem (P ). If p

admits an upper and a lower barrier we say more shortly that p admits
a barrier.

Definition 4.3 (C0 convex domains).

(1) We say that a C0 domain Ω is convex at p ∈ ∂Ω, if a neighbor-

hood of p in Ω lies in one side of some geodesic hyperplane of

Hn passing through p.
(2) We say that a C0 domain Ω is strictly convex at p ∈ ∂Ω if a

neighborhood Up ⊂ Ω of p in Ω lies in one side of some geodesic

hyperplane Π of Hn passing through p and if Up ∩ Π = {p}.

We are then able to state the following result.

Theorem 4.1 (Perron process). Let Ω ⊂ Hn be a domain and let

g : ∂Ω∪ ∂∞Ω → R be a bounded function. Let φ be a bounded superso-

lution of the Dirichlet problem (P ), for example the constant function

φ ≡ sup g.
Set Sφ = {ϕ, subsolution of (P ), ϕ 6 φ}. We define for each x ∈ Ω

u(x) = sup
ϕ∈Sφ

ϕ(x).

(Observe that Sφ 6= ∅ since the constant function ϕ ≡ inf g belongs to

Sφ.)
We have the following:

(1) The function u is C2 on Ω and satisfies the vertical minimal

equation (4).
(2) Let p ∈ ∂∞Ω be an asymptotic boundary point where g is con-

tinuous. Then p admits a barrier and therefore u extends con-

tinuously at p setting u(p) = g(p); that is, if (qm) is a sequence

in Hn such that qm → p, then u(qm) → g(p). In particular, if

g is continuous on ∂∞Ω then the asymptotic boundary of the

graph of u is the restriction of the graph of g to ∂∞Ω.
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(3) Let p ∈ ∂Ω be a finite boundary point where g is continuous.

Suppose that p admits a barrier. Then the solution u extends

continuously at p setting u(p) = g(p).
(4) If ∂Ω is C0 strictly convex at p then u extends continuously at

p setting u(p) = g(p).

Proof. The proof of (1) follows as in [13, Theorem 3.4]. We will give
now some details. To obtain the solution u we need a compactness

principle and we also need that for any y ∈ Ω there exists a round
closed ball B ⊂ Ω such that y ∈ int(B) and such that the Dirichlet
problem (P ) can be solved on B for any continuous boundary data on
∂B.

The compactness principle was shown by Spruck, see [16]. The res-
olution of the Dirichlet problem on B may also be encountered in [16],
nevertheless we give some details for an alternative proof. Working in
the half space model of Hn, B can be see as an Euclidean ball centered
at y of radius R > 0. Assume first that h is a C2,α function on ∂B.
Observe that the eigenvalues of the symmetric matrix of the coefficients
of uxixj

in Equation (4) are 1 and (WMu)2 = 1 + x2
n(u2

x1
+ · · · + u2

xn
),

the last with multiplicity n − 1. Therefore, if R is small enough, then
the equation (4) satisfies the structure conditions (14.33) in [6, Chapter
14]. Thus Corollary 14.5 in [6] shows that there exist a priori boundary
gradient estimates. Then the classical elliptic theory provides a C2,α

solution of (P ), see for example [6, Chapter 11]. Finally, for continuous
boundary data h on ∂B, we use an approximation argument.

Let us proceed the proof of the assertion (2). Let p ∈ ∂∞Ω, we want
to show that the minimal hypersurface M1 provides an upper and a
lower barrier at p. Let k ∈ N∗, since g is continuous at p, there exists a
neighborhood U of p in H

n∪∂∞H
n such that for any q ∈

(
∂Ω∪∂∞Ω

)
∩U

we have g(p) − 1/2k < g(q) < g(p) + 1/2k.
Let Π be a geodesic hyperplane such that Π ⊂ U and such that

the connected component of Hn \ Π lying entirely in U contains p in
its asymptotic boundary. We choose an equidistant hyperplane Πk of
Π in the same connected component of Hn \ Π. We denote by Nk

the connected component of H
n \ Πk containing p in its asymptotic

boundary.
We can choose Πk such that there exist two copies M+

1 and M−
1 of

M1 satisfying:

• M+
1 takes the asymptotic boundary value data g(p) + 1/2k on

∂∞Nk, the value data +∞ on Π and a finite value data A >
max

(
g(p) + 1/2k, supΩ φ

)
on Πk.
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• M−
1 takes the asymptotic boundary value data g(p) − 1/2k on

∂∞Nk, the value data −∞ on Π and a finite value data B < inf g
on Πk.

Let us denote by ω+
k (resp. ω−

k ) the function on Nk∩Ω whose graph is
the copy M+

1 (resp. M−
1 ) of M1. We extend ω−

k on Ω setting ω−
k (q) = B

for any q ∈ Ω \ Nk, keeping the same notation.

Claim 1. ω−
k ∈ Sφ, that is ω−

k is a subsolution such that ω−
k 6 φ.

Claim 2. For any subsolution ϕ ∈ Sφ we have ϕ|Nk∩Ω 6 ω+
k .

We assume momentarily that the two claims hold. We then have for
any q ∈ Nk ∩ Ω: ω−

k (q) 6 u(q) and ϕ(q) 6 ω+
k (q) for any subsolution

ϕ ∈ Sφ. We deduce that

ω−
k (q) 6 u(q) 6 ω+

k (q)

for any q ∈ Nk ∩ Ω and for any k ∈ N∗. The rest of the argument is
straightforward but we will provide the details for the readers conve-
nience.

We thus have for any q ∈ Nk ∩ Ω:

ω−
k (q) −

(
g(p) − 1

2k

)
− 1

2k
6 u(q) − g(p) 6 ω+

k (q) −
(
g(p) +

1

2k

)
+

1

2k
.

Let (qm) be a sequence in Ω such that qm → p. By construction, for m
big enough we have qm ∈ Nk ∩ Ω and

|ω+
k (qm) −

(
g(p) +

1

2k

)
| 6

1

2k
, |ω−

k (qm) −
(
g(p) − 1

2k

)
| 6

1

2k
.

We then have |u(qm) − g(p)| 6 1/k for m big enough, hence u(qm) →
g(p). We conclude therefore that u extends continuously at p setting
u(p) = g(p).

