HOMFLYPT Skein module of singular links

Luis Paris

To cite this version:

Luis Paris. HOMFLYPT Skein module of singular links. 2009. hal-00411476

HAL Id: hal-00411476
 https://hal.science/hal-00411476

Preprint submitted on 27 Aug 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HOMFLYPT Skein module of singular links

Luis Paris

August 27, 2009

Abstract

This paper is a presentation, where we compute the HOMFLYPT Skein module of singular links in the 3 -sphere. This calculation is based on some results previously proved by Rabenda and the author on Markov traces on singular Hecke algebras, as well as on classical techniques that allow to pass from the framework of Markov traces on Hecke algebras to the framework of HOMFLYPT Skein modules. Some open problems on singular Hecke algebras are also presented.

AMS Subject Classification: Primary 57M25. Secondary 20F36, 57M27.

1 Introduction

Knot theory had a notable renewable in the 80 's with the emergence of new knot invariants such as the Jones polynomial [7], [6] and the HOMFLYPT polynomial [3], [12]. The latest one is defined by the following theorem.

Theorem 1.1 (Freyd, Yetter, Hoste, Lickorish, Millett, Ocneanu [3], Przytycki, Traczyk [12]). Let \mathcal{L} be the set of (isotopy classes) of oriented links in the sphere \mathbb{S}^{3}. Then there exists a unique invariant $I: \mathcal{L} \rightarrow \mathbb{C}(t, x)$ which is 1 on the trivial knot, and which satisfies the relation

$$
\begin{equation*}
t^{-1} \cdot I\left(L_{+}\right)-t \cdot I\left(L_{-}\right)=x \cdot I\left(L_{0}\right), \tag{1.1}
\end{equation*}
$$

for all links $L_{+}, L_{-}, L_{0} \in \mathcal{L}$ that have the same link diagram except in the neighborhood of a crossing where they are like in Figure 1.1.

Figure 1.1. The links L_{+}, L_{-}, and L_{0}.

Since then, knot theorists wonder about possible extensions of this result to other sets of likeknots such as the set of links in a 3 -manifold, or the set of singular links in the 3 -sphere.

Recall that a singular link on n components is defined to be an immersion of n circles in the sphere \mathbb{S}^{3} which admits only finitely many singularities that are all ordinary double points. By
[8], two singular link diagrams represent the same singular link (up to isotopy) if and only if one can pass from one to the other by a finite sequence of ordinary or singular Reidemeister moves (see Figures 1.2 and 1.3).

Figure 1.2. Ordinary Reidemeister moves.

Figure 1.3. Singular Reidemeister moves.

Let \mathcal{L} be a set of like-knots. We say that an invariant $I: \mathcal{L} \rightarrow \mathbb{C}(t, x)$ satisfies the HOMFLYPT Skein relation if the relation (1.1) holds for all links $L_{+}, L_{-}, L_{0} \in \mathcal{L}$ that have the same link diagram except in the neighborhood of a crossing where they are like in Figure 1.1. It has been quickly observed that, in general, there are many invariants that satisfy the HOMFLYPT Skein relation and that are 1 on the trivial knot. However, the condition that the invariant is 1 on the trivial knot is secondary, and, moreover, one can view the set of invariants that satisfy the HOMFLYPT Skein relation as a vector space over $\mathbb{C}(x, t)$. So, the general question is in fact to determine this vector space.

Let \mathcal{L} be a set of like-knots. Define the HOMFLYPT Skein module of \mathcal{L}, denoted by $\operatorname{Sken}(\mathcal{L})$, to be the quotient of the vector space $\mathbb{C}(x, t)[\mathcal{L}]$ freely spanned by \mathcal{L}, by the relations

$$
t^{-1} \cdot L_{+}-t \cdot L_{-}=x \cdot L_{0},
$$

for all links $L_{+}, L_{-}, L_{0} \in \mathcal{L}$ that have the same link diagram except in the neighborhood of a crossing where they are like in Figure 1.1. Note that the space of invariants of \mathcal{L} that satisfy the HOMFLYPT Skein relation is the space of linear forms on $\operatorname{Skein}(\mathcal{L})$.

The Skein module was calculated for the set of links in a solid torus by Hoste, Kidwell [5] and, independently, Turaev [13]. They result was extended by Przytycki [11] to the set of links in the direct product $F \times I$ of a surface F with the interval. In this case, $\operatorname{Skein}(\mathcal{L})$ can be endowed with a structure of algebra. The product of two links L_{1} and L_{2} (modulo the Skein relations) is the link obtained placing L_{2} above L_{1}. Note that the Skein module of singular links can be also endowed with a structure of algebra following the same rules.

Theorem 1.2 (Przytycki [11]). Let \mathcal{L} be the set of links in the direct product $F \times I$ of a surface F with the interval I. Then $\operatorname{Skein}(\mathcal{L})$ is isomorphic to the symmetric algebra $S \mathbb{C}(t, x)\left[\hat{\pi}^{0}\right]$ on the vector space $\mathbb{C}(t, x)\left[\hat{\pi}^{0}\right]$ freely spanned by the set $\hat{\pi}^{0}$ of conjugacy classes of nontrivial elements of $\pi_{1}(F)$.

