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Abstract

Given an analytic function of one complex variable f, we investigate the arithmetic
nature of the values of f at algebraic points. A typical question is whether f(«) is a
transcendental number for each algebraic number «. Since there exist transcendental
entire functions f such that f®)(a) € Q[a] for any ¢ > 0 and any algebraic number
«, one needs to restrict the situation by adding hypotheses, either on the functions,
or on the points, or else on the set of values.

Among the topics we discuss are recent results due to Andrea Surroca on the
number of algebraic points where a transcendental analytic function takes algebraic
values, new transcendence criteria by Daniel Delbos concerning entire functions of
one or several complex variables, and Diophantine properties of special values of
polylogarithms.

Key words: Arithmetic functions, algebraic values, transcendence criterion,
diophantine analysis, transcendental functions,
PACS:

1 Introduction
At the end of XIXth century, after the proof by Hermite and Lindemann of
the transcendence of e® for non zero algebraic «, the question arose:

() Does a transcendental analytic function usually takes transcendental val-
ues at algebraic points?
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In the example of the exponential function e*, the word “usually” stands for
avoiding the exception o = 0. Recall also that a transcendental function is a
function f (here a complex valued function in a single complex variable) such
that, for any nonzero polynomial P € C[X,Y], the function P(z, f(z)) is not
the zero function. If f is meromorphic in all of C, this just means that f is
not a rational function. If f is an entire function, namely a function which is
analytic in C, to say that f is a transcendental function amounts to say that
it is not a polynomial.

However in 1886 Weierstrass found that a positive answer to the initial ques-
tion (x) can hold only for restricted classes of functions: he gave an example
of a transcendental entire function which takes rational values at all ratio-
nal points. He also suggested that there exist transcendental entire functions
which take algebraic values at any algebraic point. After the early works of
Strauss and Stackel at the end of XIXth century, one knows now that for each
countable subset > C C and each dense subset T C C there is a transcendental
entire function f such that f(¥X) C T. According to [4], in case the countable
set 2 is contained in R, then the same conclusion holds also for a dense subset
T CR.

Denote by Q the field of complex algebraic number (Q is the algebraic closure
of Q into C). Another construction due to Stéckel produces an entire function
f whose derivatives f®), for t = 0,1,..., all map Q into Q. Furthermore,
Faber refined the result in f(Q) C Q(i) for any ¢t > 0. Later (1968), A.J.
van der Poorten constructed a transcendental entire function f such that
f®(a) € Q(a) for any t > 0 and any a € Q. A. Surroca [6] recently revisited
this construction of van der Poorten by providing, for such a function f, a
sharp lower bound for the number of o € Q of bounded degree and height
such that f(«) has also a bounded height (see section 2).

One may notice that all these constructions may be worked out so that the
growth of the constructed function f is as small as possible: given any tran-
scendental entire function ¢, one may require

Iflr < l¢lr

for all sufficiently large R, where

|f|r == sup [f(2)].
|z|=R

On the other hand N. Elkies and A. Surroca give, for a transcendental analytic
function f, upper bounds for the number of a € Q of bounded degree and
height such that f(a) € Q has also bounded degree and height. We discuss
this topic in section 2.



In view of such results, one needs to restrict the initial question (x). Most
often the restriction is on the class of analytic functions: for instance one
requires that the considered function satisfies some differential equation. The
case of entire functions satisfying a linear differential equation provides the
strongest results, related with Siegel’s E functions [1], Chap. 5. Another class
of functions, which are analytic only in a neighborhood of the origin, have also
been introduced by C.L. Siegel under the name of G-functions [1], Chap. 5,
§ 7. More recently, generalizations of transcendence and independence results
related to modular functions to more general classes of functions have been
introduced by P. Philippon with his new class of K-functions [2]: typical such
functions are Ramanujan P, ) and R functions.

Another type of differential equation is related with the solution, by A.O.
Gel’fond, of Hilbert’s seventh problem, and gives rise to the Schneider-Lang
criterion. Once again this criterion started from a transcendence result, it
provides a general statement on the values of analytic functions, and then it
yields new transcendence results (here in connection with algebraic groups). A
number of variations have been produced. In section 3 we quote a new result
by D. Delbos which is a variant of a result by E. Bombieri [12] dealing with
functions of several variables satisfying algebraic differential equations.

