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Abstract

We consider in a Hilbert space a self-adjoint operator H and a family ® = (®4,...,®4) of mutualy
commuting self-adjoint operators. Under some regularity properties of H with respect to ®, we propose two
new formulae for a time operator for H and prove their equality. One of the expressions is based on the
time evolution of an abstract localisation operator defined in terms of ® while the other one corresponds to
a stationary formula. Under the same assumptions, we also conduct the spectral analysis of H by using the
method of the conjugate operator.

Among other examples, our theory applies to Friedrichs Hamiltonians, Stark Hamiltonians, some Jacobi
operators, the Dirac operator, convolution operators on locally compact groups, pseudodifferential operators,
adjacency operators on graphs and direct integral operators.

2000 M athematics Subject Classification: 46N50, 81Q10, 47A40.

1 Introduction and main results

Let H be a self-adjoint operator in a Hilbert space H and let 7" be alinear operator in H. Generally speaking,
the operator T' is called atime operator for H if it satisfies the canonical commutation relation

(T, H] =i, (1.1)

or, aternatively, the relation _ _
Te WH — o= H(T 4 ¢), (1.2

Obvioudly, these two equations are very formal and not equivalent. So many authors have proposed various
sets of conditions in order to give a precise meaning to them. For instance, one has introduced the concept of
infinitesimal Wey! relation in the weak or in the strong sense [18], the T-weak Weyl relation [19] or various
generalised versions of the Weyl relation (see e.g. [6, 17]). However, in most of these publications the pair
{H, T} isapriori given and the authors are mainly interested in the propertiesof H and 7" that can be deduced
from arelation like (1.2). In particular, the self-adjointness of 7', the spectral nature of H and 7", the connection
with the survival probability, the form of 7" in the spectral representation of H, the relation with the theory of
irreversibility and many other properties have been extensively discussed in the literature (see [23, Sec. 8], [24,
Sec. 3], [5, 12, 14, 16, 39] and references therein).

*On leave from Université de Lyon; Université Lyon 1; CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918,
F-69622 Villeurbanne-Cedex, France.




Our approach is radically different. Starting from a self-adjoint operator H, one wonders if there exists a
linear operator 1" such that (1.1) holds in a suitable sense. And can we find a universal procedure to construct
such an operator ? This paper is afirst attempt to answer these questions.

Our interest in these questions has been recently aroused by a formula put into evidence in [37]. Along
the proof of the existence of time delay for hypoelliptic pseudodifferential operators H := h(P) in L2(R%),
the author derives an integral formulalinking the time evolution of localisation operators to the derivative with
respect to the spectral parameter of H. The formula reads as follows: if @ stands for the family of position
operatorsin L2(R¢) and f : RY — C is some appropriate function with f = 1 in a neighbourhood of 0, then
one has on suitable elements p € L?(R%)

lim 3 /0 dt (e, [T f(Q/r) ™ =M [(Q/r) ™ [) = (g,iR ©), (1.3)

T—00

where % stands for the operator acting as % in the spectral representation of H. So, this formula furnishes
a standardized procedure to obtain a time operator 7" only constructed in terms of H, the position operators )
and the function f.

A review of the methods used in [37] suggested to us that Equation (1.3) could be extended to the case
of an abstract pair of operator H and position operators ® acting in a Hilbert space H, as soon as H and ¢
satisfy two appropriate commutation relations. Namely, suppose that you are given a self-adjoint operator H
and afamily & = (®4,...,P4) of mutually commuting self-adjoint operatorsin H. Then, roughly speaking,
the first condition requiresthat for somew € C \ R the map

RSz e @ ®(H —w) e c B(H)

is 3-times strongly differentiable (see Assumption 2.2 for a precise statement). The second condition, Assump-
tion 2.3, requires that for each = € R, the operators e~ ® H > ® mutually commute. Given this, our main
result reads as follows (see Theorem 5.5 for a precise statement):

Theorem 1.1. Let H and ® be as above. Let f be a Schwartz function on R ¢ such that f = 1 on a neighbour-
hood of 0 and f(z) = f(—=x) for each = € R<. Then, for each ¢ in some suitable subset of 7 one has

lim % h dt (e, [e_itH f(®/r) et —eitH £(P/r) e_”H}(p> = (¢, Trp), (1.9

T—00 0

where the operator 7'y acts, in an appropriate sense, as i % in the spectral representation of H.

One infers from this result that the operator T'; is a time operator. Furthermore, an explicit description
of Ty is aso available: if H denotes the self-adjoint operator associated with the commutator i[H, ® ;] and
H':=(H{,...,H}), thenTy isformally given by

Ty =—1(®-Ry(H') + R;(H') - ®), (15

where R'; : R? — C* is some explicit function (see Section 4 and Proposition 5.2).

In summary, once afamily of mutually commuting self-adjoint operators (® 4, . .., &) satisfying Assump-
tions 2.2 and 2.3 has been given, then a time operator can be defined either in terms of the I.h.s. of (1.4) or in
terms of (1.5). When suitably defined, both expressions lead to the same operator. We also mention that the
equality (1.4), with r.h.s. defined by (1.5), provides a crucia preliminary step for the proof of the existence of
quantum time delay and Eisenbud-Wigner Formulafor abstract scattering pairs { H, H + V'}. In addition, The-
orem 1.1 establishes a new relation between time dependent scattering theory (1.h.s.) and stationary scattering
theory (r.h.s.) for a genera class of operators. We refer to the discussion in Section 6 for more information on
these issues.

L et us now describe more precisely the content of this paper. In Section 2 we recall the necessary definitions
from the theory of the conjugate operator and define a critical set x(H) for the operator H. In the more usua



setup where H = h(P) isafunction of the momentum vector operator P and @ is the position vector operator
Q in L2(R%), it is known that the critical valuesof h

k= {A € R | 3o € RY suchthat h(z) = A and /() = 0}

plays an important role (see e.g. [1, Sec. 7]). Typically, the operator h(P) has bad spectral properties and bad
propagation properties on 5. For instance, one cannot obtain a simple Mourre estimate at these values. Such
phenomena also occur in the abstract setup. Since the operator H is a priori not a function of an auxiliary
operator as h(P), the derivative appearing in the definition of «;, does not have a direct counterpart. However,
the identities (0,h)(P) = i[h(P), Q;] suggest to define the set of critical values «(H) in terms of the vector
operator H' := (i[H, ®1],...,i[H, ®4]). Thisisthe content of Definition 2.5. In Lemma 2.6 and Theorem 3.6,
we show that x(H) is closed, contains the set of eigenvalues of H, and that the spectrumof H ino(H) \ x(H)
is purely absolutely continuous. The proof of the latter result relies on the construction, described in Section 3,
of an appropriate conjugate operator for H.

In Section 4, we recall some definitions in relation with the function f that appear in Theorem 1.1. The
function R is introduced and some of its properties are presented. Section 5 is the core of the paper and its
most technical part. It contains the definition of 7'y and the proof of the precise version of Theorem 1.1. Suitable
subspaces of H on which the operators are well-defined and on which the equalities hold are introduced.

An interpretation of our resultsis proposed in Section 6. The relation with the theory of time operatorsis
explained, and various cases are presented. Theimportance of Theorem 5.5 for the proof of the existence of the
guantum time delay and Eisenbud-Wigner Formulais also sketched.

In Section 7, we show that our results apply to many operators H appearing in physics and mathematics
literature. Among other examples, wetreat Friedrichs Hamiltonians, Stark Hamiltonians, some Jacobi operators,
the Dirac operator, convolution operators on locally compact groups, pseudodifferential operators, adjacency
operatorson graphsand direct integral operators. In each case, we are able to exhibit anatural family of position
operators ® satisfying our assumptions. The diversity of the examples covered by our theory make us strongly
believe that Formula (1.4) is of natural character. Moreover it aso suggests that the existence of time delay is
a very common feature of quantum scattering theory. We also point out that one by-product of our study is an
efficient algorithm for the choice of a conjugate operator for a given self-adjoint operator H (see Section 3).
This alows us to obtain (or reobtain) non trivial spectral results for various important classes of self-adjoint
operators H.

Asafina comment, we would like to emphasize that one of the main interest of our study comes from the
fact that we do not restrict ourselvesto the standard position operators (Q and to operators H which are functions
of P. Due to this generality, we cannot rely on the usual canonical commutation relation of ¢Q and P and on
the subjacent Fourier analysis. This explains the constant use of abstract commutators methods throughout the

paper.

2 Critical values

In this section, we recall some standard notions on the conjugate operator theory and introduce our general
framework. The set of critical values is defined and some of its properties are outlined. This subset of the
spectrum of the operator under investigation plays an essential role in the sequel.

We first recall some facts principally borrowed from [1]. Let H and A be two self-adjoint operatorsin a
Hilbert space H. Their respective domain are denoted by D(H) and D(A), and for suitablew € C wewrite R,
for (H — w)~'. The operator H isof class C'*(A) if thereexistsw € C \ o(H) such that the map

R>t— e 4R, e ¢ B(H) (2.2)
isstrongly differentiable. In that case, the quadratic form
D(A) 5 ¢ (Ap, Rup) — (Rip, Ap) € C

extends continuously to a bounded operator denoted by [A, R.] € %(H). It dso follows from the C''(A)-
condition that D(H) N D(A) isacorefor H and that the quadratic form D(H) N D(A) 2 ¢ — (Hp, Ap) —



(Ag, He) is continuous in the topology of D(H ). This form extends then uniquely to a continuous quadratic
form [H, A] on D(H), which can be identified with a continuous operator from D(H) to D(H ) *. Findly, the
following equality holds:

(A, R,] = Ru[H, AlR,. (2.2

It is also proved in [13, Lemma 2] that if [H, AJD(H) C H, then the unitary group { "4}, preserves the
domainof H,i.e. e D(H) Cc D(H) foralt € R.

We now extend this framework in two directions: in the number of conjugate operators and in the degree of
regularity with respect to these operators. So, let usconsider afamily ® = (¢4, ..., ®4) of mutually commuting
self-adjoint operatorsin H (throughout the paper, we use the term “commute” for operators commuting in the
sense of [26, Sec. VI111.5]). Then we know from [7, Sec. 6.5] that any measurable function f € L°°(R?) defines
a bounded operator f(®) in H. In particular, the operator > ® withz - ® = 27:1 x;P;, is unitary for each
x € R?, Note also that the conjugation

C,: BH) — B(H), Brse =®per®

defines an automorphism of Z(H).
Within this framework, the operator H is said to be of class C™(®) for m = 1,2,... if there exists
w € C\ o(H) such that the map

R? >z e ™ ® R, e € B(H) (23

is strongly of class C™ in H. One easily observesthat if H is of class C™(®), then the operator H is of class
C™(®;) for each j (theclass C"*(®,) being defined similarly).

Remark 2.1. A bounded operator S € %(H) belongsto C'!(A) if the map (2.1), with R, replaced by S, is
strongly differentiable. Similarly, S € %(H) belongsto C™(®) if the map (2.3), with R,, replaced by S, is
strongly C"™.

In the sequel, we assume that H is regular with respect to unitary group {e>®} g in the following
sense.