The purpose of this paper is to present an approach to the calculation of HOMFLYPT Skein modules via the study of different sorts of braid groups and monoids and their associated generalized Hecke algebras. This will be done through the study of a particular example: the singular links in the 3 -sphere. However, the ideas presented here can be easily extended to other cases. In particular, a careful reading of [9] shows how to use these techniques to calculate the HOMFLYPT Skein module of the solid torus.

The main result of this paper is:
Theorem 1.3. Let \mathcal{L} be the set of oriented singular links in the sphere \mathbb{S}^{3}. Then $\operatorname{Skein}(\mathcal{L})$ is isomorphic to the polynomial algebra $\mathbb{C}(x, t)[\hat{X}, \hat{Y}]$ in the two variables \hat{X} and \hat{Y}, where \hat{X} and \hat{Y} are represented by the links L_{X} and L_{Y} drawn in Figure 1.4

Figure 1.4. Generators of the Skein module of singular links.

The proof of Theorem 1.3 consists essentially in translating the main result of [10], which concerns Markov traces on singular Hecke algebras, in terms of HOMFLYPT Skein modules. On the other hand, some open questions will be presented along the text, and the proof of Theorem 1.3 will also serve as a pretext to present them.

2 Markov module and HOMFLYPT Skein module

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ be a set of n distinct punctures in the plane \mathbb{R}^{2} (except mention of the contrary, we will always assume $P_{k}=(k, 0)$ for all $\left.1 \leq k \leq n\right)$. A singular braid on n strands is defined to be an n-tuple $\beta=\left(b_{1}, \ldots, b_{n}\right)$ of smooth paths, $b_{k}:[0,1] \rightarrow \mathbb{R}^{2} \times[0,1]$, such that

- there exists a permutation $\chi \in \operatorname{Sym}_{n}$ such that $b_{k}(0)=\left(P_{k}, 0\right)$ and $b_{k}(1)=\left(P_{\chi(k)}, 1\right)$ for all $1 \leq k \leq n$;
- $b_{k}(t)$ runs monotonically on the second coordinate for all $1 \leq k \leq n$;
- the image of $b_{1} \sqcup \cdots \sqcup b_{n}$ has finitely many singularities (called singular points), that are all ordinary double points.

The isotopy classes of singular braids form a monoid called singular braid monoid (on n strands) and denoted by $S B_{n}$. The multiplication in this monoid is the concatenation of (singular) braids.

Theorem 2.1 (Baez [1], Birman [2]). The monoid $S B_{n}$ has a monoid presentation with generators

$$
\sigma_{1}, \ldots, \sigma_{n-1}, \sigma_{1}^{-1}, \ldots, \sigma_{n-1}^{-1}, \tau_{1}, \ldots, \tau_{n-1}
$$

and relations

$$
\begin{array}{cll}
\sigma_{k} \sigma_{k}^{-1}=\sigma_{k}^{-1} \sigma_{k}=1 & & \text { for } 1 \leq k \leq n-1, \\
\sigma_{k} \tau_{k}=\tau_{k} \sigma_{k} & & \text { for } 1 \leq k \leq n-1, \\
\sigma_{k} \sigma_{l} \sigma_{k}=\sigma_{l} \sigma_{k} \sigma_{l}, & & \text { if }|k-l|=1, \\
\sigma_{k} \sigma_{l} \tau_{k}=\tau_{l} \sigma_{k} \sigma_{l} & & \text { if }|k-l|=1, \\
\sigma_{k} \sigma_{l}=\sigma_{l} \sigma_{k} & & \text { if }|k-l| \geq 2, \\
\sigma_{k} \tau_{l}=\tau_{l} \sigma_{k} & & \text { if }|k-l| \geq 2, \\
\tau_{k} \tau_{l}=\tau_{l} \tau_{k} & & \text { if }|k-l| \geq 2 .
\end{array}
$$

The braid σ_{k} in the above theorem is the standard k-th generator of the braid group B_{n} (see Figure 2.1). The braid τ_{k} is a singular braid with a unique singular crossing between the k-th strand and the $(k+1)$-th strand (see Figure 2.1).

Figure 2.1. Generators of $S B_{n}$.

From a singular braid β we can construct a singular link connecting the point $\left(P_{k}, 1\right)$ to the point $\left(P_{k}, 0\right)$ for all $1 \leq k \leq n$ (see Figure 2.2). This link is denoted by $\hat{\beta}$ and is called the closure of β. By [2], every singular link is a closed singular braid.

We denote by $\sqcup S B=\sqcup_{n=1}^{\infty} S B_{n}$ the disjoint union of all singular braid monoids. We use the notation (β, n) to denote a singular braid β in $S B_{n}$ if we need to specify the number n of strands.

Two singular braids (α, n) and (β, m) are said to be connected by a Markov move if either

Figure 2.2. A closed braid.

- $n=m$ and there exist $\gamma_{1}, \gamma_{2} \in S B_{n}$ such that $\alpha=\gamma_{1} \gamma_{2}$ and $\beta=\gamma_{2} \gamma_{1}$; or
- $m=n+1$ and $\beta=\alpha \sigma_{n}^{ \pm 1}$; or
- $n=m+1$ and $\alpha=\beta \sigma_{m}^{ \pm 1}$.