A fashionable topic nowadays is the study of the arithmetic nature of special
values of polylogarithms. Despite the fact that very few information is available
so far on the values of Riemann zeta function, one may expect that extending
the investigations to multiple zeta values will prove to be a fruitful direction.
We consider this topic in section 4 where we notice that the open problem of
algebraic independence of logarithms of algebraic numbers reduces to a linear
independence question on the values of multiple polylogarithms at algebraic
points: the point is that for n > 1, (log(1 — 2))™ is a multiple polylogarithm.

2 Algebraic Values of Analytic Functions, Following A. Surroca

In the course of his Diophantine investigations, N. Elkies [5] devoted attention
to the number of rational points of bounded height lying on a transcendental
curve €. Assume C is a planar curve, in C?, and denote by €(Q) the intersection
€ N Q2. One expects indeed the number of (a,3) € C(Q) with h(a) < N
and h(8) < N to be quite small compared with the number of o € Q with
h(a) < N. Here, h(p/q) = max{log |p|,logq} for p/q € Q with ged(p,q) =1
and ¢ > 0. In particular, given an interval J C R (the problem is local), the
number of p/q € Q NJ with h(p/q) < N is not too far from e'.

A special case of Elkies result reads as follows:



Let f be a transcendental real analytic function on an open subset of R con-
taining an interval J. For N > 0, consider the set

Sy={z€Qn; f(z) € Q, h(z) <N, h(f(x)) < N}.
Then, for each € > 0, there exists Ny > 0 such that
ISy| < e for N> N,.

Several questions then arise: is this estimate best possible? Is it possible to
improve it for infinitely many N (in place of all sufficiently large N)? Do
similar results hold for algebraic points on a transcendental curve, in place of
rational points?

These questions, and much more, are addressed by A. Surroca [6]. Denote by
h(«) the absolute logarithmic height of an algebraic number a:

1
h(a) = Q) Ql log M(a),

where

M(a) = [[max{1, ||, }

is Mahler’s measure of o (and v ranges over the set of normalized absolute
values of Q(«)). For @« = p/q € Q, one recovers the previous definition of

h(p/q).

The number of algebraic numbers a with [Q(a) : Q] < D and h(a) < N
has been investigated by many a mathematician, including Schanuel, Evertse,
Schmidt, Loher and Masser (see for instance [7,8]). Loosely speaking, a rough
estimate is PPN,

In [6], A. Surroca shows that Elkies’ result is not far from best possible, to a
certain extent:

Theorem 1 Let ¢ be a positive valued real function such that ¢(x)/x — 0 as
xr — 0. There exist a transcendental entire function f satisfying

f(t)(a) €Q(a) forall t>0 and a€Q

and such that, for any positive integer D, there are infinitely many N > 0, for
which the set

Sy={a€Q; |a| <1, [Q(a): Q] <D, h(a) <N, h(f(a)) < N}

has cardinality
|Sy| > PP+,



In the other direction, using transcendence arguments, A. Surroca [6] proves
the following result, which is exponentially sharper than Elkies’ one, but is
valid only for infinitely many N:

Theorem 2 Let U be a connected open set in C and K a compact in U. There
exists a positive real number ¢ > 0 such that, for any transcendental complex
analytic function f in U and any positive integer D, there are infinitely many
integers N for which the set

Sy = fa € UK ; f(a) €T, [Qa, f(a) : Q) < D, hia) < N, h(f(a)) < N}

has
|Sy| < eD*N2.

An explicit value for ¢ follows from [6]. Further results, involving multiplicities,
as well as S-integers, are given in [6].