Assumption 2.2. The operator H is of class C®(®). Furthermore, for each j € {1,...,d}, the quadratic form
i[H,®;] on D(H ) defines an essentially self-adjoint operator whose self-adjoint extension is denoted by H ;.
Similarly, foreach k, ¢ € {1,..., d}, the quadratic form i[H , ®;] on D(H) defines an essentially self-adjoint
operator whose self-adjoint extension is denoted by 7., and the quadratic formi[H 7, , ®,] on D(H ). ) defines
an essentially self-adjoint operator whose self-adjoint extension is denoted by 77/,

This assumptionimpliestheinvarianceof D( H ) under the action of the unitary group { e?**®} | .. Indeed,
if the quadratic formi[H, @ ;] on D(H ) defines an essentially self-adjoint operator in H, it followsin particular
that D(H) C D(H}) and thus i[H, ®;|D(H) = H;D(H) C ‘H. It follows then from [13, Lemma 2] that
e®®i D(H) c D(H) foral t € R. Infact, one easily obtainsthat ¥®i D(H) = D(H ), and since this property
holds for each j one also has ¢®**® D(H) = D(H) for al = € R%. As a consequence, we obtain in particular
that each self-adjoint operator

H(z) :=e @® He™® (2.4)
(with H(0) = H) hasdomain D[H (z)] = D(H).

Similarly, thedomains D(H ;) and D(H j}, ) areleftinvariant by the action of the unitary group { e} R,
and the operators H(x) := e~ * H}e'*® and H}, (z) := e~ "® H}} ¢'*® are self-adjoint operators with
domains D(H ) and D(H?}, ) respectively.

Our second main assumption concerns the family of operators H (z).

Assumption 2.3. The operators { H(z)} ,cre mutually commute.

Using the fact that the map R > z +— C, € Aut[%(H)] is a group morphism, one easily shows that
Assumption 2.3 is equivalent the commutativity of each H (x) with H. Furthermore, Assumptions 2.2 and 2.3
imply additional commutation relations:



Lemma 2.4. The operators H(z), H}(y), Hy,(z) mutually commute for each j, k,¢ € {1,...,d} and each
T,Y,2 € RY,

Proof. Let w € C\ R, z,9,2 € RY, j k,t,m € {1,...,d}, and set R(z) := [H(x) — w]7}, Rj(z) =
[H}(x) —w]~" and R}, (z) := [H}, (z) — w]|~". By assumption, one has the equality

R("I;) R(ESJ)*R(O) — R(Eej)efR(O) R(:C)

g

foreache € R\ {0}. Taking the strong limit ase — 0, and using (2.2) and Assumption 2.3, one obtains
R(0) [R(x)ij — HJ’-R(x)] R(0) = 0.

Sincetheresolvent £(0) ontheleftisinjective, thisimpliesthat 2(z) H ; — H} R(x) = 0 onD(H ). Furthermore,
since D(H ) isacorefor H; the last equality can be extended to D(H ;). Finaly, by multiplying the equation

R(z) = R(z)(Hj — w)R}(0) = (H} — w)R(x)R}(0)
ontheleft by R’(0), one gets 1 (0) R(z) = R(x)R(0). Using the morphism property of the map R?> 2+
C; € Aut[#(H)], oneinfersfromthisthat /() and H ;(y) commute.

A similar argument |eads to the commutativity of the operators H () and H;,(y) by considering the op-
erators R (a) 1RO gng Kl O pr () The commutativity of H (x) and H (=) is obtained by con-
R (eex)— R} (0

R/ (eex)— R} (0)
- R(z)

sidering the operators R(x) ) and , and the commutativity of /7 (y) and Hy/,(z)

. . Rj (cer)— R}, (0) R}, (cer)— R} (0) - .
by considering the operators R’ (y) ~+—"—— and —--—_—* R{;(y). Fi nfa\lly, the C(/Jmmutan/on between
H,(x) and H},, (y) is obtained by considering the operators R, (x) Feeem)=1e(0) gng Helcem) =0 g1 (),

Im

Details are | eft to the reader. O

For simplicity, we write H’ for the vector operator (H7, ..., H), and define for each measurable function
f : R? — C the operator f(H') by using the d-variables functional calculus. The symbol E 7 (-) denotes the
spectral measure of H.

Definition 2.5. A number A € R iscalled aregular value of H if there exists § > 0 such that

tim | [(#')? +e] TET(A=8,A+0)) < oo (25)

A number A € R that is not aregular value of H is called acritical value of H. We denote by x(H ) the set of
critical values of H.

From now on, we shall use the shorter notation £ (\; §) for E (A — 6, A + 4)). In the next lemma we
put into evidence some useful properties of the set x(H ).

Lemma2.6. Let Assumptions 2.2 and 2.3 be verified. Then the set x(H ) possesses the following properties:
(@) x(H) is closed.
(b) x(H) contains the set of eigenvalues of H.
(c) The limitlim o || [(H')? + €] 71EH(J)H is finite for each compactset J C R\ x(H).

(d) For each compact set J C R\ x(H), there exists a compact set U C (0,00) such that EH(J) =
EHNU)ER ().

Proof. (a) Let \o bearegular valuefor H, i.e. there exists 6, > 0 such that (2.5) holds with o replaced by §.
Let A € (Ao — o, Ao + do) and let § > 0 such that

(A=0,A+0) C (Ao — o, Ao + dp)-



Then, since EX ()\;6) = B (\o; 60) EF (); 6), one has
. —1 . —1
lim ||[(H’)2—|—5] EH()\;(S)H < il{r%)H[(H’)Q—i—E}

H .
B E ()\0,(50)“ < 0.

But this means exactly that \ isaregular valuefor any A € (Ao — do, Ao + do). So the set of regular valuesis
open, and x(H) is closed.

(b) Let A € R be an eigenvalue of H, and let ¢, be an associated eigenvector with norm one. Since H is
of class C'! (®,) for each j, we know from the Virial theorem [1, Prop. 7.2.10] that E * ({A\}) HjEX ({A}) = 0
for each j. This, together with Lemma 2.4, implies that

ET(OD[(H? +¢] B ({A}) =BT ({A})
for each e > 0. In particular, we obtain for each 6 > 0 the equalities
[(H') + €] EM (X 0)ox = EF(OAD[(H')? + €] B ({Aher = Mn,

and
lim [|[(H)? +é] B (N )| > lim [|[(H)? +é] CET (M 0)ps]| = lim ™ oa]| = oo.
Since § has been chosen arbitrarily, thisimpliesthat ) isnot aregular value of H.

(c) Thisfollows easily by using a compacity argument.

(d) Let us concentrate first on the lower bound of U. Clearly, if |H’| is strictly positive, then U can be
chosenin (0, oo) and thus is bounded from below by a strictly positive number. So assume now that | H /| is not
strictly positive, that is0 € o(|H'|). By absurd, suppose that U is not bounded from below by a strictly positive
number, i.e. there does not exist a > 0 suchthat U C (a,00). Thenforn = 1,2,..., thereexists¢,, € H such
that £/1'1([0,1/n)) EH (J), # 0, and the vectors

EM1([0,1/n)) EH ()i
IEH1([0,1/n)) EH ()|

Pn =

satisfy [|n|| = 1, and B (), = EH'1([0,1/n))pn = ¢, It follows by point (c) that

-1

Const. > 611{1(1) [[(H)? + ag}*lEH(J)H > 611{1% I[(H)? + <]

E™ ()|
= lim ||[(2)” + ] B ([0.1/m))

> i -2 !
—51{%<n +5) lonll

which leads to a contradiction whenn — oo.

Let us now concentrate on the upper bound of U. Clearly, if | H’| is a bounded operator, one can choose a
bounded subset U of R and thus U is upper bounded. So assume now that | ’| is not a bounded operator. By
absurd, supposethat U is not bounded from above, i.e. there does not exist b < oo suchthat U C (0, b). Then
forn=1,2,..., thereexists v, € H suchthat Bl ([n, 00)) E¥ (J)1,, # 0, and the vectors

B[, 00) B (1),
2T B ([, 00)) B (J) ]

satisfy ||| = 1,and E7 (J)p,, = EH'|([n, 0)) ¢, = n. It follows by Assumption 2.2 and Lemma 2.4 that
|H'| E*(J) isabounded operator, and

Const. > |||HI|EH(J)H > H|H/|EH(J)<PHH = H|H/|E‘Hl‘([na oo))(an > nenl|

which leads to a contradiction when n — oo. O



3 Locally smooth operatorsand absolute continuity

In this section we exhibit a large class of locally H-smooth operators. We also show that the operator H is
purely absolutely continuousin o(H) \ «(H ). These results are obtained by using commutators methods as
presented in [1].
In order to motivate our choice of conjugate operator for H, we present first a formal calculation. Let A ,,
be given by
Ay = L) H' - ® + @ H'n(H)},

where 7 is some real function with a sufficiently rapid decrease to 0 at infinity. Then A, satisfies with H the
commutation relation
i[H, Ay = 5 325y {n(H)H}[H,@;) + [H, ;] Hjn(H)} = (H')*n(H),

which provides (in a sense to be specified) a Mourre estimate. So, in the sequel, one only has to justify these
formal manipulations and to determinate an appropriate function ».

First of all, one observes that for each j € {1,...,d} and eachw € C\ o(H) the operator H } R, =
Hj(H — w)~" is abounded operator. Indeed, one has (H — w) ~'H = D(H) C D(H}) by Assumption 2.2.
In the following lemmas, Assumptions 2.3 and 2.2 are tacitly assumed, and we set (z) := (1 + 2 2)'/2 for any
x e R™

Lemma31l. (a) Foreach j,k € {1,...,d} and each v,w € C\ o(H), the bounded operator R H} R,
belongs to C* (®y,).

(b) Foreachj,k € {1,...,d} the bounded self-adjoint operator (H) ~>H;(H)~* belongs to C" (®},).

(c) For each j,k,¢ € {1,...,d}, the bounded self-adjoint operator i[(H)—QHJ’- (H)=2,®;] belongs to
CH(®y).
Proof. Dueto Assumption 2.2 one has for each ¢ € D(® )
(Pup, By HiRop) = (RoHj Ry, @1p)
= (Prp, Ry HjR,p) — (PrRyp, HiRy@) + (®r Ry, HiR,p) — (R Hj Ry 0, @10)
= ([Ry, @), HiR,0) + (Pr Ry, HiRy0) — (Hj Ry, PR, 0)
+ (HjRy0, ®rRu) — (R Hj Ry, Prp)
= ([Ry, ®k]op, HiRuw) + ([H}, ®4] R0, Rup) + (H} Ry, [Pk, Rulp).
Thisimpliesthat there exists ¢ < oo such that
|<<I>k<p,R7H]'-Rw<p> — <R@H]'-R7g0,<1>kgo>| < cllel®

for each ¢ € D(®y,), and thusthe first statement follows from[1, Lem. 6.2.9].
For the second statement, since (H) 2 = R_;R;, the operator (H)~*Hj(H)?* is clearly bounded and
self-adjoint. Furthermore, by observing that

<H>72HJ/ <H>72 = R; (szHj/Rz)sz

one concludes from () that (H) ~>Hj(H )~ is the product of three operators belonging to C'* (%), and thus
belongsto C'' (@) dueto [1, Prop. 5.1.5].
For the last statement, one gets by taking Lemma 2.4 into account

i[(H) " Hj(H) 7%, )] = —2(RiH[R;)(R_HjR_;)(R; + R_;) + (H) > Hjj (H) ™.