Theorem 2.2 (Gemein [4]). Let $(\alpha, n),(\beta, m)$ be two singular braids. Then $\hat{\alpha}$ and $\hat{\beta}$ are isotopic if and only if (α, n) and (β, m) are connected by a finite sequence of Markov moves.

We turn now to apply this theorem to obtain a version of the HOMFLYPT Skein module of singular links in terms of singular Hecke algebras.

The singular Hecke algebra, denoted by $\mathcal{H}\left(S B_{n}\right)$, is defined to be the quotient of the monoid algebra $\mathbb{C}(q)\left[S B_{n}\right]$ by the relations

$$
\begin{equation*}
\sigma_{k}^{2}=(q-1) \sigma_{k}+q, \quad 1 \leq k \leq n-1 . \tag{2.1}
\end{equation*}
$$

Note that the singular Hecke algebra is an infinite dimensional $\mathbb{C}(q)$-vector space (except for $n=1$). However, it can be endowed with a graduation, and each term of the graduation is of finite dimension (see [10]). This graduation is defined as follows.

For $n \geq 2$ and $d \geq 0$, we denote by $S_{d} B_{n}$ the set of singular braids with n strands and d singular points, and we denote by $\mathbb{C}(q)\left[S_{d} B_{n}\right]$ the subspace of $C(q)\left[S B_{n}\right]$ spanned by $S_{d} B_{n}$. Note that $S_{0} B_{n}$ is the braid group B_{n} on n strands, and $\mathbb{C}(q)\left[S_{0} B_{n}\right]=\mathbb{C}(q)\left[B_{n}\right]$ is the group algebra of B_{n}. The monoid algebra $\mathbb{C}(q)\left[S B_{n}\right]$ is naturally graded by

$$
\mathbb{C}(q)\left[S B_{n}\right]=\bigoplus_{d=0}^{+\infty} \mathbb{C}(q)\left[S_{d} B_{n}\right] .
$$

Now, the relations (2.1) that define the singular Hecke algebra are all homogeneous (of degree 0), thus the graduation of $\mathbb{C}(q)\left[S B_{n}\right]$ induces a graduation on $\mathcal{H}\left(S B_{n}\right)$,

$$
\mathcal{H}\left(S B_{n}\right)=\bigoplus_{d=0}^{+\infty} \mathcal{H}\left(S_{d} B_{n}\right)
$$

where $\mathcal{H}\left(S_{d} B_{n}\right)$ is the subspace of $\mathcal{H}\left(S B_{n}\right)$ spanned by $S_{d} B_{n}$.
Several elementary questions on singular Hecke algebras are still open. Here are two of them.
Question 2.3. Note that $\mathcal{H}\left(S_{0} B_{n}\right)=\mathcal{H}\left(B_{n}\right)$ is the Hecke algebra of the symmetric group, thus $\mathcal{H}\left(S_{d} B_{n}\right)$ is a representation of $\mathcal{H}\left(B_{n}\right)$. It would be interesting to characterize this representation. Actually, the dimension itself (over $\mathbb{C}(q))$ of $\mathcal{H}\left(S_{d} B_{n}\right)$ is unknown, even for $d=2$.

Question 2.4. The natural inclusion $S B_{n} \hookrightarrow S B_{n+1}$ induces a homomorphism $\iota_{n}: \mathcal{H}\left(S B_{n}\right) \rightarrow$ $\mathcal{H}\left(S B_{n+1}\right)$. We do not know whether ι_{n} is injective.

Now, we introduce a new variable z, we set $\mathcal{H}_{z}\left(S B_{n}\right)=\mathbb{C}(z, q) \otimes_{\mathbb{C}(q)} \mathcal{H}\left(S B_{n}\right)$ for all $n \geq 1$, and we consider the direct sum $\oplus_{n=1}^{\infty} \mathcal{H}_{z}\left(S B_{n}\right)$. Like for the singular braids, we use the notation (a, n) to denote an element $a \in \mathcal{H}_{z}\left(S B_{n}\right)$ if we need to specify the number n of strands.

The Markov module of $\sqcup S B$, denoted by $\operatorname{Markov}(\sqcup S B)$, is defined to be the quotient of the space $\oplus_{n=1}^{\infty} \mathcal{H}_{z}\left(S B_{n}\right)$ by the relations

- $(a b, n)=(b a, n)$ for all $n \geq 1$ and all $a, b \in \mathcal{H}_{z}\left(S B_{n}\right) ;$
- $(a, n)=\left(\iota_{n}(a), n+1\right)$ for all $n \geq 1$ and all $a \in \mathcal{H}_{z}\left(S B_{n}\right)$;
- $\left(\iota_{n}(a) \sigma_{n}, n+1\right)=z \cdot(a, n)$ for all $n \geq 1$ and all $a \in \mathcal{H}_{z}\left(S B_{n}\right)$.