3 Transcendence Criteria for Entire Functions of One or Several
Complex Variables

In this section we concentrate on entire functions in one or several complex
variables: the local question of analytic functions in an open subset is only
briefly discussed at the end of § 3. For an entire function f in C", we denote

|f|R: sup |f(21"">ZN)|

|z1]|="=|zn|=R

the maximum modulus of f on a polydisc of radius R (any other norm would
do), and we say that f has order < p if

1
lim sup — lo < 00.
imsup - log|f|s < oo

We start with the easier case n = 1. A simple case of Schneider-Lang Tran-
scendence Criterion in one variable ([10] Chap. III, Th. 1) is :

Theorem 3 Let fi, fo be two algebraically independent entire functions of
finite order in C and let K be a number field. Assume

fi € Klfi, fo]  forj=1andj=2.
Then the set
S={weC; fjlw)e K forj=1andj=2}

1s finite.



Upper bounds for the number of elements in S are known — but here we are
just interested in the finiteness result.

One deduces Hermite-Lindemann’s Theorem on the transcendence of e? for
algebraic 3 # 0 by considering

filz)=2, falz)=¢€*, S={mp; meZ}

Notice that when f;(z) = z, the assumption that f;, fo are algebraically inde-
pendent just means that f, is a transcendental function.

Another consequence of Theorem 3 is Gel’fond-Schneider’s Theorem on the
transcendence of o for algebraic a and 3 with a # 0, 3 € Q, loga # 0 and
af = exp{Bloga}: just consider

filz) =€, fa(z)=€% S ={mloga; mecZ}

Theorem 3 is only a special case of Schneider-Lang’s criterion in one variable
n [10], Chap. IV: the full statement deals with meromorphic functions and
more general differential equations; in particular it applies to elliptic and even
to abelian functions.

An extension of Theorem 3 to several complex variables has also been consid-
ered by Schneider and Lang; it deals with Cartesian products ([10] Chap. IV,
Th. 1 and [11], Chap. 4, § 4.1). Here is a simplified statement, which is suffi-
cient for us.

Theorem 4 Let fi,..., fas1 be algebraically independent entire functions of
finite order in C", K a number field, (eq,...,e,) a basis of C" over C and
S1,...,S, subsets of C. Assume

(0/0z,)f; € K[f1,-- -, fura] for1<j<n+landl <v<n.

Assume also
fj<w161 + -+ wnen) e K

forany j=1,....,n+1 and any (wq,...,w,) € S1 X --- x S,. Then one at
least of the sets Sy, ..., S, is finite.

This topic was first investigated in 1941 by Th. Schneider when he proved the
transcendence of the values of the beta function B(a,b) at rational numbers a
and b with a, b and a + b not in Z. It was further studied by S. Lang around
1964 in connection with transcendence results on algebraic varieties.

In 1980, D. Bertrand and D.W. Masser pointed out that Baker’s result on the
linear independence of logarithms of algebraic numbers was in fact a corollary
of Theorem 4 (see Chap. 4 of [11]).



According to [10] Chap. IV, Nagata suggested that under the assumptions of
Theorem 4, the set

S={welC"; fi(w)e K forl1<j<n+1}

is contained in an algebraic hypersurface: this is obviously a stronger state-
ment than Theorem 4. This suggestion turns out to be right, as shown by E.
Bombieri in 1970 [12]:

Theorem 5 Let fi,..., fas1 be algebraically independent entire functions of
finite order in C" and K a number field. Assume

(3/82,,)f]/~ EK[fi,...sfar1] for1<j<n+1landl<v<n.
Then the set
S={weC"; fi(w)e K for1<j<n+1}
18 contained in an algebraic hypersurface.

Bombieri’s conclusion deals with the source set S C C". Another type of result
has just been produced by D. Delbos: under the same hypotheses as Theorem
5, the conclusion deals with the range set f(S) C C**!, where

f - (f17~-,fn+1) C" — Cn'H.

Theorem 6 Let fq,..., f, be entire functions of finite order in C" and K a
number field. Assume

(8/8zl,)f]'- € K[fi,.. . far1] for1<j<landl<v<n.
Let S be a finite subset of C such that
filw)e K forallwe S andl <j </

Then there exists a positive constant ¢ and a positive integer M such that,
for each integer N > M, there is a nonzero polynomial Qn in C[Xy,..., X/]
of degree < cN'™ such that the function Fy = Qn(f1,...,f:) has a zero of
multiplicity > N at each point of S.

