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Introduction

Knot theory had a notable renewable in the 80's with the emergence of new knot invariants such as the Jones polynomial [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF], [START_REF] Jones | A polynomial invariant for knots via von Neumann algebras[END_REF] and the HOMFLYPT polynomial [START_REF] Freyd | A new polynomial invariant of knots and links[END_REF], [START_REF] Przytycki | Invariants of links of Conway type[END_REF]. The latest one is defined by the following theorem.

Theorem 1.1 (Freyd, Yetter, Hoste, Lickorish, Millett, Ocneanu [START_REF] Freyd | A new polynomial invariant of knots and links[END_REF], Przytycki, Traczyk [START_REF] Przytycki | Invariants of links of Conway type[END_REF]). Let L be the set of (isotopy classes) of oriented links in the sphere S 3 . Then there exists a unique invariant I : L → C(t, x) which is 1 on the trivial knot, and which satisfies the relation

t -1 • I(L + ) -t • I(L -) = x • I(L 0 ) , (1.1) 
for all links L + , L -, L 0 ∈ L that have the same link diagram except in the neighborhood of a crossing where they are like in Figure 1.1. Since then, knot theorists wonder about possible extensions of this result to other sets of likeknots such as the set of links in a 3-manifold, or the set of singular links in the 3-sphere.

L + L - L 0
Recall that a singular link on n components is defined to be an immersion of n circles in the sphere S 3 which admits only finitely many singularities that are all ordinary double points. By 1 [START_REF] Kauffman | Invariants of graphs in three-space[END_REF], two singular link diagrams represent the same singular link (up to isotopy) if and only if one can pass from one to the other by a finite sequence of ordinary or singular Reidemeister moves (see Figures 1.2 and 1.3). Let L be a set of like-knots. We say that an invariant I : L → C(t, x) satisfies the HOMFLYPT Skein relation if the relation (1.1) holds for all links L + , L -, L 0 ∈ L that have the same link diagram except in the neighborhood of a crossing where they are like in Figure 1.1. It has been quickly observed that, in general, there are many invariants that satisfy the HOMFLYPT Skein relation and that are 1 on the trivial knot. However, the condition that the invariant is 1 on the trivial knot is secondary, and, moreover, one can view the set of invariants that satisfy the HOMFLYPT Skein relation as a vector space over C(x, t). So, the general question is in fact to determine this vector space.

Let L be a set of like-knots. Define the HOMFLYPT Skein module of L, denoted by Skein(L), to be the quotient of the vector space C(x, t)[L] freely spanned by L, by the relations

t -1 • L + -t • L -= x • L 0 ,
for all links L + , L -, L 0 ∈ L that have the same link diagram except in the neighborhood of a crossing where they are like in Figure 1.1. Note that the space of invariants of L that satisfy the HOMFLYPT Skein relation is the space of linear forms on Skein(L).

The Skein module was calculated for the set of links in a solid torus by Hoste, Kidwell [START_REF] Hoste | Dichromatic link invariants[END_REF] and, independently, Turaev [START_REF] Turaev | The Conway and Kauffman modules of a solid torus[END_REF]. They result was extended by Przytycki [START_REF] Przytycki | Skein module of links in a handlebody[END_REF] to the set of links in the direct product F × I of a surface F with the interval. In this case, Skein(L) can be endowed with a structure of algebra. The product of two links L 1 and L 2 (modulo the Skein relations) is the link obtained placing L 2 above L 1 . Note that the Skein module of singular links can be also endowed with a structure of algebra following the same rules.

Theorem 1.2 (Przytycki [START_REF] Przytycki | Skein module of links in a handlebody[END_REF]). Let L be the set of links in the direct product F × I of a surface F with the interval I. Then Skein(L) is isomorphic to the symmetric algebra SC(t, x)[π 0 ] on the vector space C(t, x)[π 0 ] freely spanned by the set π0 of conjugacy classes of nontrivial elements of π 1 (F ).