Let us prove Claim 1. By construction, ω−
k is continuous on Ω and

satisfies ω−
k |∂Ω 6 g and lim supy→p ω−

k (y) 6 g(p) (y ∈ Ω) for any
p ∈ ∂∞Ω. It is straightforward to show that for any closed round ball
U ⊂ Ω we have MU(ω−

k ) > ω−
k , see (5) in Definition 4.1. Hence ω−

k

is a subsolution of our Dirichlet problem (P ). Observe that we have
ω−

k 6 φ, see Remark 4.1-(4), thus ω−
k ∈ Sφ as desired.

The proof of Claim 2 can be accomplished in the same way as the
proof of Claim 1, but we give another proof as follows. Let ϕ ∈ Sφ.
Assume by contradiction that sup|Nk∩Ω(ϕ − ω+

k ) > 0. Since ϕ and ω+
k

are bounded on Nk ∩Ω we have sup|Nk∩Ω(ϕ− ω+
k ) < +∞. Let (qm) be

a sequence in Nk ∩Ω such that (ϕ−ω+
k )(qm) → sup|Nk∩Ω(ϕ−ω+

k ). Let

q ∈ Nk ∩ Ω ∪ ∂∞(Nk ∩ Ω) be any limit point of this sequence. Since

ϕ 6 φ < A = ω+
k
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on Πk and
ϕ 6 g < g(p) + 1/2k 6 ω+

k

on ∂Ω ∩Nk, we must have

q ∈ Ω ∩ Nk or q ∈ ∂∞Nk.

The first possibility is discarded by the maximum principle. The second
possibility is also discarded since ω+

k > g(p)+1/2k on Nk and ϕ(qm) <
g(p) + 1/2k if qm ∈ Nk ∩ Ω is close enough of ∂Ω ∪ ∂∞Ω.

We conclude that ω+
k (resp. ω−

k ) is an upper (resp. a lower) barrier
at any asymptotic point of Ω in the sense of Definition 4.2-(1).

We remark that the proof of the assertion (3) is analogous to the
proof of the assertion (2), see also [13, Theorem 3.4].

Finally, the proof of the assertion (4) is a consequence of the follow-
ing.

Claim. The family Md, d ∈ (0, 1), provides a barrier at any boundary
point where Ω is strictly convex and g is continuous.

We proceed the proof of the claim as follows. We choose the ball
model for Hn and we may assume that p = 0. As p is a strictly convex
point, there is a geodesic hyperplane Π ⊂ Hn such that, locally, we
have:

Π ∩ ∂Ω = {0} and, locally, Ω lies in one side, say Π+, of Π.

Let M > 0 and k ∈ N∗. We now construct a upper barrier at 0. Let
E(ρ) be the equidistant hypersurface to Π at distance ρ lying in Π+.
Let E+(ρ) be the connected component of Hn \ E(ρ) that contains 0.
We call N the connected component of E+(ρ) ∩ Ω such that 0 ∈ N .
Consider the hypersurfaces Md, d < 1, given by equation (1). We
choose ρ > 0 such that g(q) 6 g(0) + 1/k on N ∩ ∂Ω.

Using the Md-Property (2), we may choose d near 1, 0 < d < 1, such
that λ(ρ) > M − (g(0) − 1/k). We set w+

k to be the function on N
whose the graph is (a piece of) the vertical translated copy of Md by
g(0) + 1/k.

Clearly, the functions w+
k are continuous up to the boundary of N

and give a upper barrier at p in the sense of Definition 4.2-(1). In the
same way we can construct a lower barrier at p. This completes the
proof of the theorem. �

5. Scherk type minimal hypersurfaces in Hn × R

Definition 5.1 (Special rotational domain). Let γ, L ⊂ Hn be
two complete geodesic lines with L orthogonal to γ at some point B ∈
γ ∩L. We call P ⊂ Hn the geodesic two-plane containing L and γ. We
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choose A0 ∈ γ \L and A1 ∈ L\γ and we choose a smooth curve α ⊂ P
joining A0 and A1 such that the hypersurface Σ generated by rotating
α with respect to γ has the following properties.

(1) Σ is smooth except possibly at point A0.
(2) Σ is strictly convex.
(3) int(Σ)\{A0} is transversal to the Killing field generated by the

translations along γ.

Consequently Σ lies in the mean convex side of the domain of Hn whose
boundary is the hyperbolic cylinder with axis γ and passing through
A1. Let us call Π ⊂ Hn the geodesic hyperplane orthogonal to γ
and passing through B. Observe that the boundary of Σ is a n − 2
dimensional geodesic sphere of Π centered at B.

Examples of such Σ can be obtained choosing as generating curve a
curve α ⊂ P with constant curvature close enough to 0.

We denote by UΣ ⊂ Π the open geodesic ball centered at B whose
boundary is the boundary of Σ. We call DΣ ⊂ Hn the closed domain
whose boundary is UΣ ∪Σ. Observe that ∂DΣ is strictly convex at any
point of Σ and convex at any point of UΣ. Such a domain will be called
a special rotational domain.

Proposition 5.1. Let DΣ ⊂ Hn be a special rotational domain. For

any number t ∈ R, there is a unique solution vt of the vertical minimal

equation in int(DΣ) which extends continuously to int(Σ) ∪ UΣ, taking

prescribed zero boundary value data on the interior of Σ and prescribed

boundary value data t on UΣ.

More precisely, for any t ∈ R, the following Dirichlet problem (Pt)
admits a unique solution vt.

(Pt)





M(u) = 0 in int(DΣ),

u = 0 on int(Σ),

u = t on UΣ,

u ∈ C2 (int(DΣ)) ∩ C0 (DΣ \ ∂Σ) .

Furthermore, the solutions vt are strictly increasing with respect to t.

Proof. Before beginning the proof of the existence part of the state-
ment, we would like to remark that, as the ambient space has dimen-
sion n (arbitrary), we cannot use classical Plateau type arguments to
obtain a regular minimal hypersurface in Hn × R whose the boundary
is
(
Σ × {0}

)
∪
(
UΣ × {t}

)
∪
(
∂Σ × [0, t]

)
.
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We are not able to apply directly Perron process (Theorem 4.1) to
solve this Dirichlet problem. For this reason, in order to prove the exis-
tence part of our statement, we need to consider an auxiliary Dirichlet
problem, as follows.