Thefirst termis a product of operatorswhich belongto C'1(®,), and thusit belongsto C'1 (®,). For the second
term, a calculation similar to the one presented for the statement (&) using Assumption 2.2 shows that this term
also belongsto C'(®,), and so the claim is proved. O



We can now give a preci se definition of the conjugate operator A we will use, and proveits self-adjointness.
For that purpose, we consider the family

I = (H) H,(H)™*, j=1,....d

of mutually commuting bounded self-adjoint operators, and we write IT := (I14,...,II,) for the associated
vector operator. Due to Lemma 3.1.(b), each operator I1 ; belongsto C (®},). Therefore the operator

A:=1(II-®+ @ -1I)
is well-defined and symmetric on ﬂ?zl D(P;). For the next lemma, we note that this set contains the domain
D(®?) of 2.
Lemma 3.2. The operator A is essentially self-adjoint on D(®?2).

Proof. We use the criterion of essential self-adjointness[27, Thm. X.37].
Given a > 1, we define the self-adjoint operator N := ®2 + II? + a with domain D(N) = D(®?) and
observe that in the form sense on D(NN) one has

N2 = &% + TI* + a? + 2a®? + 2all? + P11? + 122

= ®* + I1* + o + 2a®? + 2al1? + Z {0,170, + I ®310; } + R
j.k
with R := 3 {TI, [IT, @5]®; + @;[®;, Ii] 1T, + [IT, @;]* }. Now, the following inequality holds
S Iy, @519 + @@, T} > —d®? — S | [I, @]
J:k gk

Thusthere existsc > 0 suchthat R > —d®? — c. Altogether, we have shown that in the form sense on D(N)

N? > @'+ 11" + (0® — ¢) + (2a — d)®* + 2all* + Y {@;11;0; + T D711 },
ik

where ther.h.s. isasum of positive terms for a large enough. In particular, one hasfor ¢ € D(IV)
2 2
IN@I* > [[T1;@;0[" + [| 2T,

which implies that

Al < 3> (L@ + || @00} < d|[Ne].
J

It remains to estimate the commutator [A4, N]. In the form sense on D(V), one has

2[4, N = {[IL;, ®]0; ), + D[IL;, By, + (11, By Py, + ;P [IL;, Dy
7,k
+ L[ @y, Tk | Ty + T TT [, T ] + @y, T T T + T [, Tk T -
Thelast four terms are bounded. For the other terms, Lemma 3.1.(c), together with the bound
(@50, Bk)| < [ B (¢, 2*¢) < [|Bll (v, N¢), € D(N), B e B(H),
leads to the desired estimate, i.e. (¢, [A, N]p) < Const. (¢, N¢). O

Lemma 3.3. The operator H is of class C?(A) and the sesquilinear form i[H, A] on D(H) extends to the
bounded positive operator (H) ~2(H')?(H)~2.



Proof. Onehasfor each ¢ € D(®?) andeachw € C\ o(H)
2{(Rap, Ap) — (Ap. Rup)} = {(Raw, (IL;®; + &;1L)¢) — ((I;®; + ;11 ¢, Rup) }

=D e, (R, @5)0) + (@, Ra] o, Tj0) . (3.1)

Since all operatorsin the last equality are bounded and since D(®?2) is a core for A, thisimpliesthat H is of
classC'(A) [1, Lem. 6.2.9].
Now observe that the following equalities hold on H

i[Ruy A = § 30, {T1[Re, 5] + [Ru, @]1; } = =R, (H) ™ (H')? (H)* Ro.,

Thereforethe sesquilinear formi[H, A] on D(H ) extendsto the bounded positive operator (H) 2 (H')2 (H) 2.
Finally, the operator i[R,,, A] can be written as a product of factorsin C'*(®,) for each ¢, namely

i[Ru, Al = — Y, Ry (R_iH}R;) (R_H|R;) R...

S0 i[R,,, A] dso belongsto C'(®,) for each ¢, and thus a calculation similar to the one of (3.1) shows that
i[R., A] belongsto C'(A). Thisimpliesthat H is of class C2(A). O

Definition 3.4. A number A € R is called a A-regular value of H if there exist numbers a,d > 0 such that
(H"2EH()\;6) > aEH();6). The complement of thissetin R is denoted by x4 (H).

The set of A-regular values corresponds to the Mourre set with respect to A. Indeed, if A isa A-regular
value, then (H')2EH (X;6) > a E¥(); §) for somea,§ > 0 and

E™ (X 0)i[H, A|E™ (X;6) = B (X 6) (H) ™2 (H')? (H) "2 E" (\;6) > o' B (X;0),

where a’ := a - inf,c (x5 r+5) {u)~*. In the framework of Mourre theory, this means that the operator A is
strictly conjugateto H at the point A [1, Sec. 7.2.2].

Lemma 3.5. The sets x(H) and x“(H) are equal.
Proof. Let A bea A-regular value of H. Then thereexist a,d > 0 such that
E™(X;6) <a N (H')ET();6),

and we obtain for e > 0:

[[(H)? +e] " BEG)|P = sup ([(H)?+e] o, BN [(H')? +¢2] )
pEM, |lpll=1
<a? w ([(H")? +¢] " o, BE (A 6)(H) (H')? + ] )
PEH, |lell=1

Sa_2||(H/)2[(H/)2+5]_1H2
<a?
which implies, by taking the limit lim. o, that X is aregular value.

Now, let A be aregular value of H. Then there existsd > 0 such that

Const. > Eh\n% [(E')2 + ] " EH (5 0)|| = Elig% IET (X 8) [(H)2ET (X 6) +¢] T B (X 6)||

= lim || [(H')?E" (X; 6) + €]

-1
N0 ||<{Z(H>\,§ )’ (3.2)



where H, 5 := EH (\; §)H. But we have

L PE(X:0) €] agy ) = (@) 7"

where the number a > 0 is the infimum of the spectrum of (H’)2E* (); §), considered as an operator in H , s.
Therefore, Formula (3.2) entails the bound a =* < Const., which implies that & > 0. In consequence, the
operator (H')2EH (); 6) isstrictly positivein H 5, namely,

(H')2E™(X;0) > aB™(X;0)
with @ > 0. Thisimpliesthat \ isa A-regular value of H, and x(H ) isequal to x4 (H). O

We shall now state our main result on the nature of the spectrum of H, and exhibit a class of locally H-
smooth operators. The space (D(A), H) 12,10 defined by real interpolation [1, Sec. 3.4.1], is denoted by 7.

Since for each j € {1,...,d} the operator II; belongsto C'*(®;), we have D((®)) C D(A), and it follows
from[1, Thm. 2.6.3] and [1, Thm. 3.4.3.(a)] that for s > 1/2 the continuous embeddings hold:

D(®)") C # CHC X CDUP)"). (3.3)
The symbol C . standsfor the half-planeC 1 := {w € C | £ Im(w) > 0}.
Theorem 3.6. Let H satisfy Assumptions 2.2 and 2.3. Then,
(@) the spectrum of H ino(H) \ k(H) is purely absolutely continuous,
(b) each operator T € Z(D((®) *), H), with s > 1/2, is locally H-smooth on R \ x(H).

Proof. (@) Thisisadirect application of [31, Thm. 0.1] which takes Lemmas 3.3 and 3.5 into account.

(b) We know from [31, Thm. 0.1] that themapw — R, € B( ", %), whichis holomorphic on the half-
plane C ., extendsto aweak*-continuous functionon C L U{R \ x(H)}. Now, consider T' € #(.#*, H). Then
onehasT* € #(H, %), and it follows from the above continuity that for each compact subset J C R\ k(H)
there exists a constant ¢ > 0 such that for al w € C with Re(w) € J and Im(w) € (0, 1) one has

ITR,T*|| + | TRT™| < c.

A fortiori, one also has sup,, | T'(R, — Rz)T*|| < ¢, where the supremum is taken over the same set of
complex numbers. This last property is equivalent to the local H-smoothnessof T"on R \ x(H). The claim is
then obtained by using the last embedding of (3.3). O

4 Averaged localisation functions

In this section we recall some properties of a class of averaged localisation functions which appears naturally
when dealing with quantum scattering theory. These functions, which are denoted R ;, are constructed in terms
of functions f € L>(R?) of localisation around the origin 0 of R¢. They were already used, in one form or
another, in [15], [36], and [37].

Assumption 4.1. Thefunction f € L>(R?) satisfies the following conditions:
(i) Thereexistsp > 0 suchthat |f(z)| < Const. (z)~* forae x € R%
(i) f =1 onaneighbourhood of 0.

It isclear that s-lim, . f(®/r) = 1if f satisfies Assumption 4.1. Furthermore, one has for each = €

R\ {0}

> du Ydu oo —(1+4p)
| S ) = x| < [ ) =11+ Const. [ a4 <o,

10



where y|o,1] denotes the characteristic function for theinterval [0, 1]. Thereforethefunction R ; : R4\ {0} — C
given by
+00 d,u
Ry(x) = o 7 [f(l“f) — X[0,1] (/iﬂ
is well-defined. If R* := (0, c0), endowed with the multiplication, is seen as a Lie group with Haar measure

C}—j‘, then R isthe renormalised average of f with respect to the (dilation) action of R on R<.

In the next lemma we recall some differentiability and homogeneity properties of R ;. We also give the
explicit formof R when f isaradial function. The reader is referred to [37, Sec. 2] for proofs and details. The
symbol .7 (R¢) stands for the Schwartz space on R<.

Lemma4.2. Let f satisfy Assumption 4.1.

(a) Assume that (9; f)(x) exists for all j € {1,...,d} and 2 € R¢, and suppose that there exists some p > 0

such that (9, f)(z)| < Const. (z) " for each 2 € R Then Ry is differentiable on R\ {0}, and its
derivative is given by

Ryle) = [ du /(o).
0
In particular, if f € .(R) then R belongs to C>°(R? \ {0}).

(b) Assume that Ry belongs to C™(R? \ {0}) for some m > 1. Then one has for each € R4\ {0} and
t > 0 the homogeneity properties

z- Ri(x) = —1, (4.1)
t°1(0° Ry)(tx) = (9 Ry)(w), (4.2)

where o € N is a multi-index with 1 < |a| < m.

(c) Assume that f is radial, i.e. there exists fo € L°°(R) such that f(z) = fo(|z|) for a.e. z € R Then Ry
belongs to C>*(R*\ {0}), and R (z) = —z =,

Obviously, one can show asin Lemma4.2.(a) that R ¢ isof class C™(R?\ {0}) if one hasfor each o € N¢
with [a| < m that (9 f)(z) exists and that |(9° f)(z)| < Const. (z)~1*I**) for some p > 0. However, this
is not a necessary condition. In some cases (as in Lemma 4.2.(c)), the function R ¢ is very regular outside the
point 0 evenif f isnot continuous.

5 Integral formula

In this section we prove our main result on the relation between the evolution of the localisation operators
f(@/r) andthetime operator T'; defined below. We begin with atechnical lemmathat will be used subsequently.
Since this result could also be useful in other situations, we present here a general version of it. The symbol
F stands for the Fourier transformation, and the measure dx on R™ is chosen so that .# extends to a unitary
operator in L%(R™).

Proposition 5.1. Let C = (C4,...,Cy) and D = (Dy,. .., Dy) be two families of mutually commuting self-
adjoint operators in a Hilbert space 7. Let k > 1 be an integer, and assume that each C'; is of class C*(D).