The space $\operatorname{Markov}(\sqcup S B)$ can be endowed with a structure of $\mathbb{C}(z, q)$-algebra as follows. Let $[\alpha, n]$ denote the element of $\operatorname{Markov}(\cup S B)$ represented by a braid (α, n). Let (α, n) and (β, m) be two braids. Then the product $[\alpha, n] \cdot[\beta, m]$ is represented by the braid in $S B_{n+m}$ obtained placing β above α. Note that the unit for this multiplication is represented by the trivial braid in $S B_{1}=B_{1}=\{1\}$.

Lemma 2.5. The above defined multiplication in $\operatorname{Markov}(\sqcup S B)$ is commutative.
Proof. Let $(\alpha, n),(\beta, m)$ be two singular braids. Let $(\alpha * \beta, n+m)$ be the braid obtained placing β above α. So, $[\alpha, n] \cdot[\beta, m]=[\alpha * \beta, n+m]$. Let $\sigma_{n, m} \in B_{n+m}$ be the braid pictured in Figure 2.3. Observe that $\sigma_{n, m}(\beta * \alpha) \sigma_{n, m}^{-1}=(\alpha * \beta)$, thus $[\alpha, n] \cdot[\beta, m]=[\beta, m] \cdot[\alpha, n]$.

Figure 2.3. The braid $\sigma_{n, m}$.

Now, the link between the HOMFLYPT Skein module of singular links and the Markov module of singular braids is given by the following.

Theorem 2.6. Let \mathcal{L} be the set of singular links in the sphere \mathbb{S}^{3}. Set

$$
\begin{gathered}
z=\frac{q-1}{1-q y} \Leftrightarrow \quad y=\frac{z-q+1}{q z}, \\
t=\sqrt{y q}, \quad x=\sqrt{q}-\frac{1}{\sqrt{q}} .
\end{gathered}
$$

Let $\mathbb{K}=\mathbb{C}(\sqrt{y}, \sqrt{q})$. Then $\mathbb{K} \otimes \operatorname{Markov}(\sqcup S B)$ is isomorphic to $\mathbb{K} \otimes \operatorname{Skein}(\mathcal{L})$.
Proof. In [7] Jones gives formulas to pass from Ocneanu's trace to the HOMFLYPT polynomial. In order to prove the above theorem, it suffices to slightly adapt these formulas to the context of the theorem.

For $(\beta, n) \in \sqcup S B$ we denote by $[\beta, n]$ the element of $\operatorname{Markov}(\sqcup S B)$ represented by (β, n). Similarly, for $L \in \mathcal{L}$ we denote by $[L]$ the element of $\operatorname{Skein}(\mathcal{L})$ represented by L.

Let $\psi_{1}: \sqcup S B \rightarrow \mathbb{K} \otimes \operatorname{Markov}(\sqcup S B)$ be the map defined by

$$
\psi_{1}(\alpha, n)=\left(\frac{q-1}{1-q y}\right)^{-n+1}(\sqrt{y})^{\varepsilon(\alpha)-n+1}[\alpha, n]
$$

where $\varepsilon: S B_{n} \rightarrow \mathbb{Z}$ is the homomorphism defined by

$$
\varepsilon\left(\sigma_{k}\right)=1, \varepsilon\left(\sigma_{k}^{-1}\right)=-1, \varepsilon\left(\tau_{k}\right)=0, \quad \text { for } 1 \leq k \leq n-1
$$

Let $(\alpha, n),(\beta, m)$ be two singular braids. We start showing that, if $\hat{\alpha}=\hat{\beta}$, then $\psi_{1}(\alpha, n)=$ $\psi_{1}(\beta, m)$. By Theorem 2.2, in order to do so, it suffices to consider the following three cases:

1. $n=m$ and there exist $\gamma_{1}, \gamma_{2} \in S B_{n}$ such that $\alpha=\gamma_{1} \gamma_{2}$ and $\beta=\gamma_{2} \gamma_{1}$;
2. $m=n+1$ and $\beta=\alpha \sigma_{n}$;
3. $m=n+1$ and $\beta=\alpha \sigma_{n}^{-1}$.

Suppose that $n=m$ and there exist $\gamma_{1}, \gamma_{2} \in S B_{n}$ such that $\alpha=\gamma_{1} \gamma_{2}$ and $\beta=\gamma_{2} \gamma_{1}$. By definition we have $[\alpha, n]=[\beta, n]$ and $\varepsilon(\alpha)=\varepsilon(\beta)$, thus $\psi_{1}(\alpha)=\psi_{1}(\beta)$. Suppose that $m=n+1$ and $\beta=\alpha \sigma_{n}$. Then

$$
\begin{aligned}
\psi_{1}(\beta, m) & =\left(\frac{q-1}{1-q y}\right)^{-m+1}(\sqrt{y})^{\varepsilon(\beta)-m+1}[\beta, m] \\
& =\left(\frac{q-1}{1-q y}\right)^{-n}(\sqrt{y})^{\varepsilon(\alpha)-n+1}\left[\alpha \sigma_{n}, n+1\right] \\
& =\left(\frac{q-1}{1-q y}\right)^{-n}(\sqrt{y})^{\varepsilon(\alpha)-n+1}\left(\frac{q-1}{1-q y}\right)[\alpha, n] \\
& =\psi_{1}(\alpha, n) .
\end{aligned}
$$