We can assume that t > 0. For k ∈ N∗ we set

Vk := {p ∈ Σ | dist (p, Π) 6
1

k
},

where we recall that Π ⊂ Hn is the geodesic hyperplane containing UΣ

and where dist means the distance in Hn.
We choose a translated copy Mdk

of the hypersurface Md, see section
2, with dk < 1, given by a function λk(ρ) satisfying λk(0) = t and
λk(−1/k) 6 −1. Since λk is an odd function for dk ∈ (0, 1), the Md-
Property (2) insures that such a Mdk

exists for dk < 1 close enough to
1. Then we choose a continuous function fk : Vk → [0, t] such that

(1) fk = t on ∂Σ = Vk ∩ Π.
(2) fk = 0 on ∂Vk ∩ int(Σ).
(3) The graph of fk stands above the hypersurface Mdk

, that is
fk > λk on Vk.

Now we define a function gk : ∂DΣ → [0, t] setting:

gk(p) =





0 if p ∈ Σ \ Vk,

fk if p ∈ Vk,

t if p ∈ UΣ.

Note that gk is a continuous function on ∂DΣ. Then we consider an

auxiliary Dirichlet problem (P̂k) as follows:

(P̂k)





M(u) = 0 in int(DΣ),

u = gk on ∂DΣ,

u ∈ C2 (int(DΣ)) ∩ C0 (DΣ) .

Observe that the hypersurface Mdk
provides a lower barrier at any

point of UΣ and that at such a point the constant function ω+ ≡ t
is an upper barrier in the sense of Definition 4.2-(2). Furthermore,
∂DΣ is C0 strictly convex at any other point, that is at any point of
Σ. Therefore the hypersurfaces Md, d < 1, provide a barrier at these
points, see the proof of Theorem 4.1-(4). Thus, any point of ∂DΣ has
a barrier. Applying Perron Process (Theorem 4.1), considering the

set of subsolutions to problem (P̂k) below the constant supersolution
identically equal to t, we find a solution wk of the Dirichlet problem
(P̂k). Observe that the zero function is a subsolution of (P̂k). Therefore
we have 0 6 wk 6 t for any k > 0.
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Using the reflection principle with respect to Π (Lemma 3.1), it
follows that each point of UΣ can be considered as an interior point of
the domain of a function, denoted again by wk, satisfying the minimal
equation, bounded below by 0 and bounded above by 2t. Observe that
this estimate is independent of k > 0.

Consequently, using the compactness principle, we can find a subse-
quence that converges to a function vt ∈ C2(int(DΣ))∩C0(int(DΣ)∪UΣ)
satisfying the minimal equation M(vt) = 0 and such that vt(p) = t at
any p ∈ UΣ. Since any point of int(Σ) has a barrier the function vt ex-
tends continuously there, setting vt(p) = 0 at any p ∈ int(Σ). We have
therefore proved the existence of a solution vt of the Dirichlet problem
(Pt).

Let us prove now uniqueness of the solution of (Pt). Let p ∈ int(DΣ)
be a fixed point. Let ut and vt be two solutions of the Dirichlet problem
(Pt).

For ε small enough consider a ε-translated copy of the graph of ut

along γ in the orientation A0 → B. This graph is given by a function uε
t

over a translated copy DΣ(ε) of DΣ. Taking into account the properties
required on Σ in Definition 5.1, we have DΣ(ε) ∩ Σ = ∅.

We may assume that ε is chosen small so that p belongs to int(DΣ(ε)).
Notice that uε

t is less than vt along the boundary of DΣ ∩ DΣ(ε), by
maximum principle. Using maximum principle again we deduce that
uε

t(p) < vt(p), for ε small enough, since uε
t < vt along ∂

(
DΣ ∩ DΣ(ε)

)
.

Thus letting ε → 0 we have therefore that ut(p) 6 vt(p). Conversely,
we can prove in the same way that vt(p) 6 ut(p) for any p ∈ int(DΣ).
We conclude therefore that ut = vt. Hence the proof of the uniqueness
of the solution of Dirichlet problem (Pt) is completed.

At last, let us prove that the family {vt} of the solutions of Dirichlet
problem (Pt) is strictly increasing on t. Let t1 < t2 and let vt1 and vt2

be the solutions of the Dirichlet problems (Pt1) and (Pt2) respectively.
Let p be a fixed arbitrary point in the interior of DΣ. In the same way
as in the proof of uniqueness, by ε-translating the graph of vt1 , we show
that vt1(p) < vt2(p), this accomplishes the proof. �

Theorem 5.1 (Rotational Scherk hypersurface). Let DΣ ⊂ Hn be

a special rotational domain. There is a unique solution v of the vertical

minimal equation in int(DΣ) which extends continuously to int(Σ)∪UΣ,

taking prescribed zero boundary value data on the interior of Σ and

prescribed boundary value ∞ on UΣ.
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More precisely, the following Dirichlet problem (P ) admits a unique

solution v∞.

(P )





M(u) = 0 in int(DΣ),

u = 0 on int(Σ),

u = +∞ on UΣ,

u ∈ C2 (int(DΣ)) ∩ C0 (DΣ \ ∂Σ) .

We call the graph of v in Hn × R a rotational Scherk hypersurface.

Proof. First, we will prove the existence part of the Theorem. We
consider the family of functions vt, t > 0, given by Proposition 5.2.
Recall that Π ⊂ Hn is the totally geodesic hyperplane containing UΣ.
We consider a suitable copy of M1 (see section 2) as barrier as follows:
choose M1 such that M1 is a graph of a function u1 whose domain is the
component of Hn \Π that contains DΣ, with u1 taking boundary value
data +∞ on Π and taking zero asymptotic boundary value data. By
applying maximum principle we have that u1(p) > vt(p) for all p ∈ DΣ

and all t > 0.
Using compactness principle we obtain that a subsequence of the

family converges uniformly on any compact subsets of int(DΣ) to a
solution v∞ of the minimal equation. Since the family is strictly in-
creasing v∞ takes the value +∞ on UΣ. That is, for any sequence (qk)
in int(DΣ) converging to some point of UΣ we have v∞(qk) → +∞.

Let p ∈ int(Σ), since ∂DΣ is C0 strictly convex at p, the hypersur-
faces Md, d < 1, provide a barrier at p, see the proof of Theorem 4.1-
(4). Consequently v∞ extends continuously at p setting v∞(p) = 0.
Therefore v∞ is a solution of the Dirichlet problem (P ).