Let f € L®(R"), set g(z) := f(x) (x1)** - (x,,)*", and suppose that the functions g and
z e (Fg)(x) (w)" T ()

are in L' (R™). Then the operator f(C) belongs to C*(D). In particular, if f € . (R™) then f(C) belongs to
Ck(D).

11



Proof. For eachy € R, weset D, := ﬁ(ew'D —1). Then we know from [1, Lemma 6.2.3.(a)] that it is

sufficient to provethat || ad}, (f(C))|| is bounded by a constant independent of y. By using the linearity of
ad’, () and[1, Eq. 5.1.16], we get

adp (f(C))
=ad, (9(C) (C1)* - (Cn) ")

— /n dz (ZFg)(x) ad’]gy (efrCr (Cy) 2 ... gizaCn <Cn>72k)

= D Chew / da (Fg)(x) adp, (19 (Cr) ™) - adyy, (72 (Co) "),
ke oeothn =k R

where Cy, ..., > 0 is some explicit constant. Furthermore, since C; is of class C*(D), we know from [1,
Eqg. 6.2.13] that

kj i —2k k
H ade (e 3 <Cj> 2 )H < ij <xj> +17
where C;; > 0 isindependent of y and x ;. Thisimplies that

I adkby (f@)] < Const./ da |(Zg)(@)| (x) T - (@) < Const.

and the claim is proved. O

In Lemma 2.6.(a) we have shown that the set x(H ) is closed. So we can definefor each ¢ > 0 the set
Dy = {p € D((®)") | ¢ = n(H)y for somen € C(R\ k(H)) }.

Theset 9, isincluded in the subspace H .. (H ) of absolute continuity of /, dueto Theorem 3.6,and 2, C %;,
if t1 > to. We refer the reader to Section 6 for an account on density properties of the sets 7.

In the sequel we consider the set of operators {H j”k} as the components of a d-dimensional (Hessian)
matrix which we denote by H"'. Furthermore we shall sometimes write C'~! for an operator C' a priori not
invertible. In such a case, the operator C' ~* will always be restricted to a set whereit is well-defined. Namely, if
D isaset on which C isinvertible, then we shall simply write “C ! acting on D” instead of using the notation
Cct |D-

Proposition 5.2. Let H and & satisfy Assumptions 2.2 and 2.3. Let f satisfy Assumption 4.1 and assume that
Ry belongsto C1(R¢\ {0}). Then the map

tr: 9 —C, o tp(p) =—3 Z {(@j, (05 Rs)(H)p) + ((9;Ry) (H)p, B 0) },

is well-defined. Moreover, if (0;R)(H')y belongs to D(®,) for each j, then the linear operator Ty : 21 — 'H
defined by

Ty = —1 (cI> CRY(H') + Ry () - ® [/~ + iR} () - (1) |H’|*3)¢ (5.1)

satisfies t () = (v, Tyyp) for each ¢ € 2. In particular, Ty is a symmetric operator if f is real and if 7, is
dense in 'H.

Remark 5.3. Formula(5.1) isapriori rather complicated and one could be tempted to replaceit by the simpler
formula—3 (®- R} (H') + R;(H') - ®). Unfortunately, a precise meaning of this expressionis not availablein
general, and its full derivation can only be justified in concrete examples.

12



e

Remark 5.4. If ¢ € 9, andif f either belongsto . (R<) or is radial, then the assumption (9, R)
e
?)

(H
D(®;) holds for each j. Indeed, by Lemma 2.6.(d) there exists n € C'2°((0, 00)) such that (0, Ry)(H
(9;Ry)(H")n((H')?)¢. By Lemma 4.2 and Proposition 5.1, it then follows that (0, Ry)(H')n((H')
C*'(®;), which implies the statement.

m I m

Proof of Proposition 5.2. Lety € 2. ThenLemma?2.6.(d) impliesthat thereexistsafunctionn € C'° ((0, oo))

such that
(i Ry)(H')p = (9;Ry)(H" )n((H')) .

Thus ||(0;Ry)(H')¢| < Const. ||¢]||, and we have
|t7 ()] < Const. [[o] - [[{@)el],

which implies the first part of the claim.
For the second part of the claim, it is sufficient to show that

> (0;R7) (H") o, ®5¢0)
7
= (o (R} () - @ [H'| 7 + iR (y35) - (H"H') [ H' [} ).
Using Formula (4.2), Lemma2.6.(d), and [10, Eq. 4.3.2], one gets
Z ((0;87) (H Yo, @50

_Z aR \H’ |H| 190a 190>

= lim ((0;Ry) (i) [(H')” + €] 7B j0)

<507R/(\H/) (I)|H/| ! >
T 1211m dtt‘1/2<(8R ) (1), [[(H)? + 2+ 471, @] ).

Now, by using Assumption 2.2 and Lemma 2.4 one obtains that

[(H')?+e+t] " & =2i[(H) +e+1] ‘Q(H”H’)j ©.

It follows that
2 | R ORy) () 2+ 72 )
= 3 lim (0, Ry) (fy ) iL(H'? + €] 75/2(H" ') )
J
= (iR (i) - (H'H') [H'| ),
and thus

> (O Rp) (H). @i0) = (o, { Ry () - @ [H'| 7+ iR () - (HH') [H' |7 ).
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Suppose for a while that f is radial. Then one has (0;Rf)(z) = —x2x; due to Lemma 4.2.(c), and
Formula(5.1) holds by Remark 5.4. Thisimpliesthat 7' is equal to

Ti= (@ f + iy - ®1H' |7 + (i - (H"H) ) (5.2)

on %;.

The next theoremis our main result; it relates the evolution of localisation operators f (/) to the operator
T. Inits proof, we freely use the notations of [1] for some regularity classes with respect to the unitary group
generated by @. For us, afunction f : R? — Cisevenif f(z) = f(—x) fora.e.x € R%.

Theorem 5.5. Let H and & satisfy Assumptions 2.2 and 2.3. Let f € .#(R<) be an even function such that
f = 1 onaneighbourhood of 0. Then we have for each ¢ € 25

lim % - dt <gp, [e_”H f(®/r) eitH _ gitH f(®/r) e_itH]ga> =1t5(p). (5.3)
T—00 0
Note that theintegral on thel.h.s. of (5.3) isfinite for each» > 0 since f(®/r) can be factorized as
F(@/r) = |f(@/r)['/2 - sgulf(®/r)] - [ f(2/r)]'/?,

with | f(®/r)|'/? locally H-smoothonR \ x(H) by Theorem 3.6. Furthermore, since Remark 5.4 applies, the
r.h.s. can also be written as the expectation value (¢, T’y ).

Proof. (i) Letp € 2, takeared n € C°(R\ k(H)) suchthat n(H)p = ¢, and set i, (H) := e n(H).
Then we have

<<,0, [eitH f((I)/T) e—itH o e—itH f((I)/T) eitH]<p>
“Tn(H)] o)

N ~/]Rd dz (7 f)(2){p, [m(H) ' P n_y(H) — n_y(H)e'™

:/Rd

(z)(
:/Rddxff <
)

+n_(H

N2 [ (H(%))nft(H) —n—e(H)m (H(_%)) ei%~<1>]<p>

o, L (7 1) me (H(2))n—4(H) (54)
[ (H () = me(H(=3))] = n—o(H)m (H(=5)) (e'7% =1) ).
Since f iseven, .7 f isaso even, and

[ 4 (Z 0@ (oo (0(2) = m ()] 2) = 0.

Thus Formula (5.4), Lemma 2.4, and the change of variables i := t/r, v := 1/r, give

lim 5 | di (o, [ f(@/r) e et f(@)r)em M ) = —g lim | dpy | doK (v p ),
T—00 0 v Rd
(5.5)
where

K(v,pu,z) = (Zf)(@){p,{L(e¥™® —1)n(H (vz))etv H o) ~H]
—n(H(-vz))e'v i [H(—vz)—H] %(e“’m@’ _1)}@.

(i) To prove the statement, we shall show that one may interchange the limit and the integralsin (5.5),
by invoking Lebesgue’s dominated convergence theorem. Thiswill be donein (iii) below. Here we pursue the
calculations assuming that these interchanges are justified.

We know from Assumption 2.2 that H is of class C%(®;) (and thus of class C'!(®,)) for each j €
{1,...,d}. Since the domain of H is invariant under the group generated by @ ,, it follows then from [1,
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Thm. 6.3.4.(b)] that H belongsto C'1'!(®;, G, G*), where G denotes the space D(H') endowed with the graph
topology. In particular, H belongsto C'!(®;,G,G*); namely, themap R > v — H(ve;) € B(G,G%) is
continuously differentiable in the uniform topology. Therefore the map

R\ {0}>vm— %[H(Vej) — H] € B(G,G%)

extends to a continuous map defined on IR and taking value H ; at v = 0.
Now, the exponential map B +— ¢'Z is continuous from %(G, G*) to %(G, G*). So, the composed map

R 3 v ev He)—Hl ¢ #(G,G7)
is also continuous, and takes value ¢i at v = 0. By linearity and by taking Lemma 2.4 into account, one

findly obtainsin (G, G*)

lim ei%[H(l/x)—H] _ eiux~H/
v\,0

It followsthat for any ¢, 1) € G, one has

31{‘1}) <”ll)7€i%[H(l/z)—H] SD> — <'l/1, ei'u,z-H/ S0>

Infact, since the operators H, H (vx) and H; are self-adjoint this equality even holds for ¢, ¢ € H, but we do
not need such an extension. This identity, together with the symmetry of 7, Lemma4.2.(a), and Proposition 5.2,
impliesthat for p € %5

lim 0°° dt (¢, [e7 ™ f(/r) et — &t (P /r)e it |y)
=3 /OOO dp » dz (Zf)(@){((z- ), gine-H’ ) — <%e—m.H/ (x @) )

=—%;/o dn | do[F@N)@) (@i, ) + (0,71 00)]

—3 X [ aul(@se @) + (07 (i) o 25)]

=tr(p).
(iii) Tointerchange thelimit v \, 0 and theintegration over 1. in (5.5), onehasto bound [,, dz K (v, 1, x)
uniformly in v by afunctionin L' ((0, co), dp). We begin with thefirst term of [, dz K (v, p, z):

Ky(v,p) = / du(F)(@) (®)2, (e —1)(@) n(H (va)) el HEDH )

Observe that for each multi-index o € N¢ with || < 2 one has
H@;’%(ei”x'q’ —1)(®)~2|| < Const. (z), (5.6)

where the derivatives are taken in the strong topology and where the constant is independent of v € (—1,1).
Since 7 f € . (R%) it follows that
‘Kl (v, ,u)‘ < Const., (5.7)

and thus Ky (v, 1) is bounded uniformly in v by afunctionin L*((0, 1], dy).
For the case 1« > 1 we first remark that there exists acompact set J C R\ x(H) suchthat o = EH ().
Therealso exists¢ € C°((0,00)) suchthat ¢((H)?)n(H) = n(H) dueto Lemma2.6.(d). It then follows that

n(H(vz)) et [H(ve)—H] 0= C(H’(VJ?)Q)??(H(Z/J?)) ol 5 [H(va)—H] 0.
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Moreover, from Assumption 2.3, we also get that
B;{u(a:)@ — B (J) et ) —H] pH (1), i Hwa) =]

So, K1 (v, i) can be rewritten as
/Rd da (Zf) () (@)%, 5 (¥ ® =1)(®) 2 (H' (va)*)n(H (va)) By, (x) ) -