The purpose of this paper is to present an approach to the calculation of HOMFLYPT Skein modules via the study of different sorts of braid groups and monoids and their associated generalized Hecke algebras. This will be done through the study of a particular example: the singular links in the 3-sphere. However, the ideas presented here can be easily extended to other cases. In particular, a careful reading of [START_REF] Lambropoulou | Knot theory related to generalized and cyclotomic Hecke algebras of type B[END_REF] shows how to use these techniques to calculate the HOMFLYPT Skein module of the solid torus.

The main result of this paper is:

Theorem 1.3. Let L be the set of oriented singular links in the sphere S 3 . Then Skein(L) is isomorphic to the polynomial algebra C(x, t)[ X, Ŷ ] in the two variables X and Ŷ , where X and Ŷ are represented by the links L X and L Y drawn in Figure 1.4

L X L Y Figure 1.4.
Generators of the Skein module of singular links.

The proof of Theorem 1.3 consists essentially in translating the main result of [START_REF] Paris | Singular Hecke algebras, Markov traces, and HOMFLY-type invariants[END_REF], which concerns Markov traces on singular Hecke algebras, in terms of HOMFLYPT Skein modules. On the other hand, some open questions will be presented along the text, and the proof of Theorem 1.3 will also serve as a pretext to present them.

Markov module and HOMFLYPT Skein module

Let P = {P 1 , . . . , P n } be a set of n distinct punctures in the plane R 2 (except mention of the contrary, we will always assume P k = (k, 0) for all 1 ≤ k ≤ n). A singular braid on n strands is defined to be an

n-tuple β = (b 1 , . . . , b n ) of smooth paths, b k : [0, 1] → R 2 × [0, 1], such that
• there exists a permutation χ ∈ Sym n such that b k (0) = (P k , 0) and b k (1) = (P χ(k) , 1) for all 1 ≤ k ≤ n;

• b k (t) runs monotonically on the second coordinate for all 1 ≤ k ≤ n;

• the image of b 1 ⊔ • • • ⊔ b n has finitely many singularities (called singular points), that are all ordinary double points.

The isotopy classes of singular braids form a monoid called singular braid monoid (on n strands) and denoted by SB n . The multiplication in this monoid is the concatenation of (singular) braids.

Theorem 2.1 (Baez [START_REF] Baez | Link invariants of finite type and perturbation theory[END_REF], Birman [START_REF] Birman | New points of view in knot theory[END_REF]). The monoid SB n has a monoid presentation with generators

σ 1 , . . . , σ n-1 , σ -1 1 , . . . , σ -1 n-1 , τ 1 , . . . , τ n-1 , and relations σ k σ -1 k = σ -1 k σ k = 1 for 1 ≤ k ≤ n -1 , σ k τ k = τ k σ k for 1 ≤ k ≤ n -1 , σ k σ l σ k = σ l σ k σ l , if |k -l| = 1 , σ k σ l τ k = τ l σ k σ l if |k -l| = 1 , σ k σ l = σ l σ k if |k -l| ≥ 2 , σ k τ l = τ l σ k if |k -l| ≥ 2 , τ k τ l = τ l τ k if |k -l| ≥ 2 .
The braid σ k in the above theorem is the standard k-th generator of the braid group B n (see Figure 2.1). The braid τ k is a singular braid with a unique singular crossing between the k-th strand and the (k + 1)-th strand (see Figure 2.1).

k k + 1 σ k = k k + 1 τ k = Figure 2.1. Generators of SB n .
From a singular braid β we can construct a singular link connecting the point (P k , 1) to the point (P k , 0) for all 1 ≤ k ≤ n (see Figure 2.2). This link is denoted by β and is called the closure of β. By [START_REF] Birman | New points of view in knot theory[END_REF], every singular link is a closed singular braid.

We denote by ⊔SB = ⊔ ∞ n=1 SB n the disjoint union of all singular braid monoids. We use the notation (β, n) to denote a singular braid β in SB n if we need to specify the number n of strands.