The proof of uniqueness of v∞ proceeds in the same way as the proof
of uniqueness of vt in Proposition 5.1. This completes the proof of the
Theorem. �

Theorem 5.2 (Barrier at a C0 convex point). Let Ω ⊂ Hn be a

domain and let p0 ∈ ∂Ω be a boundary point where Ω is C0 convex.

Then for any bounded data g : ∂Ω ∪ ∂∞Ω → R continuous at p0,

the family of rotational Scherk hypersurfaces provides a barrier at p0

for the Dirichlet problem (P ). In particular, in Theorem 4.1-(4) the

assumption C0 strictly convex can be replaced by C0 convex.

Proof. We use the same notations as in the definition of a special rota-
tional domain, Definition 5.1.
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We will prove that the rotational Scherk hypersurfaces with −∞
boundary data on the boundary part UΣ provide an upper barrier at
p0. For the lower barrier the construction is similar.

Let DΣ be a special rotational domain. Let ω be the height function
of the rotational Scherk hypersurface S taking −∞ boundary data on
UΣ and 0 boundary data on the interior of Σ, given by Theorem 5.1.

Claim 1. ω is decreasing along the oriented geodesic segment [A0, B] ⊂
γ (going from A0 to B).

Claim 2. Let D be any point on the open geodesic segment (A0, B),
and let β ⊂ DΣ be a geodesic segment issuing from D, ending at some
point C ∈ int(Σ) and orthogonal to [A0, B] at D.

Then ω is increasing along β = [D, C], oriented from D to C.

We first prove the theorem assuming that the two claims hold.

Let D ∈ (A0, B) and let ΠD ⊂ Hn be the geodesic hyperplane
through D orthogonal to the geodesic segment [A0, B]. Let D+

Σ be
the connected component of DΣ \ ΠD containing the point A0. Let q
be any point belonging to the closure of D+

Σ . The claims ensure that
ω(q) > ω(D).

Let p0 ∈ ∂Ω be a C0 convex point and let g be a bounded data
continuous at p0. Let M > 0 be any positive real number. It suffices
to show that for any k ∈ N∗ there is an open neighborhood Nk of p0 in
H

n and a function ω+
k in C2(Nk ∩ Ω) ∩ C0(Nk ∩ Ω) such that

i) ω+
k (x)|∂Ω∩Nk

> g(x) and ω+
k (x)|∂Nk∩Ω > M ,

ii) DΣ(ω+
k ) = 0 in Nk ∩ Ω,

iii) ω+
k (p0) = g(p0) + 1/k.

By continuity there exists ε > 0 such that for any p ∈ ∂Ω such that
dist(p, p0) < ε we have g(p) < g(p0) + 1/k.

By assumption there exist a geodesic hyperplane Πp0
through p0 and

an open neighborhood W ⊂ Πp0
of p0 such that W ∩ Ω = ∅. Let γ be

the geodesic through p0 orthogonal to Πp0
, there exists a point z ∈ γ∩Ω

such that the open geodesic segment (p0, z) of γ is contained in Ω.
We choose a special rotational domain DΣ such that:

• the hyperplane Π is orthogonal to γ, (recall that UΣ ⊂ Π)
• the diameter of DΣ is lesser than ε,
• Ω ∩ UΣ = ∅,
• A0 ∈ (p0, z) and dist(p0, B) < dist(A0, z).

Let M ′ > max{M, g(p0) + 1/k}. We consider the rotational Scherk
hypersurface (graph of ω) taking M ′ boundary value data on the inte-
rior of Σ and −∞ on UΣ. By continuity, there exists a point p1 ∈ γ
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where ω(p1) = g(p0)+1/k. Up to a horizontal translation along γ send-
ing p1 to p0, we may assume that ω(p0) = g(p0) + 1/k. Then we set
Nk = int(DΣ)∩Ω and ω+

k = ω|Nk
, the restriction of ω to Nk. Therefore

we have ω+
k (x)|∂Nk∩Ω = M ′ > M , furthermore Claim 1 and Claim 2

show that ω+
k (x)|∂Ω∩Nk

> g(p0) + 1/k > g(x), as desired.

We now proceed to the proof of Claim 1. Let p1, p2 ∈ (A0, B) with
p1 < p2, we want to show that ω(p1) > ω(p2). Let p3 ∈ (p1, p2) be the
middle point of p1 and p2 and let Πp3

⊂ Hn be the geodesic hyperplane
through p3 orthogonal to (A0, B). We denote by σ the reflection in Hn

with respect to Πp3
. Let D+

Σ be the connected component of DΣ \ Πp3

containing A0 and let D−
Σ be the other component. We denote by S+

the part of the rotational Scherk hypersurface which is a graph over
D+

Σ . Observe that the definition of a special rotational domain ensures
that σ(D+

Σ) ∩ Σ = ∅. Hence a part of σ(S+) is the graph of a function
v over a part W of D−

Σ such that v > ω on ∂W . We conclude therefore
with the aid of the maximum principle that v > ω on W . This shows
that ω(p1) > ω(p2) as desired.

Now let us prove Claim 2. Let q1, q2 ∈ [D, C] with q1 < q2, we want
to show that ω(q1) 6 ω(q2). Let q3 ∈ (q1, q2) be the middle point of q1

and q2 and let Πq3
be the geodesic hyperplane through q3 orthogonal

to [D, C]. Let σ be the reflection in Hn with respect to Πq3
. Let D−

Σ

be the connected component of DΣ \ Πq3
containing A0 and let D+

Σ be
the other component.

Assertion. If UΣ ∩ Πq3
6= ∅ then there exists a point X0 ∈ UΣ ∩ D+

Σ

such that σ(X0) 6∈ DΣ.

We assume this assertion for a while. If UΣ ∩ Πq3
6= ∅ then for any

Z ∈ UΣ ∩ D+
Σ , with Z 6∈ Πq3

, we have σ(Z) 6∈ DΣ. Indeed, if not, since
σ(X0) 6∈ DΣ, we would find by continuity a point Y ∈ UΣ ∩ D+

Σ , with
Y 6∈ Πq3

, such that σ(Y ) ∈ Π and σ(Y ) 6= Y . Therefore the geodesic
segment [Y, σ(Y )] is globally invariant with respect to σ. Thus [Y, σ(Y )]
is orthogonal to Πq3

and therefore Π is also orthogonal to Πq3
. Hence,

we conclude that the whole hyperplane Π is invariant by the reflection
σ, which contradicts the assertion.