Now, it is easily shown by using Assumption 2.2 and Lemma 2.4 that the function B/, : R — %(H) is
differentiable with derivative equal to

(0;By,)(x) = iuHj(vz) By, (x).
Furthermore, the bounded operator
Aj() = (Ff)(@) L (V= =1) (@) 2 ] (var) [H (var) |~ 2¢ (H' (var)? ) n(H (vx))
satisfies for each integer £ > 1 the bound
||Aj7u(a:)|| < Const. (a:)fk,
dueto Assumption 2.2, Lemma 2.4, Equation (5.6) and therapid decay of .% f. Thus K (v, 1) can be written as
Kalw) = =i 3 [ de (@)%, 4,,@) (0,52, (2)9)

’ ,
Moreover, direct calculations using Equation (5.6) and Proposition 5.1 show that themap R ¢ 5 = +— A; , (7) €
P(H) istwice strongly differentiable and satisfies

||(8jAj7,,)(x)H < Const. (z) "

and
10e{(8;A;,) Hy(v-)(H'(v-)) "2} (2)|| < Conmst. (1 + [v]) ()" (5.8)

for any integer £ > 1. Therefore one can perform two successive integrations by parts (with vanishing boundary
contributions) and obtain

K V/l_zllz 1Z/Rddx SovaAjV)( )BI;J[I( )<)0>
7_M72Z/ dx ga,ag{(ajAj,y)Hé( / } >

This together with Formula (5.8) implies for each v < 1 and each 1 > 1 that
|K1 (v, ,u)‘ < Const. 2. (5.9

The combination of the bounds(5.7) and (5.9) showsthat K+ (v, 1) isbounded uniformly for v < 1 by afunction
inL*((0,00),dp). Sincesimilar arguments shows that the same holds for the second termof [, dz K (v, 1, z),
one can interchangethe limit v \, 0 and the integration over 1 in (5.5).

Theinterchange of the limit v ~\, 0 and the integration over z in (5.5) isjustified by the bound

|K (v, p, z)| < Const. ‘m(ﬁf)(a:ﬂ,

which follows from Formula (5.6). O
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When the localisation function f isradial, the operator T'; is equal to the operator 7', which is independent
of f. Thenext result, which depictsthis situation of particular interest, isadirect consequence of Lemma4.2.(c)
and Theorem 5.5

Corollary 5.6. Let H and @ satisfy Assumptions 2.2 and 2.3. Let f € .#(R?) be a radial function such that
f =1 on aneighbourhood of 0. Then we have for each ¢ € 25

lim 3 /0 o (@ [e7™ f(@/r)e™ —e™ f(®/r)e™"T [p) = (,T), (5.10)

T—00

with 7 defined by (5.2).

6 Interpretation of theintegral formula

This section is devoted to the interpretation of Formula (5.3) and to the description of the sets & ;. We begin by
stressing some properties of the subspace K := ker ((H ’)2) of H, which plays an important role in the sequel.

Lemma6.l. (a) The eigenvectors of H belong to IC,
(b) If ¢ € K, then the spectral support of ¢ with respect to H is contained in x(H ),
(c) Foreacht > 0, the set K is orthogonal to 2,
(d) Foreacht > 0, the set &, is dense in H only if I is trivial.

Proof. Asobservedin theproof of Lemma2.6,if \ isan eigenvalueof H thenonehas E  ({A\}) H} E* ({A}) =
0 for each j. If ¢ is some corresponding eigenvector, it followsthat H o\ = EX ({A})H[EH ({A})ex = 0.
Thus, &l eigenvectors of H belong to the kernel of H/, and afortiori to the kernels of (H)* and (H')?.

Now, let ¢ € K and let .J be the minimal closed subset of R such that £ (.J)¢ = ¢. It followsthen from
Definition 2.5that J C x(H). Thisimpliesthat ¢ 1 2;, and thus L 2. The last statement is a straightforward
consequence of point (c). O

Let us now proceed to the interpretation of Formula (5.3). We consider first theterm ¢ ¢(¢) on ther.h.s,,
and recall that f is an even element of . (R?) with f = 1 in aneighbourhood of 0. We also assume that f is
real.

Dueto Remark 5.4 with ¢ € 24, theterm ¢ ;(¢) reducesto the expectation value (o, T’y ), with T given
by (5.1). Now, adirect calculation using Formulas (4.1), (4.2), and (5.1) shows that the operators 1" y and H
satisfy in the form sense on &, the canonical commutation relation

[Ty, H] =i. (6.2)
Therefore, since the group {e~ "}, leaves 2, invariant, the following equalities hold in the form sense on
.@1:

t
T; e~ tH _ o—itH Ty + [TﬁefitH] — o—itH Ty — Z/ ds e~ it=5)H [Tf, H] e~ isH _ o—itH (Tf + t).
0

In other terms, one has _ _
<1/J,Tf e itH <p> = <'z/1, e~ itH (Tf + t)<p> (6.2)

for each v, p € 7, and the operator T’y satisfies on 7, the so-called infinitesimal Wey! relation in the weak
sense [18, Sec. 3]. Note that we have not supposed that 2, is dense. However, if &, is dense in H, then the
infinitesimal Wey! relation in the strong sense holds:

Tpe tH o = e (T} 4 1), ©ED. (6.3
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Thisrelation, also known as T’y -weak Weyl relation [19, Def. 1.1], has deep implications on the spectral nature
of H and on the form of T'; in the spectral representation of H. Formally, it suggests that 7'y = z’diH, and thus
—1T’y can be seen as the operator of differentiation with respect to the Hamiltonian H. Moreover, being a weak
version of the usual Wey! relation, Relation (6.3) also suggests that the spectrum of A may not differ too much
from apurely absolutely continuous spectrum. These properties are now discussed more rigorously in particular
situations. In thefirst two cases, the density of 2, inH isassumed, and so the point spectrum of H is empty by
Lemma6.1.
Case 1 (T essentially self-adjoint): If the set &, is dense in H, and 7' is essentialy self-adjoint on
1, then it has been shown in [18, Lemma 4] that (6.3) implies that the pair {T';, H} satisfies the usual Wey!
relation, i.e. -
eisH eitTf

_ ezst ethf GZSH, S,t cR.

It follows by the Stone-von Neumann theorem [26, V111.14] that there exists a unitary operator % : 'H —
L2(R; CN,d\), with N finiteor infinite, such that % T+ 7/ * isthe operator of trandationby ¢, and % e* 7/ *
is the operator of multiplication by e?**. In terms of the generator H, this meansthat % H% * = \, where* \”

stands for the multiplication operator by X in L2(R; C", d\). Therefore the spectrum of H is purely absolutely
continuous and covers the whole real line. Moreover, we havefor eachy € Hand ¢ € 2,

(W, Tro) = (1, Tjo) = / (@)A1 2D () s

where % denotesthe distributional derivative (seefor instance[2, Rem. 1] for an interpretation of the derivative
d

Ay,

“ Case 2 (T'y symmetric): If the set &, isdensein H, then we know from Proposition 5.2 and Remark 5.4
that 7'y is symmetric. In such a situation, (6.3) once more implies that the spectrum of H is purely absolutely
continuous [19, Thm. 4.4], but it may not cover the whole real line. We expect that the operator 7 ¢ is still equal
to z‘% (on asuitable subspace) in the spectral representation of H, but we have not been able to proveit in this
generality. However, this property holds in most of the examples presented below. If 7'y and H satisfy more
assumptions, then more can be said (see for instance [33)]).

Case 3 (T'y not densely defined): If 2 isnot densein H, then we are not aware of general worksusing a
relation like (6.2) to deduce results on the spectral nature of H or ontheformof 7" ; in the spectral representation
of H. In such acase, we only know from Theorem 3.6 that the spectrum of H is purely absolutely continuous
ino(H) \ x(H), but we have no general information on the form of T'; in the spectral representation of H.
However, with a suitable additional assumption the analysis can be continued. Indeed, consider the orthogonal
decomposition H := K @ G, with K = ker ((H')?). Then the operators H, H}, and H}/, are &l reduced by
this decomposition, due to the commutation assumption 2.3. If we assume additionally that 7"y, C G, thenthe
analysis can be performed in the subspace G.

Since ;1 C G by Lemma 6.1, the additional hypothesis allows us to consider the restriction of 7'y to G,
which we denoteby T;. Let also H, H’;, and Hy/, denote the restrictions of the corresponding operatorsin G. We
then set

D; == {p e D((®)") NG | ¢ = n(H)y forsomen € C(R\ k(H))} C G,

and observe that the equality (6.1) holdsin the form sense on D ;. In other words, (6.1) can be considered in the
reduced Hilbert space G instead of H. The interest of the above decomposition comes from the following fact:

If Dy isdensein G (which is certainly more likely than in ), then T is symmetric and the situation reduces
to the case 2 with the operators H and T;. If in addition T, is essentially self-adjoint on D4, the situation even
reduces to the case 1 with the operators H and T;. In both situations, the spectrum of H is purely absolutely
continuous. In Section 7, we shall present 2 examples corresponding to these situations.

Remark 6.2. The implicit condition 7'y, C G can be made more explicit. For example, if the collection ¢
is reduced by the decomposition H = K @ G, then the condition holds (and (5.3) also holds on D 5). More
generally, if ®;2, C G for each j, then the condition holds. Indeed, if ¢ € Z; one knows from Remark 5.4
that (0;R¢)(H')¢ € D((®)), and one can prove similarly that |H'|~*p € D((®)). Furthermore, there exists
n € C2(R\ k(H)) suchthat (9;Ry)(H')p = n(H)(0;Rs)(H')p and [H'| "' = n(H)|H'|~"¢, which
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means that both vectors 9; R (H' ) and |[H'| !¢ belong to 2. It followsthat T'r¢ € G by taking the explicit
form (5.1) of T’y into account.

Let us now concentrate on the other term in Formula (5.3). If we consider the operators ¢ ; as the compo-
nents of an abstract position operator @, then thel.h.s. of Formula (5.3) has the following meaning: For r fixed,
it can be interpreted as the difference of times spent by the evolving state e~  in the past (first term) and
in the future (second term) within the region defined by the localisation operator f(®/r). Thus, Formula (5.3)
shows that this difference of timestends as — oo to the expectation value in ¢ of the operator T';.

On the other hand, let us consider a quantum scattering pair { H, H + V'}, with V' an appropriate perturba-
tion of H. Let usalso assume that the corresponding scattering operator S is unitary, and recall that .S commute
with H. In this framework, the global time delay 7(¢) for the state ¢ defined in terms of the localisation op-
erators f(®/r) can usualy be reexpressed as follows: it is equal to the |.h.s. of (5.3) minus the same quantity
with o replaced by S¢. Therefore, if ¢ and Sy are elements of 25, then the time delay for the scattering pair
{H, H + V'} should satisfy the equation

() = —{, S*[Ty, S]e). (6.4)

In addition, if 7' actsin the spectral representation of /1 as adifferential operator : diH, then 7 () would verify,
in our complete abstract setting, the Eisenbud-Wigner formula

() = {p, —iS* 3 ).

Summing up, as soon as the position operator ® and the operator H satisfy Assumptions 2.2 and 2.3,
then our study establishes a preliminary relation between time operators 7' given by (5.1) and the theory of
guantum time delay. Many concrete examples discussed in the literature [2, 3, 4, 15, 20, 35, 37] turn out to
fit in the present framework, and several old or new examples are presented in the following section. Further
investigationsin relation with the abstract Formula (6.4) will be considered el sewhere.