Two singular braids (α, n) and (β, m) are said to be connected by a Markov move if either

β = β = = Figure 2.2. A closed braid.
• n = m and there exist γ 1 , γ 2 ∈ SB n such that α = γ 1 γ 2 and β = γ 2 γ 1 ; or

• m = n + 1 and β = ασ ±1 n ; or • n = m + 1 and α = βσ ±1 m .
Theorem 2.2 (Gemein [START_REF] Gemein | Singular braids and Markov's theorem[END_REF]). Let (α, n), (β, m) be two singular braids. Then α and β are isotopic if and only if (α, n) and (β, m) are connected by a finite sequence of Markov moves.

We turn now to apply this theorem to obtain a version of the HOMFLYPT Skein module of singular links in terms of singular Hecke algebras.

The singular Hecke algebra, denoted by H(SB n ), is defined to be the quotient of the monoid algebra C(q)[SB n ] by the relations

σ 2 k = (q -1)σ k + q , 1 ≤ k ≤ n -1 . (2.1)
Note that the singular Hecke algebra is an infinite dimensional C(q)-vector space (except for n = 1). However, it can be endowed with a graduation, and each term of the graduation is of finite dimension (see [START_REF] Paris | Singular Hecke algebras, Markov traces, and HOMFLY-type invariants[END_REF]). This graduation is defined as follows.

For n ≥ 2 and d ≥ 0, we denote by S d B n the set of singular braids with n strands and d singular points, and we denote by

C(q)[S d B n ] the subspace of C(q)[SB n ] spanned by S d B n . Note that S 0 B n is the braid group B n on n strands, and C(q)[S 0 B n ] = C(q)[B n ] is the group algebra of B n . The monoid algebra C(q)[SB n ] is naturally graded by C(q)[SB n ] = +∞ d=0 C(q)[S d B n ] .
Now, the relations (2.1) that define the singular Hecke algebra are all homogeneous (of degree 0), thus the graduation of C(q)[SB n ] induces a graduation on H(SB n ),

H(SB n ) = +∞ d=0 H(S d B n ) ,
where 

(SB n ) = C(z, q) ⊗ C(q) H(SB n
) for all n ≥ 1, and we consider the direct sum ⊕ ∞ n=1 H z (SB n ). Like for the singular braids, we use the notation (a, n) to denote an element a ∈ H z (SB n ) if we need to specify the number n of strands.

The Markov module of ⊔SB, denoted by Markov(⊔SB), is defined to be the quotient of the space ⊕ ∞ n=1 H z (SB n ) by the relations

• (ab, n) = (ba, n) for all n ≥ 1 and all a, b ∈ H z (SB n );
• (a, n) = (ι n (a), n + 1) for all n ≥ 1 and all a ∈ H z (SB n );

• (ι n (a)σ n , n + 1) = z • (a, n) for all n ≥ 1 and all a ∈ H z (SB n ).
The space Markov(⊔SB) can be endowed with a structure of C(z, q)-algebra as follows. Let Now, the link between the HOMFLYPT Skein module of singular links and the Markov module of singular braids is given by the following.

Theorem 2.6. Let L be the set of singular links in the sphere S 3 . Set

z = q -1 1 -qy ⇔ y = z -q + 1 qz , t = √ yq , x = √ q - 1 √ q . Let K = C( √ y, √ q). Then K ⊗ Markov(⊔SB) is isomorphic to K ⊗ Skein(L).
Proof. In [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF] Jones gives formulas to pass from Ocneanu's trace to the HOMFLYPT polynomial.

In order to prove the above theorem, it suffices to slightly adapt these formulas to the context of the theorem.

For (β, n) ∈ ⊔SB we denote by [β, n] the element of Markov(⊔SB) represented by (β, n).

Similarly, for L ∈ L we denote by [L] the element of Skein(L) represented by L.

Let ψ 1 : ⊔SB → K ⊗ Markov(⊔SB) be the map defined by

ψ 1 (α, n) = q -1 1 -qy -n+1 ( √ y) ε(α)-n+1 [α, n] ,
where ε : SB n → Z is the homomorphism defined by

ε(σ k ) = 1 , ε(σ -1 k ) = -1 , ε(τ k ) = 0 , for 1 ≤ k ≤ n -1 .
Let (α, n), (β, m) be two singular braids. We start showing that, if α = β, then ψ 1 (α, n) = ψ 1 (β, m). By Theorem 2.2, in order to do so, it suffices to consider the following three cases:

1. n = m and there exist γ 1 , γ 2 ∈ SB n such that α = γ 1 γ 2 and β = γ 2 γ 1 ;

2. m = n + 1 and β = ασ n ;

3. m = n + 1 and β = ασ -1 n .