We denote by Σ− the connected component of Σ\Πq3
which contains

A0 and we denote by Σ+ the other component.
Observe that for any p ∈ Σ+ we have σ(p) 6∈ Σ−. Indeed, σ(p))

belongs to the equidistant curve Ep, passing through p, of the geodesic
line L containing the segment [D, C]. Recall that L and Ep have the
same asymptotic boundary. Furthermore, Ep is symmetric with respect
to any geodesic hyperplane orthogonal to L. Since DΣ is symmetric
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with respect to the geodesic hyperplane through D orthogonal to L,
we have that σ(p) 6∈ Σ−.

Thus the reflected of ∂D+
Σ does not have any intersection with Σ−.

We denote by S+ the part of the rotational Scherk hypersurface which
is a graph over D+

Σ . Hence a part of σ(S+) is the graph of a function v
over the domain W = σ(D+

Σ) ∩ D−
Σ such that v > ω on ∂W . We now

are able to conclude the proof of Claim 2, assuming the assertion, by
applying the maximum principle, to infer that ω(q2) > ω(q1).

Finally, if UΣ ∩ Πq3
= ∅ by a similar and simpler argument we com-

plete the proof of Claim 2.

To prove the assertion, let us denote by PC ⊂ Hn the geodesic two-
plane containing the geodesic segments [A0, B] and [D, C]. Thus PC

is orthogonal to Πq3
, since it contains [D, C], and is orthogonal to

Π, since it contains [A0, B]. We consider the open geodesic segment
γ1 = PC ∩ UΣ and the geodesic line γ2 = PC ∩ Πq3

. Assume that
UΣ ∩ Πq3

6= ∅. Then, since PC is orthogonal to Π and to Πq3
we have

γ2 ∩ UΣ 6= ∅. Therefore γ2 intersects γ1 at some point {z} = γ1 ∩ γ2.
Observe that the points D, q3, z and B define a geodesic quadrilateral

Q in PC with right angles at vertices B, D and q3. Therefore the interior
angle of Q at z is strictly smaller than π/2. Let us denote by γ+

1 ⊂ γ1

the connected component of γ1\{z} which does not contain B. Observe
that γ+

1 ⊂ UΣ ∩ D+
Σ . Let s be the reflection in PC with respect to γ2.

Then s(γ+
1 ) does not have intersection with DΣ, s(γ+

1 )∩DΣ = ∅. Since
PC is orthogonal to Πq3

we have that s(γ+
1 ) = σ(γ+

1 ). Therefore for any
X ∈ γ+

1 we have σ(X) 6∈ DΣ as claimed, this completes the proof. �

Remark 5.1. We keep the same notations as in Definition 5.1.
Let DΣ ⊂ H

n be a special rotational domain. Suppose that the
generating curve α is the geodesic segment joining A0 and A1. Then we
call the generated domain DΣ a special rotational domain generated by

a geodesic. Note that DΣ is a convex C0 domain and that the rotational
hypersurface Σ \ {A0} is transversal to the Killing field generated by
the translations along γ.

Corollary 5.1 (Rotational Scherk hypersurface). Let DΣ ⊂ Hn

be a special rotational domain generated by a geodesic. Then:

(1) There is a unique solution v of the vertical minimal equation

in int(DΣ) which extends continuously to int(Σ) ∪ UΣ, taking

prescribed zero boundary value data on the interior of Σ and

prescribed boundary value ∞ on UΣ.

We also call the graph of v in Hn × R a rotational Scherk
hypersurface.
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(2) Let Ω ⊂ Hn be a domain and let p0 ∈ ∂Ω be a boundary point

where Ω is C0 convex. Then for any bounded data g : ∂Ω → R

continuous at p0 the family of rotational Scherk hypersurfaces

given in the first statement provides also a barrier at p0.

Proof. Let us consider the first assertion. With the aid of Theorem 5.2
we may use the rotational Scherk hypersurfaces as barrier. Therefore,
we obtain for any t ∈ R a solution vt of the vertical minimal equation in
int(DΣ) which extends continuously to int(Σ) ∪ UΣ, taking prescribed
zero boundary value data on the interior of Σ and prescribed boundary
value t on UΣ. Now letting t → ∞ as in the proof of Theorem 5.1 we
have that a subsequence of the family {vt} converges to a solution as
desired, taking into account that the rotational Scherk hypersurfaces
give a barrier at any point of int(Σ). The uniqueness is obtained as
in Proposition 5.1 since Σ \ {A0} is transversal to the Killing field
generated by the translations along γ.

The proof of the second statement is the same as the proof of The-
orem 5.2. �

Definition 5.2 (Independent points and admissible polyhe-

dra).

(1) We say that n + 1 points A0, . . . , An in Hn are independent
if there is no geodesic hyperplane containing these points. If

A0, . . . , An in H
n are independent then we remark that any

choice of n points among them determines a unique geodesic

hyperplane of Hn.

(2) Let A0, . . . , An be n + 1 independent points in Hn. We call

Πi the geodesic hyperplane containing these points excepted Ai,

i = 0, . . . , n and we call Π+
i the closed half-space bounded by Πi

and containing Ai. Then the intersection of these half-spaces is

a polyhedron P: the convex closure of A0, . . . , An. The boundary

of P consists of n+1 closed faces Fi ⊂ Πi, the face Fi contains

in its boundary all the points A0, . . . , An excepted Ai. We call

such a polyhedron an admissible polyhedron.

Corollary 5.2. Let P be an admissible polyhedron. For any number

t ∈ R, there is a unique solution vt of the vertical minimal equation in

int(P) which extends continuously to ∂P \ ∂F0, taking prescribed zero

boundary value data on F1 \ ∂F0, . . . , Fn \ ∂F0 and prescribed boundary

value t on int(F0). More precisely, for any t ∈ R, the following Dirichlet
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problem (Pt) admits a unique solution vt.

(Pt)





M(u) = 0 in int(P),

u = 0 on Fj \ ∂F0, j = 1, . . . , n,

u = t on int(F0),

u ∈ C2 (int(P)) ∩ C0 (P \ ∂F0) .

Furthermore, the solutions vt are strictly increasing with respect to t.

Proof. The existence part of the statement is a consequence of Theorem
5.2.