Suppose that $m=n+1$ and $\beta=\alpha \sigma_{n}^{-1}$. Observe that the equality $\sigma_{n}^{2}=(q-1) \sigma_{n}+q$ implies

$$
\sigma_{n}^{-1}=q^{-1} \sigma_{n}-q^{-1}(q-1) .
$$

Then

$$
\begin{aligned}
\psi_{1}(\beta, m) & =\left(\frac{q-1}{1-q y}\right)^{-m+1}(\sqrt{y})^{\varepsilon(\beta)-m+1}[\beta, m] \\
& =\left(\frac{q-1}{1-q y}\right)^{-n}(\sqrt{y})^{\varepsilon(\alpha)-n-1}\left[\alpha \sigma_{n}^{-1}, n+1\right] \\
& =\left(\frac{q-1}{1-q y}\right)^{-n}(\sqrt{y})^{\varepsilon(\alpha)-n-1}\left(q^{-1}\left[\alpha \sigma_{n}, n+1\right]-q^{-1}(q-1)[\alpha, n+1]\right) \\
& =\left(\frac{q-1}{1-q y}\right)^{-n}(\sqrt{y})^{\varepsilon(\alpha)-n+1}\left(\frac{q-1}{1-q y}\right)[\alpha, n] \\
& =\psi_{1}(\alpha, n) .
\end{aligned}
$$

By the above, the map ψ_{1} induces a map $\psi_{2}: \mathcal{L} \rightarrow \operatorname{Markov}(\sqcup S B)$ defined by $\psi_{2}(\hat{\beta})=\psi_{1}(\beta)$ for all $\beta \in \sqcup S B$.

Let L_{+}, L_{-}, L_{0} be three singular links that have the same link diagram except in the neighborhood of a crossing where they are like in Figure 1.1. It is easily deduced from [2] that there exist a singular braid (β, n) and an index $1 \leq k \leq n-1$ such that $L_{+}=\widehat{\beta \sigma_{k}}, L_{-}=\widehat{\beta \sigma_{k}^{-1}}$ and $L_{0}=\widehat{\beta}$. Then

$$
\begin{aligned}
& t^{-1} \cdot \psi_{2}\left(L_{+}\right)-t \cdot \psi_{2}\left(L_{-}\right) \\
= & (\sqrt{y q})^{-1}\left(\frac{q-1}{1-q y}\right)^{-n+1}(\sqrt{y})^{\varepsilon(\beta)-n+2}\left[\beta \sigma_{k}, n\right]-(\sqrt{y q})\left(\frac{q-1}{1-q y}\right)^{-n+1}(\sqrt{y})^{\varepsilon(\beta)-n}\left[\beta \sigma_{k}^{-1}, n\right] \\
= & \left(\frac{q-1}{1-q y}\right)^{-n+1}(\sqrt{y})^{\varepsilon(\beta)-n+1}\left(\frac{1}{\sqrt{\bar{q}}}(q-1)[\beta, n]+\frac{1}{\sqrt{\bar{q}}} q\left[\beta \sigma_{k}^{-1}, n\right]-\sqrt{q}\left[\beta \sigma_{k}^{-1}, n\right]\right) \\
= & x\left(\frac{q-1}{1-q y}\right)^{-n+1}(\sqrt{y})^{\varepsilon(\beta)-n+1}[\beta, n] \\
= & x \cdot \psi_{2}\left(L_{0}\right) .
\end{aligned}
$$

It follows that ψ_{2} induces a linear map $\psi: \operatorname{Skein}(\mathcal{L}) \rightarrow \operatorname{Markov}(\sqcup S B)$. It is easily checked that this map is an algebra homomorphism.

We turn now to construct the inverse of ψ. Let $\phi_{1}: \sqcup S B \rightarrow \operatorname{Skein}(\mathcal{L})$ be the map defined by

$$
\phi_{1}(\beta, n)=\left(\frac{q-1}{1-q y}\right)^{n-1}(\sqrt{y})^{n-1-\varepsilon(\beta)}[\hat{\beta}] .
$$

Let $n \geq 1, \alpha, \beta \in S B_{n}$, and $1 \leq k \leq n-1$. Then

$$
\begin{aligned}
& \phi_{1}\left(\alpha \sigma_{k}^{2} \beta, n\right)-(q-1) \cdot \phi_{1}\left(\alpha \sigma_{k} \beta, n\right)-q \cdot \phi_{1}(\alpha \beta, n) \\
= & \left(\frac{q-1}{1-q y}\right)^{n-1}(\sqrt{y})^{n-1-\varepsilon(\alpha \beta)}\left(y^{-1}\left[\widehat{\alpha \sigma_{k}^{2} \beta}\right]-(\sqrt{y})^{-1}(q-1)\left[\widehat{\alpha \sigma_{k} \beta}\right]-q[\widehat{\alpha \beta}]\right) \\
= & \left(\frac{q-1}{1-q y}\right)^{n-1}(\sqrt{y})^{n-2-\varepsilon(\alpha \beta)}(\sqrt{q})\left(t^{-1}\left[\widehat{\alpha \sigma_{k}^{2} \beta}\right]-t[\widehat{\alpha \beta}]-x\left[\widehat{\alpha \sigma_{k} \beta}\right]\right) \\
= & 0 .
\end{aligned}
$$