Suppose that n = m and there exist

γ 1 , γ 2 ∈ SB n such that α = γ 1 γ 2 and β = γ 2 γ 1 . By definition we have [α, n] = [β, n] and ε(α) = ε(β), thus ψ 1 (α) = ψ 1 (β). Suppose that m = n + 1 and β = ασ n . Then ψ 1 (β, m) = q-1 1-qy -m+1 √ y ε(β)-m+1 [β, m] = q-1 1-qy -n √ y ε(α)-n+1 [ασ n , n + 1] = q-1 1-qy -n √ y ε(α)-n+1 q-1 1-qy [α, n] = ψ 1 (α, n) .
Suppose that m = n + 1 and β = ασ -1 n . Observe that the equality σ 2 n = (q -1)σ n + q implies σ -1 n = q -1 σ nq -1 (q -1) .

Then

ψ 1 (β, m) = q-1 1-qy -m+1 √ y ε(β)-m+1 [β, m] = q-1 1-qy -n √ y ε(α)-n-1 [ασ -1 n , n + 1] = q-1 1-qy -n √ y ε(α)-n-1 q -1 [ασ n , n + 1] -q -1 (q -1)[α, n + 1] = q-1 1-qy -n √ y ε(α)-n+1 q-1 1-qy [α, n] = ψ 1 (α, n) .
By the above, the map ψ 1 induces a map ψ 2 : L → Markov(⊔SB) defined by ψ 2 ( β) = ψ 1 (β) for all β ∈ ⊔SB.

Let L + , L -, L 0 be three singular links that have the same link diagram except in the neighborhood of a crossing where they are like in Figure 1.1. It is easily deduced from [START_REF] Birman | New points of view in knot theory[END_REF] that there exist a singular braid (β, n) and an index 1

≤ k ≤ n -1 such that L + = βσ k , L -= βσ -1 k and L 0 = β. Then t -1 • ψ 2 (L + ) -t • ψ 2 (L -) = √ yq -1 q-1 1-qy -n+1 √ y ε(β)-n+2 [βσ k , n] - √ yq q-1 1-qy -n+1 √ y ε(β)-n [βσ -1 k , n] = q-1 1-qy -n+1 √ y ε(β)-n+1 1 √ q (q -1)[β, n] + 1 √ q q[βσ -1 k , n] - √ q[βσ -1 k , n] = x q-1 1-qy -n+1 √ y ε(β)-n+1 [β, n] = x • ψ 2 (L 0 ) .
It follows that ψ 2 induces a linear map ψ : Skein(L) → Markov(⊔SB). It is easily checked that this map is an algebra homomorphism.

We turn now to construct the inverse of ψ. Let φ 1 : ⊔SB → Skein(L) be the map defined by

φ 1 (β, n) = q -1 1 -qy n-1 ( √ y) n-1-ε(β) [ β] . Let n ≥ 1, α, β ∈ SB n , and 1 ≤ k ≤ n -1. Then φ 1 (ασ 2 k β, n) -(q -1) • φ 1 (ασ k β, n) -q • φ 1 (αβ, n) = q-1 1-qy n-1 √ y n-1-ε(αβ) y -1 [ ασ 2 k β] - √ y -1 (q -1)[ ασ k β] -q[ αβ] = q-1 1-qy n-1 √ y n-2-ε(αβ) √ q t -1 [ ασ 2 k β] -t[ αβ] -x[ ασ k β] = 0 .
Let n ≥ 1 and α, β ∈ SB n . Since αβ = βα, we have φ 1 (αβ) = φ 1 (βα). Let O denote the trivial link. One can easily show that

[L ⊔ O] = t -1 -t x [L] = q -1 1 -qy -1 ( √ y) -1 [L] ,
where L is a link and L ⊔ O is the disjoint union of L and O. Now, let n ≥ 1 and α ∈ SB n .