Let us prove now uniqueness of the solution of Dirichlet problem
(Pt). The proof is similar to the uniqueness part of Proposition 5.1.

Let p ∈ int(P) be a fixed point. Let vt and wt be two solutions of
the Dirichlet problem (Pt). Let q ∈ F0 and let [A0, q] be the geodesic
segment joining A0 and q. Notice that ∂P is transversal to the Killing
field generated by translations along the geodesic line γ containing
[A0, q].

For ε small enough consider a ε-translated copy of the graph of vt

along γ oriented by A0 → q. This graph is given by a function vε
t over a

translated copy Pε of P. We may assume that ε is chosen small so that
p belongs to int(Pε). Notice that vε

t is less than wt along the boundary
of P ∩Pε, by maximum principle. Using maximum principle again we
deduce that vε

t (p) < wt(p), for ε small enough. Thus letting ε −→ 0 we
have that vt(p) 6 wt(p). Conversely, we can prove in the same way that
wt(p) 6 vt(p) for any p ∈ int(P). We conclude therefore that vt = wt.
Hence the proof of the uniqueness of the solution of Dirichlet problem
(Pt) is completed.

At last, let us prove that the family {vt} of the solutions of Dirichlet
problem (Pt) is strictly increasing on t. Let t1 < t2 and let vt1 and vt2

be the solutions of the Dirichlet problems (Pt1) and (Pt2) respectively.
Let p be a fixed arbitrary point in the interior of P. In the same way as
in the proof of uniqueness, by ε-translating the graph of vt1 , we show
that vt1(p) < vt2(p), this accomplishes the proof. �

Using the above proposition we are able to construct a Scherk type

minimal hypersurface in Hn × R.

Theorem 5.3 (First Scherk type hypersurface in Hn×R). Let P
be an admissible convex polyhedron. There is a unique solution v∞ of

the minimal equation in int(P) extending continuously up to ∂P \∂F0,

taking prescribed zero boundary value data on F1 \ ∂F0, . . . , Fn \ ∂F0

and prescribed boundary value ∞ on int(F0). More precisely, we prove
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existence and uniqueness of the following Dirichlet problem (P∞):

(P∞)





M(u) = 0 in int(P),

u = 0 on Fj \ ∂F0, j = 1, . . . , n,

u = ∞ on int(F0),

u ∈ C2 (int(P)) ∩ C0 (P \ ∂F0) .

Proof. First note that the existence part of the theorem is exactly as
in the proof of Corollary 5.1.

The proof of uniqueness proceeds in the same way as in the proof of
Corollary 5.2, this completes the proof. �

Theorem 5.4 (Second Scherk type hypersurface in Hn × R).
For any k ∈ N, k > 2, there exists a family of polyhedron Pk with

2n−1k faces and a solution wk of the vertical minimal equation in intPk

taking alternatively infinite values +∞ and −∞ on adjacent faces of

Pk. Moreover, the polyhedron Pk can be chosen to be convex and can

also be chosen to be non convex.

Proof. Let us fix a point A0 in Hn. Let {e1, . . . , en} be a positively ori-
ented orthornormal basis of TA0

Hn. For k > 2 we set u := sin(π/k)e1 +
cos(π/k)e2. Let γ+

j , j = 2, . . . , n and γ+
u be the oriented half geodesics

issuing from A0 and tangent to e2, . . . , en and to u, respectively. Now
we choose an interior point A1 on γ+

u and an interior point Aj on
γ+

j , j = 2, . . . , n. Therefore, A0, A1, . . . , An are independent points of

Hn. Let P̃ be the polyhedron determined by these points. The faces
are denoted by F0, . . . , Fn, with the convention that the face Fj does
not contain the vertex Aj, j = 0, . . . , n.

Let Πi the totally geodesic hyperplane containing the face Fi. Ob-
serve that:

(1) F1 and F2 make an interior angle equal to π/k.
(2) Fj ⊥ F1, Fj ⊥ F2, j = 3, . . . , n.
(3) Fj ⊥ Fk, j, k = 3, . . . , n (j 6= k).

Therefore, the reflections in Hn with respect to the geodesic hyper-
planes Π1 and Π2 leave the other geodesic hyperplanes Πj, j = 3, . . . , n
globally invariant. The first step of the construction of the polyhedron
Pk is the following: Doing reflection about F2 we obtain another poly-

hedron with faces F ∗
1 (the symmetric of F1 about F2), and faces F̃j

containing Fj, F̃j ⊂ Πj , j = 3, . . . , n. Notice that in the process the
face F2 disappears and the interior angle between the faces F1 and F ∗

1

is 2π/k. Furthermore, the reflection of F0 about F2 generates another
face F 1

0 .
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Continuing this process doing reflections with respect to F ∗
1 and so

on, we obtain a new polyhedron P+ with faces F̂j ⊂ Πj , j = 3, . . . , n,

F̂j containing F̃j, and 2k faces issuing from the successive reflections
of F0. Notice that both faces F1 and F2 disappear at the end of the
process, that is P+ does not contain any face in the hyperplane Π1 or
Π2.

Next, let us perform the reflections about Π3. Doing this the face F3

disappears and we get a new polyhedron with 2 · 2k faces issuing from
F0 and a face in each Πj , j = 4, . . . , n, by Property (3). Each such face

contains F̂j , j = 4, . . . , n. Continuing this process doing reflections on
Π4, . . . , Πn we finally get a polyhedron Pk with 2n−1 · k faces, each one
issuing from F0.

Now we discuss the convexity of Pk. Let P ⊂ Hn be the geodesic
two-plane containing the points A0, A1 and A2. Let Γ ⊂ P be the
geodesic polygon obtained by the reflection of the segment [A0, A1]
with respect to [A0, A2] and so on. Thus Γ is a polygon with 2k sides
and 2k vertices, among them A1 and A2, and A0 is an interior point of
Γ. Then, the polyhedron Pk is convex if, and only if, the polygon Γ is
convex too. For example, if d(A0, A1) = d(A0, A2) we get that Γ is a
regular polygon and then is convex. On the other hand, if d(A0, A1) is
much bigger than d(A0, A2) then Γ is non convex.