Let $n \geq 1$ and $\alpha, \beta \in S B_{n}$. Since $\widehat{\alpha \beta}=\widehat{\beta \alpha}$, we have $\phi_{1}(\alpha \beta)=\phi_{1}(\beta \alpha)$. Let O denote the trivial link. One can easily show that

$$
[L \sqcup O]=\left(\frac{t^{-1}-t}{x}\right)[L]=\left(\frac{q-1}{1-q y}\right)^{-1}(\sqrt{y})^{-1}[L],
$$

where L is a link and $L \sqcup O$ is the disjoint union of L and O. Now, let $n \geq 1$ and $\alpha \in S B_{n}$. Observe that $(\widehat{\alpha, n+1})=\widehat{(\alpha, n)} \sqcup O$, thus

$$
\begin{aligned}
\phi_{1}(\alpha, n+1) & =\left(\frac{q-1}{1-q y}\right)^{n}(\sqrt{y})^{n-\varepsilon(\alpha)}[(\widehat{\alpha, n+1})] \\
& =\left(\frac{q-1}{1-q y}\right)^{n-1}(\sqrt{y})^{n-1-\varepsilon(\alpha)}[\widehat{(\alpha, n)}] \\
& =\phi_{1}(\alpha, n) .
\end{aligned}
$$

We also have

$$
\begin{aligned}
\phi_{1}\left(\alpha \sigma_{n}, n+1\right) & =\left(\frac{q-1}{1-q y}\right)^{n}(\sqrt{y})^{n-\varepsilon\left(\alpha \sigma_{n}\right)}\left[\left(\alpha \widehat{\sigma_{n}, n+1}\right)\right] \\
& =z\left(\frac{q-1}{1-q y}\right)^{n-1}(\sqrt{y})^{n-1-\varepsilon(\alpha)}[\widehat{(\alpha, n)}] \\
& =z \cdot \phi_{1}(\alpha, n) .
\end{aligned}
$$

We conclude that the map ϕ_{1} induces a linear map $\phi: \operatorname{Markov}(\cup S B) \rightarrow \operatorname{Skein}(\mathcal{L})$. It is easily checked that ϕ is the inverse of ψ, thus ψ is an isomorphism.

We turn now to state the main result of [10] from which the calculation of the Markov module of singular braids will be deduced.

Recall that $S_{d} B_{n}$ denotes the set of singular braids with n strands and d singular points, $\mathcal{H}\left(S_{d} B_{n}\right)$ denotes the subspace of $\mathcal{H}\left(S B_{n}\right)$ spanned by $S_{d} B_{n}$, and that we have the graduation

$$
\mathcal{H}\left(S B_{n}\right)=\bigoplus_{d=0}^{+\infty} \mathcal{H}\left(S_{d} B_{n}\right)
$$

Set $\mathcal{H}_{z}\left(S_{d} B_{n}\right)=\mathbb{C}(z, q) \otimes_{\mathbb{C}(q)} \mathcal{H}\left(S_{d} B_{n}\right)$. Let Markov $\left(\sqcup S_{d} B\right)$ denote the quotient of $\oplus_{n=1}^{\infty} \mathcal{H}_{z}\left(S_{d} B_{n}\right)$ by the relations

- $(a b, n)=(b a, n)$ for all $n \geq 1$ and all $a \in \mathcal{H}_{z}\left(S_{k} B_{n}\right)$ and $b \in \mathcal{H}_{z}\left(S_{l} B_{n}\right)$ such that $k+l=d ;$
- $(a, n)=\left(\iota_{n}(a), n+1\right)$ for all $n \geq 1$ and all $a \in \mathcal{H}_{z}\left(S_{d} B_{n}\right)$;
- $\left(\iota_{n}(a) \sigma_{n}, n+1\right)=z \cdot(a, n)$ for all $n \geq 1$ and all $a \in \mathcal{H}_{z}\left(S_{d} B_{n}\right)$.

It is clear that

$$
\operatorname{Markov}(\sqcup S B)=\bigoplus_{d=0}^{+\infty} \operatorname{Markov}\left(\sqcup S_{d} B\right)
$$

Let $\mathbb{C}(q, z)\left[S_{d} B_{n}\right]$ be the vector space over $\mathbb{C}(q, z)$ freely spanned by $S_{d} B_{n}$. For $d \geq 1$, we define the linear maps $f_{n, 0}, f_{n, 1}: \mathbb{C}(q, z)\left[S_{d} B_{n}\right] \rightarrow \mathbb{C}(q, z)\left[S_{d-1} B_{n}\right]$ as follows. Let $\beta \in S_{d} B_{n}$. Then
write β in the form $\beta=\alpha_{0} \tau_{i_{1}} \alpha_{1} \cdots \tau_{i_{d}} \alpha_{d}$ with $\alpha_{i} \in B_{n}$ for $0 \leq i \leq d$, and set

$$
\begin{aligned}
& f_{n, 0}(\beta)=\sum_{k=0}^{d} \alpha_{0} \tau_{i_{1}} \alpha_{1} \cdots \tau_{i_{k-1}} \alpha_{k-1} \alpha_{k} \tau_{i_{k+1}} \alpha_{k+1} \cdots \tau_{i_{d}} \alpha_{d} \\
& f_{n, 1}(\beta)=\sum_{k=0}^{d} \alpha_{0} \tau_{i_{1}} \alpha_{1} \cdots \tau_{i_{k-1}} \alpha_{k-1} \sigma_{i_{k}} \alpha_{k} \tau_{i_{k+1}} \alpha_{k+1} \cdots \tau_{i_{d}} \alpha_{d}
\end{aligned}
$$

It follows from Theorem 2.1 that this definition does not depend on the choice of the expression of β.