Observe that (α, n + 1) = (α, n) ⊔ O, thus

φ 1 (α, n + 1) = q-1 1-qy n √ y n-ε(α) [ (α, n + 1)] = q-1 1-qy n-1 √ y n-1-ε(α) [ (α, n)] = φ 1 (α, n) .
We also have

φ 1 (ασ n , n + 1) = q-1 1-qy n √ y n-ε(ασn) [ (ασ n , n + 1)] = z q-1 1-qy n-1 √ y n-1-ε(α) [ (α, n)] = z • φ 1 (α, n) .
We conclude that the map φ 1 induces a linear map φ : Markov(⊔SB) → Skein(L). It is easily checked that φ is the inverse of ψ, thus ψ is an isomorphism.

We turn now to state the main result of [START_REF] Paris | Singular Hecke algebras, Markov traces, and HOMFLY-type invariants[END_REF] from which the calculation of the Markov module of singular braids will be deduced.

Recall that S d B n denotes the set of singular braids with n strands and d singular points, H(S d B n ) denotes the subspace of H(SB n ) spanned by S d B n , and that we have the graduation

H(SB n ) = +∞ d=0 H(S d B n ) . Set H z (S d B n ) = C(z, q)⊗ C(q) H(S d B n ). Let Markov(⊔S d B) denote the quotient of ⊕ ∞ n=1 H z (S d B n ) by the relations • (ab, n) = (ba, n) for all n ≥ 1 and all a ∈ H z (S k B n ) and b ∈ H z (S l B n ) such that k + l = d; • (a, n) = (ι n (a), n + 1) for all n ≥ 1 and all a ∈ H z (S d B n ); • (ι n (a)σ n , n + 1) = z • (a, n) for all n ≥ 1 and all a ∈ H z (S d B n ). It is clear that Markov(⊔SB) = +∞ d=0 Markov(⊔S d B) .
Let C(q, z)[S d B n ] be the vector space over C(q, z) freely spanned by S d B n . For d ≥ 1, we define the linear maps f n,0 , f n,1 :

C(q, z)[S d B n ] → C(q, z)[S d-1 B n ] as follows. Let β ∈ S d B n . Then write β in the form β = α 0 τ i 1 α 1 • • • τ i d α d with α i ∈ B n for 0 ≤ i ≤ d, and set f n,0 (β) = d k=0 α 0 τ i 1 α 1 • • • τ i k-1 α k-1 α k τ i k+1 α k+1 • • • τ i d α d f n,1 (β) = d k=0 α 0 τ i 1 α 1 • • • τ i k-1 α k-1 σ i k α k τ i k+1 α k+1 • • • τ i d α d
It follows from Theorem 2.1 that this definition does not depend on the choice of the expression of β.

It is easily checked that the collection of linear maps {f n,0 } n≥1 induces a linear map 

. Note that Φ d+1,1 • Φ d,0 = Φ d+1,0 • Φ d,1 for all d ≥ 1.
For d ≥ 0, we define the elements T d,0 , T d,1 , . . . , T d,d ∈ Markov(⊔S d B) * by induction on d as follows. It is proved in [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF] that the space Markov(⊔S 0 B) * is of dimension 1. Then we denote by T 0,0 the generator of Markov(⊔S 0 B) * whose value on the trivial braid is 1. Suppose d ≥ 1. Then we set We can now calculate the Markov module of singular braids: Theorem 2.8. The algebra Markov(⊔SB) is a polynomial algebra C(q, z)[X, Y ] in two variables X and Y , where X and Y are the classes of τ 1 and τ 1 σ 1 , respectively.