Again this result contains Baker’s Theorem on the linear independence of
logarithms of algebraic numbers: starting with a nontrivial linear relation

Bo+ Prlogag + -+ Bu_1log a,_1 = log ay,
with algebraic a’s and [’s, one considers the functions

20, 621, o ,62"71, 660+/6121+"'+6n712n71'



The proof of Baker’s result along these lines is more natural than the approach
by Bertrand-Masser using Theorem 4, but it requires a zero-estimate. On the
other hand, in contrast with the proof by Bertrand and Masser, it is effective
and yields quantitative results (measures of linear independence for logarithms
of algebraic numbers.)

Other criteria are available from [13]. One may point out that such criteria
also apply to real analytic functions, by means of the “elementary approach”
of Gel'fond and Linnik in [14]. See [15] and [16] for the methods of Schneider
and Gel’fond respectively. However, according to Delbos, the hypotheses which
are necessary for the elementary method to work (involving Rolle Theorem
for real functions as a substitute to Schwarz’ Lemma for complex functions)
usually imply that the functions are just restrictions to the real line of complex
analytic functions of finite order.

Further, most results in this section extend easily to meromorphic functions
of several variables (essentially, one only needs to avoid singularities). Fur-
thermore, extensions are possible to functions which are defined only locally,
say in a polydisc in C", but then the results are usually weaker: this is the
main reason for which p-adic results are sometimes weaker than their com-
plex analogues. A witness of this difficulty is the open problem of proving
a p-adic analogue of the Lindemann-Weierstrass Theorem on the algebraic
independence of e* ..., e* for linearly independent algebraic o’s.

4 Polylogarithms

The classical polylogarithms

Liy(z) = 3 =

S
n>1

for s =1,2,... and |z] < 1 with (s, 2) # (1,1), are ubiquitous. The study of
the arithmetic nature of their special values is a fascinating subject [18]: very
few is known.

Several recent investigations concern the values of these functions at z = 1:
these are the values at the positive integers of Riemann zeta function

() =i = X

for s =2,3,....

One knows that ((3) is irrational (Apéry, 1978), and that infinitely many



values ((2n + 1) of the zeta function at odd integers are irrational (see the
lectures by T. Rivoal and W. Zudilin at this conference).

A folklore conjecture is that the numbers

€(2),¢(3),¢(5), -, ¢(2n + 1)

do not satisfy any non trivial algebraic relation with rational coefficients: this
amounts to say that the values at the odd integers of Riemann zeta function,
namely ((3),((5), ..., are algebraically independent over the field Q(m).

It is far easier to prove a statement of linear independence rather than a state-
ment of algebraic independence. For instance, according to the Lindemann-
Weierstrass’ Theorem on the algebraic independence of values of the expo-
nential function, the numbers e*', e®2 e* ... are algebraically independent if
the algebraic numbers oy, as, a3 ... are linearly independent over the rational
number field. However most proofs establish the equivalent statement that the
numbers e, e%2 e . are linearly independent over the field of rational num-
bers if the algebraic numbers i, (52, 33 ... are pairwise distinct. In the same
way, the algebraic independence problem for the values of the Riemann zeta
function boils down to a linear independence result for the values of multiple
polylogarithms in one single variable, namely

((s) = Lis(1) = >

ny>ng>-->np>1

nil .. .nzk

for s = (s1,...,s;) with s; > 2, where

L) = Y =

B ny>ng>-->np>1 n‘il T nzk
for z € C, |2z| <1 with (z,s1) # (1,1).

There are plenty of linear relations among these numbers, and a conjecture
of Zagier [17-19] predicts a precise value for the dimension d,, of the vector
space over the rational number field spanned by these numbers ((s) restricted
to s1 + + -+ + s = n, namely

dn = dn72 + dn73

with d; = 0, dy = 1. It is known that d3 = 1 because ((3) = ((2,1), also
ds = 1 because

C) = ¢(2.1,1) = 403, 1) = 5¢(2,2),

but ds = 2 is equivalent to the open problem to prove that ((5)/¢(2)((3) is
irrational.