Now, considering the polyhedron P̃ of the beginning, with the aid of
Theorem 5.3, we are able to solve the Dirichlet problem of the minimal
equation taking +∞ value data on F0 and zero value data on Fj \ F0,
j = 1, . . . , n. Using the reflection principle on the faces, in each step of
the preceding process, we obtain at the end of the process a solution
of the minimal equation on intPk, taking alternatively infinite values
+∞ and −∞ on adjacent faces of Pk, as desired. This accomplishes
the proof of the theorem. �

The following theorem are consequence of the previous results.

Theorem 5.5 (Dirichlet problem for the minimal equation in

Hn × R on a C0 bounded convex domain taking continuous

boundary data).
Let Ω be a C0 bounded convex domain and let g : ∂Ω → R be a

continuous function.

Then, g admits a unique continuous extension u : Ω ∪ ∂Ω → R

satisfying the vertical minimal hypersurface equation (4) on Ω.
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Proof. The proof is a consequence of the Perron process (Theorem 4.1)
and the construction of barriers at any convex point of a C0 domain, us-
ing rotational Scherk hypersurfaces (Theorem 5.2). Uniqueness follows
from the maximum principle. �

Theorem 5.6 (Dirichlet problem for the minimal equation in

Hn × R on a C0 convex domain taking continuous finite and

asymptotic boundary data).
Let Ω ⊂ H

n be a C0 convex domain and let g : ∂Ω ∪ ∂∞Ω → R be a

continuous function.

Then g admits a unique continuous extension u : Ω∪∂Ω∪∂∞Ω → R

satisfying the vertical minimal hypersurface equation (4) on Ω.

Proof. Notice that working in the ball model of hyperbolic space, we
have that g is a continuous function on a compact set, hence g is
bounded. Therefore there exist supersolutions and subsolutions for the
Dirichlet problem. The proof is a consequence of the Perron process
(Theorem 4.1) and the constructions of barriers, using the rotational
Scherk hypersurfaces (Theorem 5.2) at any point of ∂Ω, and using M1

at any point of ∂∞Ω (Theorem 4.1-(2)). Uniqueness follows from the
maximum principle. �

6. Existence of minimal graphs over non convex

admissible domains

We will establish some existence of minimal graphs on certain admis-
sible domains and certain asymptotic boundary, in the same way as in
[14, Theorem 5.1 and Theorem 5.2]. The proofs are the same as in the
two-dimensional situation, using the n-dimensional catenoids and the
n-dimensional translation hypersurfaces Md obtained for n > 3 in [3].
Therefore we will just state the related definitions and the theorems
without proof.

Definition 6.1 (Admissible unbounded domains in Hn). Let
Ω ⊂ Hn be an unbounded domain. We say that Ω is an admissible

domain if each connected component C0 of ∂Ω satisfies the Exterior

sphere of (uniform) radius ρ condition, that is, at any point p ∈ C0

there exists a sphere Sρ of radius ρ such that p ∈ C0∩Sρ and int Sρ∩Ω =
∅.

If Ω is an unbounded admissible domain then we denote by ρΩ the
supremum of the set of these ρ.

Let us write down a formula obtained in [3] that is useful in the
sequel. Let t = λ(a, ρ), ρ > a, be the height function of the upper
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half-catenoid in Hn ×R. Then as ρ goes to infinity λ(a, ρ) goes to R(a)
where R(a) is given by

R(a) := sinh(a)

∫ ∞

1

(
sinh2(a)s2 + 1

)−1/2(
s2n−2 − 1

)−1/2
ds.

Furthermore, the function R increases from 0 to π/(2n − 2) when a
increases from 0 to ∞. This means that the catenoids in the family
have finite height bounded from above by π/(n − 1) ([3, Proposition
3.2]). We set f(ρ) := R(ρ).

Theorem 6.1. Let Ω ⊂ Hn be an admissible unbounded domain. Let

g : ∂Ω∪∂∞Ω → R be a continuous function taking zero boundary value

data on ∂Ω. Let Γ∞ ⊂ ∂∞H
n × R be the graph of g restricted to ∂∞Ω.

If the height function t of Γ∞ satisfies −f(ρΩ) 6 t 6 f(ρΩ), then there

exists a vertical minimal graph over Ω with finite boundary ∂Ω and

asymptotic boundary Γ∞.

Furthermore, there is no such minimal graph, if ∂Ω is compact and

the height function t of Γ∞ satisfies |t| > π/(2n − 2).

Definition 6.2 (E-admissible unbounded domains in Hn).
Let Ω be an unbounded domain in Hn and let ∂Ω be its boundary.

We say that Ω is an E-admissible domain if there exists r > 0 such
that each point of ∂Ω satisfies the exterior equidistant hypersurface of

(uniform) mean curvature tanh r condition; that is, at any point p ∈ ∂Ω
there exists an equidistant hypersurface Er of mean curvature tanh r
(with respect to the exterior unit normal to Ω at p), with p ∈ ∂Ω ∩Er

and Er ∩ Ω = ∅.
If Ω is an unbounded E-admissible domain then we denote by rΩ > 0

the infimum of the set of these r. If Ω is a convex E-admissible domain
then rΩ = 0.

Thus every E-admissible domain is an admissible domain.
If Ω is a convex domain then Ω is an E-admissible domain.
If each connected component C0 of ∂Ω is an equidistant hypersurface

then Ω is an E-admissible (maybe non convex) domain.
Let us write down again some formulas extracted from [3]. Up to a

vertical translation, the height t = µ+(a, ρ) of the translation hyper-
surface Md, d > 1, is given by

µ+(a, ρ) = cosh(a)

∫ cosh(ρ)/ cosh(a)

1

(s2n−2−1)−1/2 (cosh2(a)s2−1)−1/2 ds.
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These integrals converge at s = 1 and when ρ → +∞, with limit
value

T (a) := cosh(a)

∫ ∞

1

(s2n−2 − 1)−1/2 (cosh2(a)s2 − 1)−1/2 ds.

T is a decreasing function of a, which tends to infinity when a tends
to zero (when d > 1 tends to 1) and to π/(2n− 2) when a (or d) tends
to infinity ([3, Equations 3.55, 3.56, 3.57]).

We set H(r) := T (r).

Theorem 6.2. Let Ω ⊂ Hn be an E- admissible unbounded domain.

Let g : ∂Ω ∪ ∂∞Ω → R be a continuous function taking zero boundary

value data on ∂Ω. Let Γ∞ ⊂ ∂∞Hn × R be the graph of g restricted to

∂∞Ω.