Now, most of the above discussion depends on the size of 2, in H, and implicitly on the size of x(H) in
o(H). We collect some information about these sets. It has been proved in Lemma 2.6.(d) that «(H) is closed
and corresponds to the complement in o( H ) of the Mourre set (see the comment after Definition 3.4). It always
containsthe eigenvalues of H. Furthermore, since the spectrum of H is absolutely continuousono(H) \ k(H),
the support of the singularly continuous spectrum, if any, iscontainedin x(H ). In particular, if x(H) isdiscrete,
then H hasno singularly continuous spectrum. Thus, the determination of the size of x(H ) isanimportant issue
for the spectral analysis of H. More will be said in the concrete examples of the next section.

Let us now turn to the density properties of the sets 2. For this, we recall that asubset K C R issaid to
be uniformly discreteif

inf{lz —y| | x,y € Kandx # y} > 0.

Lemma 6.3. Assume that «(H ) is uniformly discrete. Then
(@) 2y isdensein H.(H),
(b) If o, (H) = o and if H is of class C*(®) for some integer k, then 2, is dense in H for any ¢ € [0, k).

Proof. (a) Let ¢ € Ha.(H)ande > 0. Thenthereexistsafiniteinterval [a, b] suchthat ||[1 — E([a, b])] ¢|| <
e/2.Sincex(H) isuniformly discrete, theset «(H)N(a, b) containsonly afinite number N of pointsz | < 5 <
o< ay.Letussetzg :=aand xn41 = b. Since p € Hae, thereexistsd > Osuchthat z; +0 < zj41 — 0
foreachj € {0,..., N}, and | EF (Ls)¢|| < /2, where

Ls:={ € [a,b] | | ;| < 6 foreach j = 0,1,..., N +1}.

Now, for any j € {0,..., N} thereexist 1,7, € C°((x;,2;41);[0,1]) such that 77;(z) = 1 forz € [z; +
0,z41 — 0] and n;1; = 7;. Therefore, if n := E;V:() N, 1 = E?’:O n; and ¢ = 7(H)¢, one verifies that
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n € C((a,b);[0,1]) € C(R\ k(H)) and that ¢» = n(H )1, whichimply that ) € 2. Moreover, one has

le = wll < [ = FE)E ([a, b))l + [|[L = G(H)][1 = B ([a,0])] ¢
< |2 = a(E)]E (Ls)e| + [|[1 — £ ([a,0)]¢||
<s+5.

Thus || — ¢|| < efory € %y, andtheclaimis proved.

(b) If o, (H) = @, then it follows from the above discussion that H .. (H) = H. In view of what precedes,
it is enough to show that the vector ) = 77( H )¢ of point (&) belongsto D((®) *): The operator 7j( H) belongsto
C*(®), since H isof class C*(®) and 77 € C>°(R) (see [1, Thm. 6.2.5]). So, we obtain from [1, Prop. 5.3.1]
that (®)" 7(H) (®) " is bounded on H, which implies the claim. 0

7 Examples

In this section we show that Assumptions 2.2 and 2.3 are satisfied in various general situations. In these situa-
tions al the results of the preceding sections such as Theorem 3.6 or Formula (5.3) hold. However, it is usualy
impossibleto determine explicitly the set «( H ) when the framework istoo general. Therefore, we asoillustrate
our approach with some concrete examples for which everything can be computed explicitly. When possible,
we also relate these examples with the different cases presented in Section 6. For that purpose, we shall aways
assumethat f isarea and even functionin.#(R¢) with f = 1 on aneighbourhood of 0.

The configuration space of the system under consideration will sometimes be R ", and the correspond-
ing Hilbert space L2(R™). In that case, the notations Q = (Q1,...,Q,) and P = (P, ..., P,) refer to the
families of position operators and momentum operators. More precisely, for suitable ¢ € L?(R") and each
je{l,....n},wehave (Q,p)(x) = z;p(z) and (Pjp)(z) = —i(0;¢)(x) for each z € R".

7.1 H' constant

Suppose that H is of class C'!(®), and assume that there exists v € R4\ {0} suchthat H’ = v. Then H is of
class C>°(®), Assumption 2.2 is directly verified, and one has on D(H)

1 1
H(m):H(O)+/ dt(a:-H'(tx)):H—i—/ dt e "= (z- H')e " = H + 3.
0 0

This implies Assumption 2.3. Furthemore x(H) = @, and o(H) = o4.(H) dueto Theorem 3.6. So, the set
Y isdensein H for each ¢ > 0, due to Lemma 6.3.(b). The operator 12/, (H") reduces to the constant vector
R’ (v). Therefore, we have the equality 7'y = — R’ (v) - ® on 24, and it is easily shown that 7’ is essentially
self-adjoint on ;. It follows from the case 1 of Section 6 that the spectrum of H covers the whole real line,
and there exists a unitary operator % : H — L?(R; CV, d\) such that

(6. Typ) = / (@), 2L (\)

foreachy € Hand p € 2.

Typical examples of operators H and @ fitting into this construction are Friedrichs-type Hamiltonians and
position operators. For illustration, we mention the case H := v - P + V(Q) and ® := Q in L2(R%), with
v € R\ {0} and V € L= (R%; R) (see also [37, Sec. 5] for informations on quantum time delay in a similar
case).

Stark Hamiltonians and momentum operators also fit into the construction, i.e. H := P2 +v-Q inL2(R%)
withv € R?\ {0}, and @ := P. We refer to [25, 29, 30] for previous accounts on the theory of time operators
and quantum time delay in similar situations.

Note that these first two examples are interesting since the operators H contain not only akinetic part, but
also apotential perturbation.
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Another exampleis provided by the Jacobi operator related to the family of Hermite polynomials (see[32,
Appendix A] for details). In the Hilbert space H := ¢%(N), consider the Jacobi operator given for p € H by

(Hp)(n) == LT p(n — 1) + L p(n +1)

with the convention that ¢ (0) = 0. The operator H is essentially self-adjoint on ¢2, the subspace of sequences
in H with only finitely many non-zero components. As operator ¢ (with one component), take

(Pp)(n) == —i{Vn—Te(n —1) = Vne(n+1)},

which is also essentialy self-adjoint on ¢32. Then H is of class C*(®) and H' = i[H,®] = 1, and so the
preceding results hold.

72 H =H

Suppose that ® has only one component, and assume that H is ®-homogeneous of degree 1, i.e. H(z) =
e~ [l ¢® — ¢% [] for dl z € R. Thisimpliesthat H isof class C*(®) andthat H' = H. So, Assumptions
2.2 and 2.3 arereadily verified. Moreover, since x(H) = {0}, Theorem 3.6 implies that / is purely absolutely
continuous except at the origin, where it may have the eigenvalue 0.

Now, let us show that the formal formula of Remark 5.3 holds in this case. For any ¢ € 2, one has by
Remark 5.4 that R, (H')¢ = R';(H )y belongsto D(). On another hand, we have

dp={H®+[®,H|}H 'o=H(®+1i)H ',
whichimpliesthat R;(H)®¢ = R} (1f7) 1 (® + i) H ' € M. In consequence, the operator
Ty = —%(CI)R}(H) + R}(H)CI))

is well-defined on Z;. In particular, if 0 is not an eigenvalue of H, then T'; is a symmetric operator and the
discussion of the case 2 of Section 6 isrelevant (if 7', is essentially self-adjoint, the case 1 is relevant).

We now give two examples of pairs { H, @} satisfying the preceding assumptions. Other examples are
presented in [8, Sec. 10]. Suppose that H := P2 is the free Schrodinger operator in H := L2(R") and ® :=
1(Q - P+ P - Q) is the generator of dilations in M. Then the relation e~"*® H e™*® = e* H is satisfied,
0(H) = 0ac(H) = [0, 00). Furthermore, for ) € H and p € ZFC°(R™\ {0}) C 2, adirect calculation using
Formula (4.1) shows that

<1/)7Tf<P> = <?/J, %(Q ' PP72 + PP?Q : Q)90> = A d)\<(%¢)(>\)al d(ji\go) (A)>|_2(§n71)a

where % : H — f[?ioo) dXL2(S"1) is the spectral transformation for P2. This example corresponds to the
case 2 of Section 6.

Another example of ®-homogeneous operator is provided by the Jacobi operator related to the family of
Laguerre polynomials (see [32, Appendix A] for details). In the Hilbert space H := ¢ 2(N), consider the Jacobi
operator given for ¢ € H by

(Hep)(n) := (n = 1Dp(n — 1) + (2n = p(n) + ne(n + 1),

with the convention that (0) = 0. The operator H is essentially self-adjoint on ¢2. As operator & (with one
component), take

(@p)(n) == —5{(n — p(n — 1) —np(n+1)}.

Thenonehas H' = i[H,®] = H, which implies that H is ®-homogeneous of degree 1 and so the preceding
results hold.

21



7.3 Dirac operator
In the Hilbert space H := L2(IR3; C*) we consider the Dirac operator for aspin-% particle of massm > 0
H:=«a- P+ @m,

wherea = (a1, as, a3) and 3 denotethe usual 4 x 4 Dirac matrices. Itisknownthat H hasdomain 4 ' (R3; C*),
that |H| = (P? + m?)'/? and that o(H) = 0..(H) = (—o0, —m] U [m, o).

We also let @ = @/F*V},QQZ/FW = @Qnw be the Wigner-Newton position operator, with %rw the usual
Foldy-Wouthuysen transformation [34, Sec. 1.4.3]. Then adirect cal culation shows that

H(r) = \/ S 1

for each = € R3, and thus Assumptions 2.2 and 2.3 are clearly satisfied. Furthermore, since Hj = P;H! for
each j = 1,2, 3, it follows that
(H"? = P2 H 2 = (H?> - m?)H 2.

Clearly, ker ((H’)?) = {0} and one infers from Definition 2.5 that (H) = {+m}, and from Lemma 6.3.(b)
that the sets

I = {¢ € UewD((Q)") | n(H)p = ¢ for somen € C°(R\ {£m})},
are densein H. So the discussion of the case 2 of Section 6 isrelevant.
We now show that the formal formula of Remark 5.3 holds if f isradial. Indeed, each ¢ € 2, satisfies
¢ = n(H) %y for somen € C°(R\ {£m}) and some ) € D((Q)). So, we have
H'(H')™? - Quwy = PP H - Uy QUewn(H) Ut = Uy PP BIH| - Q(B|H )¢ € H,
and the operator 7' of (5.2) is symmetric and can be written on 2 in the simpler form
T=23Qnw -H'(H)?+HH)? Quw} = 2{Qxw - PP">H + PP*H - Qnw }.

Now let h : R® — R be defined by h(¢) := (£2 + m?)/2. Thenit is known that Zew H %y = Bh(P),
and adirect calculation shows that

Uew Ty = 50{Q - PP (P* 4 m?) 2 4 PPT2(P? +m?)!? - Q) = §5{Q - firfpe + sippe - Q)

on Zew 2, . Furthermorethere exists aspectral transformation % : L2(R?) — f[i sy AALZ(S?) for h(P) such
that

h'(P) h'(P) 1
%O{Q hl/ p)z + h’ P)2 Q}%

isequal to the operator 2i % of differentiation with respect to the spectral parameter A of 4(P) (see[37, Lemma
3.6] for a precise statement). Combining the preceding transformations we obtain for each ) € Hand ¢ € 24
that

T = [ @D TN e

where % : H — ff?H) d\ L2(S?; C?) isthe spectral transformation for the free Dirac operator H.