The fact that the integers d,, are bounded from above by the numbers defined
by this inductive formula has just been proved by T. Terasoma in [20]. As
pointed out in [20], the same result was announced by A.B. Goncharov in his
preprints AG/0005069 and AG/0103059. See the related paper by P. Deligne
and A.B. Goncharov NT/0302267.

Several related conjectures are explained by Cartier [18]. Also the values at
roots of unity of the functions Lis(z) have been considered by a number of
authors: in this case it is appropriate to consider polylogarithms in several

variables . .
Z Zl 1 .. Zkk

nsl N nsk
ny>ng>->np>1 01 k
for z = (21,...,21) € C, || <1 with (21,s1) # (1,1). However here we shall
consider only multiple polylogarithms in a single complex variable.

We describe now another example of linearization of an algebraic independence
question. One of the main conjectures in transcendental number theory states
that linearly independent numbers { for which ' are algebraic (one says usually
that such ¢ is a logarithm of an algebraic number) are algebraically independent.
Let us show how this question reduces to a linear independence problem on
special values, at algebraic points, of multiple polylogarithms.

For simplicity let o, ..., a,, be positive real algebraic numbers such that the
numbers ¢/, = logay, ..., ¢, = loga,, are linearly independent.
We introduce the notation {1},, for the sequence (1,1,...,1) with n occur-

rences of 1. It is easy to check that

Lig, (2) = ) tog(1 — 2))"

for n > 1 and |z| <1 with z # 1 (this is formula (1.1) of [19]).

Let m and d be two positive integers and Z;; be variables, with 1 < i < m
and 1 <j < (d#). The determinant

AZ)=(Zv; Zy),

with o1+ 44, <dand 1 < j < (d:Ll), as a polynomial in the variables
Zij, does not vanish identically. Let a;; be rational numbers such that the
determinant A does not vanish at the corresponding point. Writing

(Xo+a X1+ + A Xp)”

as a linear form in the monomials X0 - - - X' with ig+- - -+, = d, we deduce
that each of these monomials is a linear combination with rational coefficients
of (Xo+ a; Xy + -+ aijm)d for1 <j < (d;;l).

10



Since
log u + log v = log(uv)

for u,v > 0, it follows that the question of algebraic independence of loga-
rithms of positive algebraic numbers ¢4, ..., ¢, can be reduced to a question
of linear independence of values of the multiple polylogarithms Ligy,, (n > 1)
(in a single variable), at algebraic points

11— ghm
where by, ..., b, are positive integers.

For instance we translate the (real case of the) four exponentials conjecture,
namely:

e Ifa,b, c, d are algebraic numbers in the range 0 < x < 1 such that
(log a)(log b) = (log ¢)(log d),
then there exists (p,q) € Z*\ {(0,0)} such that

a=c" and b1 =d°

as follows:

e Define f(z) = Lin(1 —x) = (1/2)(logz)? for 0 < x < 1. Ifa, b, ¢, d are
algebraic numbers in the range 0 < x < 1 such that

flab) — fla) = f(b) = f(ed) = f(c) = f(d),
then there exists (p,q) € Z*\ {(0,0)} such that
a?=c" and b =df

Polylogarithms in one variable are related by differential equation, namely they
have a generating series which satisfies the Knizhnik-Zamolodchikov equation

X xXr
y’=<0+ - )y,
z 11—z

where 2y and x; are two non-commuting variables (see [18]).

Hence in the previous discussion differential equations are always there. How-
ever in the hypotheses of Ramachandra’s criterion [9], no differential equation
is required, but functional equations (like f(u + v) = f(u)f(v) for the usual
exponential function) are there. Also, g-analogues of some the above questions
have been extensively studied by Tschakaloff, Lototskii, Bundschuh, Wallisser,

11



Popov and others (see for instance [1] Chap. 2, § 8). A typical example is the

entire function
flz)=T1A+2¢™™)

n>1

for ¢ € C, |q| > 1, which is solution of the functional equation

flgz) = (1 +2)[f(2).
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