If the height function t of Γ∞ satisfies −H(rΩ) 6 t 6 H(rΩ), then

there exists a vertical minimal graph over Ω with finite boundary ∂Ω
and asymptotic boundary Γ∞.

7. Minimal graphs in R
n+1 = R

n × R.

We will write-down in this section some natural extensions of the
previous constructions to obtain minimal graphs in the n+1- Euclidean
space. The proof of the related results for minimal graphs in Rn+1 are
mutatis mutandis the same as in Hn × R, but simpler. So we will just
summarize them.

The dictionary to perform the understanding of the structure of the
proofs is as follows: The hypersurface corresponding to the family Md

(d < 1) to provide barriers at a strictly convex point for minimal solu-
tions when the ambient space is Hn ×R is the family of hyperplanes in
Rn+1. The hypersurface corresponding to M1 to get height estimates
at a compact set in the domain Ω is now the family of n-dimensional
catenoids.

The reflection principle for minimal graphs in Euclidean space can
be proved in the same way as in Lemma 3.1. Finally we note that the
Perron process is classical in Euclidean space.

We now consider special rotational domain in Rn. The definition
is the same as in Definition 5.1, with the following observation. The
curve γ is now a straight line so that the condition (3) of the definition
means that Σ is transversal to the parallel lines to γ.

We recall the minimal equation in R
n+1:

div

( ∇u

W (u)

)
:=

n∑

i=1

∂

∂xi

(
uxi√

1 + ‖∇u‖2
Rn

)
= 0
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(just make λ = 1 and H = 0 in Equation (3)). Explicitly, we have
that the minimal equation in Rn+1 is given by

n∑

i=1

(
1 + (u2

x1
+ · · · + û2

xi
+ · · ·+ u2

xn
)
)

uxixi
− 2

∑

i<k

uxi
uxk

uxixk
= 0

Theorem 7.1 (Rotational Scherk hypersurface). Let DΣ ⊂ R
n be

a special rotational domain. There is a unique solution v of the vertical

minimal equation in int(DΣ) which extends continuously to int(Σ)∪UΣ,

taking prescribed zero boundary value data on the interior of Σ and

prescribed boundary value ∞ on UΣ.

More precisely, the following Dirichlet problem admits a unique so-

lution v. 



n∑
i=1

∂
∂xi

(
uxi√

1+‖∇u‖2

Rn

)
= 0 on int(DΣ),

u = 0 on int(Σ),

u = +∞ on UΣ,

u ∈ C2 (int(DΣ)) ∩ C0 (DΣ \ ∂Σ) .

We call the graph of v in Rn+1 a rotational Scherk hypersurface.

Proof. We first solve the auxiliary Dirichlet problem (Pt) taking zero
boundary value data on the interior of Σ and prescribed boundary
value t on UΣ, in the same way as in the Proposition 5.1. On account
that the family of n-dimensional catenoids provides an upper and lower
barrier to a solution over any compact set of int(DΣ), letting t → ∞
we get the desired solution. Uniqueness is shown in the same way as
in Proposition 5.1. �

We observe that this result was also obtained by A. Coutant [5] using
a different approach.

Theorem 7.2 (Barrier at a C0 convex point). Let Ω ⊂ R
n be a

domain and let p0 ∈ ∂Ω be a boundary point where Ω is C0 convex.

Then for any bounded data g : ∂Ω → R continuous at p0 the family of

rotational Scherk hypersurfaces provides a barrier at p0.

Proof. The proof is the same, but simpler, as the proof of Theorem 5.2.
More precisely the proof of the analogous of Claim 2 is the same and
the proof of the Claim 1 is simpler, passing first by the solution vt of
the related auxiliary Dirichlet problem (Pt). �

Corollary 7.1 (Rotational Scherk hypersurface). Let DΣ ⊂ Rn

be a special rotational domain generated by a segment α of a straight

line. Then:
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(1) There is a unique solution v of the vertical minimal equation

in int(DΣ) which extends continuously to int(Σ) ∪ UΣ, taking

prescribed zero boundary value data on the interior of Σ and

prescribed boundary value ∞ on UΣ.

We also call the graph of v in Rn+1 a rotational Scherk hy-
persurface.

(2) Let Ω ⊂ Rn be a domain and let p0 ∈ ∂Ω be a boundary point

where Ω is C0 convex. Then for any bounded data g : ∂Ω → R

continuous at p0 the family of rotational Scherk hypersurfaces

given in the first statement provides a barrier at p0.

We define the notion of admissible polyhedron in Rn in the same
way as in hyperbolic space, see Definition 5.2. The following result is
proved in the same way as in Theorem 5.3.

Theorem 7.3 (First Scherk type hypersurface in R
n+1). Let

P be an admissible convex polyhedron in Rn. There is a unique so-

lution v∞ of the vertical minimal equation in int(P) extending con-

tinuously to ∂P \ ∂F0, taking prescribed zero boundary value data on

F1 \ ∂F0, . . . , Fn \ ∂F0 and prescribed boundary value +∞ on int(F0).
More precisely, we prove existence and uniqueness of the following

Dirichlet problem (P∞):

(P∞)





n∑
i=1

∂
∂xi

(
uxi√

1+‖∇u‖2

Rn

)
= 0 on int(P),

u = 0 on Fj \ ∂F0, j = 1, . . . , n,

u = +∞ on int(F0),

u ∈ C2 (int(P)) ∩ C0 (P \ ∂F0) .

We remark that the above result is also obtained by A. Coutant [5].

Next theorem can be proved exactly as in Theorem 5.4.

Theorem 7.4 (Second Scherk type hypersurface in Rn+1). For

any k ∈ N, k > 2, there exists a family of polyhedron Pk with 2n−1k
faces and a solution wk of the vertical minimal equation in intPk tak-

ing alternatively infinite values +∞ and −∞ on adjacent faces of Pk.

Moreover, the polyhedron Pk can be chosen to be convex and can also

be chosen to be non convex.

Remark 7.1. When the ambient space is R4 with the aid of Theo-
rem 7.4 we have a solution of the minimal equation in the interior
of an octahedron in R3 taking alternatively infinite values +∞ and
−∞ on adjacent faces. Indeed, using the notations of the proof of
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Theorem 5.4, we set k = 2 and we choose A1, A2 and A3 so that
d(A1, A2) = d(A1, A3) = d(A2, A3). Thus the polyhedron P2 obtained
is an octahedron.
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