7.4 Convolution operatorson locally compact groups

This example is partidly inspired from [22], where the spectral nature of convolution operators on locally
compact groupsis studied.

Let G be alocally compact group with identity e and a left Haar measure p. In the Hilbert space H :=
L?(G, dp) we consider the operator H,, of convolution by 1 € M(G), where M(G) is the set of complex
bounded Radon measures on GG. Namely, for ¢ € H one sets

(Hup)(g) = (1 *o)( / du(h) o(h~tg) forae.ge G,
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where the notation a.e. stands for “amost everywhere” and refers to the Haar measure p. The operator H ,, is
bounded withnorm || H .|| < |u|(G), anditisself-adjoint if 1 issymmetric, i.e. u(E) = p(E—1) for each Borel
subset F of GG. For smplicity, we also assume that 1 is central and with compact support, where central means
that u(h~*Eh) = u(E) for each h € G and each Borel subset E of G.

We recall that given two measures i, v € M(G), their convolution i+ v € M(G) is defined by the relation
[11, Eq. 2.34]

/ d(px v)(9) Y(g) = / / du(g)dv()p(gh) Y € Col(G),
G GJG

where Cy (G) denotesthe C*-algebraof continuous complex functionson G vanishing at infinity. If 4 € M(G)
has compact support and ¢ : G — C is continuous, then the linear functional

Co(G) 5 ¥ /G du(g) C(g)b(g) € C

is bounded, and there exists a unique measure with compact support associated with it, due to the Riesz-Markov
representation theorem. We write (. for this measure.

A natural choice for the family of operators @ = (®4,...,D4) are, if they exist, real characters @, €
Hom(G; R), i.e. continuous group morphisms from G to R. With this choice, one obtains that

[Hp.(2)¢](9) = (e7™* H, e o) (g) = /Gdu(h) e~ P (1 g)

foreachz € R, ¢ € H,anda.e. g € G. Namely, H,,(z) isequal to the operator of convolution by the measure
e” iy ie Hy(x) = He-ioo - Since p1 has compact support and each @ ; is continuous, thisimpliesthat H ,
is of class C>°(®). So Assumption 2.2 is satisfied. Furthermore, the commutativity of central measures with
respect to the convolution product implies that p x e~ ® ;= e~%® ;5 y or equivalently that H H (z) =
H(z)H. So Assumption 2.3 is satisfied. Finally, the equality H ,,(v) = Ho-i-» , readily impliesthat (H},); =
H ip, .

Sji nce both Assumptions 2.2 and 2.3 are satisfied, the general results of the previous sections apply. How-
ever, it is very complicated to describe the set «(H ) in the present generality. Therefore, we shall now assume
that the group G is abelian in order to use the Fourier transformation to determine some properties of «(H ).
So let us assume that G is alocally compact abelian group. Then any measure on G is automatically central,
and thus we only need to suppose that 1 is symmetric and with compact support. For a suitably normalised
Haar measure p, on the dua group G, the Fourier transformation .7 defines a unitary isomorphism from ‘H
onto L2(G, dp,). It maps unitarily H,, on the operator M,,, of multiplication with the bounded continuous real
functionm := .% (1) on G. Furthermore, one has

U(Hu) =o(My,) = m(a)v UP(HN) = Up(Mm) = {S eR | PA (m_l(s)) > O}a (7.2)

where the overlines denote the closurein R.

Let usrecall that thereisan almost canonical identification of Hom (G, R) withthe vector space Hom (R, G)
of all continuous one-parameter subgroups of G. Given therea character @ j» wedenoteby T, € Hom(R, @)
the unique element satisfying

~

(g,T;(t)) =9 fordlteRandg € G,
where (-,-) : G x G — C isthe duality between G and G.

Definition 7.1. A functionm : G — C is differentiable at¢ € G along the one-parameter subgroup Y ; €
Hom(R, G) if the function R > ¢ — m (& + Y;(t)) € C isdifferentiableat ¢ = 0. In such a case we write
(dym)(€) for & m(&+ 7T;(t))],_,- Higher order derivatives, when existing, are denoted by d %m, k € N.
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We refer to [28] for more details on differential calculus on locally compact groups. Here we only note that
(since p has compact support) the function m = % (1) is differentiable at any point £ along the one-parameter
subgroup Y ;, and —i.7 (@ 1) = d;m [28, p. 68]. Thisimplies that the operator (H,); is mapped unitarily by
- on the multiplication operator M 4;,,, and thus (H L,)Q isunitarily equivalent to the operator of multiplication
by the function 3~ (d;m)>. It follows that

K(H,) D> {X€R| 3 € G suchthat m(&) = Aand 3, (d;m)(€)? = 0}.

This property of x(H,) suggests a way to justify the formal formula of Remark 5.3 and to write nice
formulas for the operator 7" given by (5.2). Indeed, since #® ;.7 ! acts as the differential operator id; in
L2 (@, dpn), it followsthat @ ; leaves invariant the complement of the support of the functions on which it acts.
Therefore, theset ®;2, = .Z ~1(id;).Z 2, isincluded in the domain of the operator

—

H, )J a—1 Aldjm

M
(H],)? My (am)?

Thus the formula (5.2) takes the form

1 _ H_ iz H_is;n _
T= 2 Z] {Q)J Zk(H—iq’kﬂ)z + Zk(H_iéku,)z Q)j}

on 24, or dternatively the form

; Ma;m Ma;m
FTF " = 3225 {dj M - + - dj} (7.2

3 g (dggm)? Mzk(dk"”)z

on.Z %, (notethat the last expression is well-defined on .# 21, sincem = % (p) is of class C? in the sense of
Definition 7.1).

In simple situations, everything can be cal cul ated explicitly. For instance, when G = Z ¢, the Haar measure
p isthe counting measure, and the most natural real characters ¢ ; are the position operators given by

(©;0)(9) = gilg), € l>(2),

where g isthe j-th component of g € Z?. The operators H,, and (H,Q)Q are unitarily equivalent to multiplication

operators on G = (=, m]4. Since the measures 1, and ® ;1 have compact (and thus finite) support, these
operators are just multiplication operators by polynomials of finite degree in the variables e=%1, ... e~%4q,
with¢; € (—m, 7). So, theset k(H,,) isfinite, and the characterisation (7.1) of the point spectrum of H ,, implies
that o, (H,) = @ if supp(pr) # {e}. By taking into account Lemma 6.3.(b) and Theorem 3.6, we infer that
the sets 2, are dense in H for each ¢ > 0, and thus the case 2 of Section 6 applies. Finally, we mention as a
corollary the following spectral result:

Corollary 7.2. Let ;1 be a symmetric measure on Z< with finite support. If supp(u) # {e}, then the convolution
operator H,, in ‘H := L2(Z) is purely absolutely continuous.
75 H = h(P)
Consider in H := L?(R?) the dispersive operator H := h(P), where h € C3(R¢;R) satisfies the following
condition: For each multi-indices o, 8 € N¢ witha > g, || = |8] + 1, and |a| < 3, we have

|0°h| < Const. (1 + |9°h]). (7.3)

Note that this class of operators h(P) containsall the usual elliptic free Hamiltonians appearing in physics.
Take for the family & = (®4,..., D4) the position operators Q = (Q1, ..., Qq). Then we have for each
z € R?
H(z) = e~ Q H, i@ h(P + z),
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and H' = h/(P). So Assumption 2.3 is directly verified and Assumption 2.2 follows from (7.3). Thereforeall
the results of the previous sections are valid. We do not give more details since many aspects of this example,
including the existence of time delay, have aready been extensively discussed in [37]. We only add some
comments in relation with the case 3 of Section 6.

Assume that there exist A € R and a maximal subset 2 ¢ R¢ of strictly positive L ebesgue measure such
that h(z) = A forall z € Q. Thenany p inHq := {¢ € H | supp(Fy) C Q} isan eigenvector of h(P) with
eigenvalue \. Furthermore, one has .7 ~'Hg C K = ker (k'(P)?), and for simplicity we assume that the first
inclusion is an equality. Then, an application of the Fourier transformation shows that @) ;2 C G for each j,
where G is the orthocomplement of I in H. Thus Remark 6.2 applies, and one can consider the restrictions of
H and T’y to the subspace G, as described in the case 3 of Section 6. In favorable situations, we expect that the
restriction of 7'y to G acts as i% in the spectral representation of the restriction of H to G.

7.6 Adjacency operatorson admissible graphs

Let (X, ~) beagraph X with no multiple edges or loops. We write g ~ h whenever the vertices g and h of X
are connected. In the Hilbert space H := ¢2(X') we consider the adjacency operator

(He)(g) =Y olh), €M, geX.
h~g

We denote by deg(g) := #{h € X | h ~ g} the degree of the vertex g. Under the assumption that deg(X) :=
sup,¢ x deg(g) is finite, H is a bounded self-adjoint operator in 7. The spectral analysis of the adjacency
operator on some general graphs has been performed in [21]. Here we consider only a subclass of such graphs
called admissible graphs.

A directed graph (X, ~, <) isagraph (X, ~) and arelation < on the graph such that, for any g, h € X,
g ~ hisequivdenttog < h or h < g, and one cannot have both h < g and g < h. We aso write h > g for
g < h.Forafixed g, wedenoteby N~ (¢g) = {h € X | g < h} theset of fathersof gandby N *(g) = {h € X |
h < g} theset of sonsof g. Theset {h € X | g ~ h} of neighboursof g isdenotedby N(g) = N ~(g)UN*(g).
When using drawings, one has to choose a direction (an arrow) for any edge. By convention, we set g < h if
g < h, i.e. any arrow goes from a son to a father. When directions have been fixed, we use the simpler notation
(X, <) for thedirected graph (X, ~, <).

Definition 7.3. A directed graph (X, <) is called admissible if

(@) any closed pathin X hasindex zero (theindex of apath isthe difference between the number of positively
oriented edges in the path and that of the negatively oriented ones),

(b) forany g.h € X, onehas #{N () " N~ (h)} = #{N"*(g) N N*(h)}.
It is proved in [21, Lemma 5.3] that for admissible graphs there exists a unique (up to constant) map
O : X — Z satisfying ®(h) + 1 = ®(g) whenever h < g. With this choice of operator @, one obtains that
[H(@)¢l(g) = Y 120~ p(n) (7.4)
h~g
foreachz € R, ¢ € H,and g € X. Therefore, the commutativity of H and H (z) is equivalent to the condition

$ (el st -2l ) —
hEN(g)NN ()

for each g, ¢ € X. By taking into account the growth property of ® and Hypothesis (b) of Definition 7.3, one
obtainsthat the partsh € N~ (g) N N~ (¢) and h € N*(g) N Nt (¢) of the sum are of opposite sign, and that
thepartsh € N~ (g9) "N Nt(¢{)andh € N*(g) N N~ (¢) are null. So Assumption 2.3 is satisfied. One also
verifies by using Formula (7.4) that H belongs to C °°(®), and that Assumption 2.2 holds. It follows that the
general results presented before apply.
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Now, the operator H' acts as (H'¢)(g) = i( >~ ¢(h) = >, -, #(h)), and it is proved in [21, Sec. 5]
that

Hyp(H) =ker(H) =ker(H') = {p e H| X, p(h) =0=3,_, ¢(h) foreachg € X }. (7.5)

It is also proved that H is purely absolutely continuous, except at the origin where it may have an eigenvalue
with eigenspace given by (7.5). The proof of these statements is based on the method of the weakly conjugate
operator [9].