It is easily checked that the collection of linear maps $\left\{f_{n, 0}\right\}_{n \geq 1}$ induces a linear map g_{0} : $\operatorname{Markov}\left(\sqcup S_{d} B\right) \rightarrow \operatorname{Markov}\left(\sqcup S_{d-1} B\right)$. Similarly, the collection of maps $\left\{f_{n, 1}\right\}_{n \geq 1}$ induces a linear map $g_{1}: \operatorname{Markov}\left(\sqcup S_{d} B\right) \rightarrow \operatorname{Markov}\left(\sqcup S_{d-1} B\right)$.

Let $\operatorname{Markov}\left(\sqcup S_{d} B\right)^{*}$ be the dual space of $\operatorname{Markov}\left(\sqcup S_{d} B\right)$, that is, the space of linear forms on $\operatorname{Markov}\left(\sqcup S_{d} B\right)$. For $d \geq 1$, we denote by $\Phi_{d, 0}: \operatorname{Markov}\left(\sqcup S_{d-1} B\right)^{*} \rightarrow \operatorname{Markov}\left(\sqcup S_{d} B\right)^{*}$ the linear map induced by g_{0}, and by $\Phi_{d, 1}: \operatorname{Markov}\left(\sqcup S_{d-1} B\right)^{*} \rightarrow \operatorname{Markov}\left(\sqcup S_{d} B\right)^{*}$ the linear map induced by g_{1}. Note that $\Phi_{d+1,1} \circ \Phi_{d, 0}=\Phi_{d+1,0} \circ \Phi_{d, 1}$ for all $d \geq 1$.

For $d \geq 0$, we define the elements $T_{d, 0}, T_{d, 1}, \ldots, T_{d, d} \in \operatorname{Markov}\left(\sqcup S_{d} B\right)^{*}$ by induction on d as follows. It is proved in [7] that the space $\operatorname{Markov}\left(\sqcup S_{0} B\right)^{*}$ is of dimension 1. Then we denote by $T_{0,0}$ the generator of Markov $\left(\sqcup S_{0} B\right)^{*}$ whose value on the trivial braid is 1 . Suppose $d \geq 1$. Then we set

$$
\begin{aligned}
& T_{d, 0}=\Phi_{d, 0}\left(T_{d-1,0}\right) \\
& T_{d, k}=\Phi_{d, 0}\left(T_{d-1, k}\right)=\Phi_{d, 1}\left(T_{d-1, k-1}\right) \quad \text { if } 1 \leq k \leq d-1 \\
& T_{d, d}=\Phi_{d, 1}\left(T_{d-1, d-1}\right)
\end{aligned}
$$

Theorem 2.7 (Paris, Rabenda $[10])$. Let $d \geq 0$. Then $\operatorname{Markov}\left(\sqcup S_{d} B\right)^{*}$ is of dimension $d+1$, and $\left\{T_{d, 0}, T_{d, 1}, \ldots, T_{d, d}\right\}$ is a basis for $\operatorname{Markov}\left(\sqcup S_{d} B\right)^{*}$.

We can now calculate the Markov module of singular braids:
Theorem 2.8. The algebra Markov $(\sqcup S B)$ is a polynomial algebra $\mathbb{C}(q, z)[X, Y]$ in two variables X and Y, where X and Y are the classes of τ_{1} and $\tau_{1} \sigma_{1}$, respectively.

Proof. Let $d \geq 0$ and $0 \leq k \leq d$. Observe that $X^{k} Y^{d-k}$ is the class of $\tau_{1} \cdots \tau_{2 k-1}\left(\tau_{2 k+1} \sigma_{2 k+1}\right)$ $\cdots\left(\tau_{2 d-1} \sigma_{2 d-1}\right)$. In particular, we have $X^{k} Y^{d-k} \in \operatorname{Markov}\left(\sqcup S_{d} B\right)$. So, in order to prove Theorem 2.8, it suffices to show that $\left\{X^{d}, X^{d-1} Y, \ldots, X Y^{d-1}, Y^{d}\right\}$ is a basis for $\operatorname{Markov}\left(\sqcup S_{d} B\right)$. Since we already know by Theorem 2.7 that $\operatorname{Markov}\left(\sqcup S_{d} B\right)$ is of dimension $d+1$, it actually suffices to show that $\left\{X^{d}, X^{d-1} Y, \ldots, X Y^{d-1}, Y^{d}\right\}$ is linearly independent. We prove this by induction on d. The case $d=0$ being trivial, we assume $d \geq 1$ plus the inductive hypothesis.