T d,0 = Φ d,0 (T d-1,0 ) T d,k = Φ d,0 (T d-1,k ) = Φ d,1 (T d-1,k-1 ) if 1 ≤ k ≤ d -1 T d,d = Φ d,1 (T d-1,d-1 )
Proof. Let d ≥ 0 and 0 ≤ k ≤ d. Observe that X k Y d-k is the class of τ 1 • • • τ 2k-1 (τ 2k+1 σ 2k+1 ) • • • (τ 2d-1 σ 2d-1 ). In particular, we have X k Y d-k ∈ Markov(⊔S d B). So, in order to prove Theorem 2.8, it suffices to show that {X d , X d-1 Y, . . . , XY d-1 , Y d } is a basis for Markov(⊔S d B).
Since we already know by Theorem 2.7 that Markov(⊔S d B) is of dimension d + 1, it actually suffices to show that {X d , X d-1 Y, . . . , XY d-1 , Y d } is linearly independent. We prove this by induction on d. The case d = 0 being trivial, we assume d ≥ 1 plus the inductive hypothesis.

A direct calculation shows that, for 0 ≤ k ≤ d, we have

g 0 (X k Y d-k ) = k • X k-1 Y d-k + z(d -k) • X k Y d-k-1 g 1 (X k Y d-k ) = kz • X k-1 Y d-k + (d -k)((q -1)z + q) • X k Y d-k-1
Let a 0 , a 1 , . . . , a d ∈ C(q, z) such that (k + 1)za k+1 + (dk)((q -1)z + q)a k X k Y d-k-1 = 0 By induction, it follows that (k + 1) a k+1 + (dk)z a k = 0 (k + 1)z a k+1 + (dk)((q -1)z + q) a k = 0 for all 0 ≤ k ≤ d -1. The determinant of this system of linear equations in the variables a k+1 , a k is equal to -(k + 1)(dk)(z 2 -(q -1)zq) = 0, thus a k+1 = a k = 0. Corollary 2.9. Let L be the set of singular links in the sphere S 3 . Then the algebra Skein(L) is a polynomial algebra C(t, x)[ X, Ŷ ] in two variables X and Ŷ , where X and Ŷ are the classes of the singular links L X and L Y represented in Figure 1 
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  g 0 : Markov(⊔S d B) → Markov(⊔S d-1 B). Similarly, the collection of maps {f n,1 } n≥1 induces a linear map g 1 : Markov(⊔S d B) → Markov(⊔S d-1 B). Let Markov(⊔S d B) * be the dual space of Markov(⊔S d B), that is, the space of linear forms on Markov(⊔S d B). For d ≥ 1, we denote by Φ d,0 : Markov(⊔S d-1 B) * → Markov(⊔S d B) * the linear map induced by g 0 , and by Φ d,1 : Markov(⊔S d-1 B) * → Markov(⊔S d B) * the linear map induced by g 1
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 27 Paris, Rabenda [10]). Let d ≥ 0. Then Markov(⊔S d B) * is of dimension d + 1, and {T d,0 , T d,1 , . . . , T d,d } is a basis for Markov(⊔S d B) * .
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 4210 Question The proof that the set B = {X a Y b ; a, b ∈ N} is linearly independent in Markov(⊔SB) is entirely given in the above proof of Theorem 2.8, and does not need Theorem 2.7 at all. However, the proof that B spans Markov(⊔SB) uses the fact that the dimension of Markov(⊔S d B) is (less or) equal to d + 1 for all d ≥ 0, and the proof of this latest assertion needs long and tedious calculations. It would be interesting to find a (simplest) proof of the equivalent fact that B = { Xa Ŷ b ; a, b ∈ N} spans Skein(L), which would directly use the Skein relations.

  H(S d B n ) is the subspace of H(SB n ) spanned by S d B n . Several elementary questions on singular Hecke algebras are still open. Here are two of them. Question 2.3. Note that H(S 0 B n ) = H(B n ) is the Hecke algebra of the symmetric group, thus H(S d B n ) is a representation of H(B n ). It would be interesting to characterize this representation. Actually, the dimension itself (over C(q)) of H(S d B n ) is unknown, even for d = 2. Question 2.4. The natural inclusion SB n ֒→ SB n+1 induces a homomorphism ι n : H(SB n ) → H(SB n+1 ). We do not know whether ι n is injective. Now, we introduce a new variable z, we set H z