A direct calculation shows that, for $0 \leq k \leq d$, we have

$$
\begin{aligned}
g_{0}\left(X^{k} Y^{d-k}\right) & =k \cdot X^{k-1} Y^{d-k}+z(d-k) \cdot X^{k} Y^{d-k-1} \\
g_{1}\left(X^{k} Y^{d-k}\right) & =k z \cdot X^{k-1} Y^{d-k}+(d-k)((q-1) z+q) \cdot X^{k} Y^{d-k-1}
\end{aligned}
$$

Let $a_{0}, a_{1}, \ldots, a_{d} \in \mathbb{C}(q, z)$ such that

$$
\begin{equation*}
\sum_{k=0}^{d} a_{k} X^{k} Y^{d-k}=0 \tag{2.2}
\end{equation*}
$$

Applying g_{0} and g_{1} to (2.2) we obtain

$$
\begin{gathered}
\sum_{k=0}^{d-1}\left((k+1) a_{k+1}+(d-k) z a_{k}\right) X^{k} Y^{d-k-1}=0 \\
\sum_{k=0}^{d-1}\left((k+1) z a_{k+1}+(d-k)((q-1) z+q) a_{k}\right) X^{k} Y^{d-k-1}=0
\end{gathered}
$$

By induction, it follows that

$$
\left\{\begin{aligned}
(k+1) a_{k+1} & +\quad(d-k) z a_{k} & =0 \\
(k+1) z a_{k+1} & +(d-k)((q-1) z+q) a_{k} & =0
\end{aligned}\right.
$$

for all $0 \leq k \leq d-1$. The determinant of this system of linear equations in the variables a_{k+1}, a_{k} is equal to $-(k+1)(d-k)\left(z^{2}-(q-1) z-q\right) \neq 0$, thus $a_{k+1}=a_{k}=0$.

Corollary 2.9. Let \mathcal{L} be the set of singular links in the sphere \mathbb{S}^{3}. Then the algebra $\operatorname{Skein}(\mathcal{L})$ is a polynomial algebra $\mathbb{C}(t, x)[\hat{X}, \hat{Y}]$ in two variables \hat{X} and \hat{Y}, where \hat{X} and \hat{Y} are the classes of the singular links L_{X} and L_{Y} represented in Figure 1.4.

Question 2.10. The proof that the set $\mathcal{B}=\left\{X^{a} Y^{b} ; a, b \in \mathbb{N}\right\}$ is linearly independent in Markov($\llcorner S B$) is entirely given in the above proof of Theorem 2.8, and does not need Theorem 2.7 at all. However, the proof that \mathcal{B} spans $\operatorname{Markov}(\sqcup S B)$ uses the fact that the dimension of $\operatorname{Markov}\left(\sqcup S_{d} B\right)$ is (less or) equal to $d+1$ for all $d \geq 0$, and the proof of this latest assertion needs long and tedious calculations. It would be interesting to find a (simplest) proof of the equivalent fact that $\hat{\mathcal{B}}=\left\{\hat{X}^{a} \hat{Y}^{b} ; a, b \in \mathbb{N}\right\}$ spans $\operatorname{Skein}(\mathcal{L})$, which would directly use the Skein relations.

References

[1] J. C. Baez. Link invariants of finite type and perturbation theory. Lett. Math. Phys. 26 (1992), no. 1, 43-51.
[2] J. S. Birman. New points of view in knot theory. Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287.
[3] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239-246.
[4] B. Gemein. Singular braids and Markov's theorem. J. Knot Theory Ramifications 6 (1997), no. 4, 441-454.
[5] J. Hoste, M. E. Kidwell. Dichromatic link invariants. Trans. Amer. Math. Soc. 321 (1990), no. 1, 197-229.
[6] V. F. R. Jones. A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103-111.
[7] V. F. R. Jones. Hecke algebra representations of braid groups and link polynomials. Ann. of Math. (2) 126 (1987), no. 2, 335-388.
[8] L. H. Kauffman. Invariants of graphs in three-space. Trans. Amer. Math. Soc. 311 (1989), no. 2, 697-710.
[9] S. Lambropoulou. Knot theory related to generalized and cyclotomic Hecke algebras of type B. J. Knot Theory Ramifications 8 (1999), no. 5, 621-658.
[10] L. Paris, L. Rabenda. Singular Hecke algebras, Markov traces, and HOMFLY-type invariants. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2413-2443.
[11] J. H. Przytycki. Skein module of links in a handlebody. Topology '90 (Columbus, OH, 1990), 315-342, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992.
[12] J. H. Przytycki, P. Traczyk. Invariants of links of Conway type. Kobe J. Math. 4 (1988), no. 2, 115-139.
[13] V. G. Turaev. The Conway and Kauffman modules of a solid torus. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), Issled. Topol. 6, 79-89, 190. Translation in J. Soviet Math. 52 (1990), no. 1, 2799-2805.

Luis Paris,

Institut de Mathématiques de Bourgogne, UMR 5584 du CNRS, Université de Bourgogne, B.P. 47870, 21078 Dijon cedex, France
E-mail: lparis@u-bourgogne.fr