However, in the present generdlity, it ishardly possible to obtain a simple description of the set x(H) or the
operator T'y. We refer then to [21, Sec. 6] for explicit examples of admissible graphs with adjacency operators
whose kernels are either trivial or non trivial, and develop one example for which more explicit computations
can be performed. This example furnishes an illustration of the discussion in the case 3 of Section 6.

Figure 1: Example of an admissible directed graph X

We consider the admissible graph of Figure 1, and endow it with the function ® : X — Z as shown on the
picture. The vertices of the graph are denoted by z _ and z,. when ® takes an odd value, and by = when ® takes
an even value. More precisely, ®(z) = z for z even, and ®(z_) = ®(z;) = z for z odd. By using (7.5), it is
easily observed that K = ker ((H')?) isequa to

{pe L2(X) | ¢(2) = 0for z even,and (2 ) = — (2 ) for z odd}.

On the other hand, the orthocomplement G of K in L?(X) is unitarily equivalent to ¢%(Z), and the restriction H
of H to G isunitarily equivalent to the operator in £2(Z) defined by

(He)(2) == V2{p(z = 1) + p(z + 1)}, ¢ € 2(Z).

Using the Fourier transformation, one shows that this operator is unitarily equivalent to the multiplication oper-
ator M in L*((—m, w]) given by thefunction (—, 7] 3 £ — 2v/2 cos(€).

Now, the operator @ in L?(X) isclearly reduced by the decomposition & G. As mentionedin Remark 6.2,
this implies that the operator 7'y is also reduced by this decomposition. By taking Formula (7.2) into account,
one obtains that the restriction T of 7' to G is unitarily equivalent to the operator

g [-2v2sin©)] 7 + [~ 2v2sin0)] k)

on.# %, C L2((—m,]). Thisimplies, as expected, that T acts as i in the spectral representation of H.

7.7 Direct integral operators
Let 2 be ameasurable subset of R™ and let us consider a direct integral

(&)
H::/ A€ He,
Q

where d¢ is the usual Lebesgue measure on R™ and H, are Hilbert spaces. Take a decomposable self-adjoint
operator H = fga d¢ H(&) in H. Assume that there exists afamily ® = (®4,...,P4) of operatorsin H such
that Assumption 2.2 is satisfied. Assume also for each 2 € R¢ that the operator H (x) defined by (2.4) is de-
composable, i.e. there exists afamily of self-adjoint operators H (¢, z) inH ¢ suchthat H(x) = fga d¢ H(, x).
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Finally, assume that the operators H (¢) and H (¢, x) commute for each z € R? and a.e. ¢ € ©, so that H and
H () commute. Then Assumption 2.3 holds, and the general theory devel opedin the preceding sections applies.
Moreover, it is easily observed that the fibered structure of the map x +— H (z) implies that the operators H
are also decomposable. Therefore, there exists for each j € {1,..., d} afamily of self-adjoint operators H ;(§)
such that 1} = fs.e; d¢ H(&). In consequence A € R isaregular value of H if thereexists§ > 0 and € < oo
such that o .
i{%'H(H ©) +e] BTN, <c (7.6)

fora.e. £ € Q. We also recall that ker ((H’)?) # {0} if and only if there exists a measurable subset 2, C Q
with positive measure such that ker (H'(£)?) # {0} for each £ € Q.

We now give an example of quantum waveguide-type fitting into this setting (see [35] for more details).
Let ¥ be a bounded open connected set in R™, and consider in the Hilbert space L?(~ x R) the Dirichlet
Laplacian —Ap. The partial Fourier transformation along the longitudinal axis sends the initial Hilbert space
onto the direct integral ‘H := fﬂf dé Ho, with Hy = L2(X), and it sends —Ap onto the fibered operator
H:= fﬂf d¢ H(&), with H(¢) := ¢2 — A5. Here, — AT denotesthe Dirichlet Laplacianin ¥. By Choosing for
® the position operator () along the longitudinal axis one obtains that H (z) = fﬂf d§ H(&, x) with H(¢, x) =
(¢ +x)? — AF. Clearly, H(¢) and H (¢, x) commute, and so do H and H (). Furthermore, the operator H is of
class C*°(®), and H' isthefibered operator givenby H'(£) = 2¢. It followsthat both Assumptions 2.2 and 2.3
hold, and thus the general theory applies. Now a simple calculation using (7.6) shows that k(H) = o(—A ).
Furthermore, in the tensorial representation L?(X) ® L%(R) of L*(X x R), one obtainsthat 7y = 7' = ;1 ®
(QP~' + P~'Q) on the dense set

2 ={pc}(Z)@D(Q)) | ¢ = n(—Ap)y for somen € C(R\ k(H)) },

and Ty is equal to z‘% in the spectral representation of —Ap. In [35] it is even shown that the quantum time
delay exists and is given by Formula (6.4) for appropriate scattering pairs { —A p, —Ap + V}.

Acknowledgements

S. Richard is supported by the Swiss National Science Foundation. R. Tiedra de Aldecoais partialy supported
by the Nlcleo Cientifico ICM P07-027-F “Mathematical Theory of Quantum and Classical Magnetic Systems’
and by the Chilean Science Foundation Fondecyt under the Grant 1090008.

References

[1] W. O. Amrein, A. Boutet de Monvel and V. Georgescu. C'p-groups, commutator methods and spectral
theory of N-body Hamiltonians, volume 135 of Progress in Math. Birkhauser, Basel, 1996.

[2] W.O. Amreinand M. B. Cibils. Global and Eisenbud-Wigner time delay in scattering theory. Helv. Phys.
Acta 60: 481-500, 1987.

[3] W.O.Amrein, M. B. Cibilsand K. B. Sinha. Configuration space properties of the S-matrix and time delay
in potential scattering. Ann. Inst. Henri Poincaré 47: 367—382, 1987.

[4] W. O. Amrein and Ph. Jacquet. Time delay for one-dimensional quantum systems with steplike potentials.
Phys. Rev. A 75(2): 022106, 2007.

[5] 1. Antoniou, I. Prigogine, V. Sadovnichii and S. A. Shkarin. Time operator for diffusion. Chaos Solitons
Fractals 11(4): 465477, 2000.

[6] A. Aral. Generalized Weyl relation and decay of quantum dynamics. Rev. Math. Phys. 17(9): 1071-1109,
2005.

27



[7] M. Sh. Birmanand M. Z. Solomjak. Spectral theory of selfadjoint operators in Hilbert space. Mathematics
and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987. Trandlated from the 1980
Russian original by S. Khrushchév and V. Peller.

[8] A.Boutet de Monvel and V. Georgescu. The method of differential inequalities. In Recent developments in
quantum mechanics pp. 279-298. Math. Phys. Stud. 12, Kluwer Acad. Publ., Dordrecht, 1991.

[9] A. Boutet de Monvel, G. Kazantseva and M. Mantoiu. Some anisotropic Schrodinger operators without
singular spectrum. Helv. Phys. Acta 69(1): 13-25, 1996.

[10] E. B. Davies. Spectral theory and differential operators, volume 42 of Cambridge Studies in Advanced
Mathematics Cambridge University Press, Cambridge, 1995.

[11] G. B. Folland. A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press,
Boca Raton, 1995.

[12] E. A. Gaapon. Pauli’s theorem and quantum canonical pairs. the consistency of a bounded, self-adjoint
time operator canonically conjugate to a Hamiltonian with non-empty point spectrum. R. Soc. Lond. Proc.
Ser. A Math. Phys. Eng. Sci. 458: 451472, 2002.

[13] V. Georgescu and C. Gérard. On the virial theorem in quantum mechanics. Commun. Math. Phys. 208:
275281, 1999.

[14] F. Gomez. Self-adjoint time operators and invariant subspaces. Rep. Math. Phys. 61(1): 123-148, 2008.

[15] C. Gérard and R. Tiedra de Aldecoa. Generalized definition of time delay in scattering theory. J. Math.
Phys. page 122101, 2007.

[16] T. Goto, K. Yamaguchi and N. Sudo. On thetime operator in quantum mechanics. Threetypical examples.
Progr. Theoret. Phys. 66(5): 15251538, 1981.

[17] F Hiroshima, S. Kuribayashi and Y. Matsuzawa. Strong time operators associated with generalized Hamil-
tonians. Lett. Math. Phys. 87(1-2): 115-123, 2009.

[18] P.T.Jergensenand P. S. Muhly. Selfadjoint extensions satisfying the Weyl operator commutation rel ations.
J. Analyse Math. 37: 46-99, 1980.

[19] M. Miyamoto. A generalized Wey! relation approach to the time operator and its connection to the survival
probability. J. Math. Phys. 42(3): 1038-1052, 2001.

[20] A. Mohapatra, K. B. Sinhaand W. O. Amrein. Configuration space properties of the scattering operator
and time delay for potentials decaying like |x| =, @ > 1. Ann. Inst. H. Poincaré Phys. Théor. 57(1):
89-113, 1992.

[21] M. Mantoiu, S. Richard and R. Tiedra de Aldecoa. Spectral analysis for adjacency operators on graphs.
Ann. Henri Poincaré 8(7): 1401-1423, 2007.

[22] M. Mantoiu and R. Tiedra de Aldecoa. Spectral analysis for convolution operators on locally compact
groups. J. Funct. Anal. 253(2): 675691, 2007.

[23] J. G. Mugaand C. R. Leavens. Arrival time in quantum mechanics. Phys. Rep. 338(4): 353-438, 2000.

[24] J. G. Muga, R. SllaMayato and i. L. Egusquiza, editors. Time in quantum mechanics. Vol. 1, volume 734
of Lecture Notes in Physics. Springer, Berlin, second edition, 2008.

[25] M. Razavy. Time of arrival operator. Canad. J. Phys. 49: 3075-3081, 1971.
[26] M. Reed and B. Simon. Methods of modern mathematical physics I, Functional analysis. Academic Press
Inc. [Harcourt Brace Jovanovich Publishers], New York, second edition, 1980.

28



[27] M. Reed and B. Simon. Methods of modern mathematical physics Il, Fourier analysis, Self-adjointness.
Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1975.

[28] J. Riss. Eléments de calcul différentiel et théorie des distributions sur les groupes abéliens localement
compacts. Acta Math. 89: 45-105, 1953.

[29] D. Robert and X. P. Wang. Existence of time-delay operators for Stark Hamiltonians. Comm. Partial
Differential Equations 14(1): 63-98, 1989.

[30] D. Robert and X. P. Wang. Time-delay and spectral density for Stark Hamiltonians. 11. Asymptotics of
trace formulae. Chinese Ann. Math. Ser. B 12(3): 358383, 1991.

[31] J. Sahbani. The conjugate operator method for locally regular Hamiltonians. J. Operator Theory 38(2):
297-322, 1997.

[32] J. Sahbani. Spectral theory of certain unbounded Jacobi matrices. J. Math. Anal. Appl. 342: 663-681,
2008.

[33] K. Schmidgen. On the Heisenberg commutation relation. 1. J. Funct. Anal. 50(1): 8-49, 1983.
[34] B. Thaller. The Dirac Equation. Springer-Verlag, Berlin, 1992.

[35] R. TiedradeAldecoa. Timedelay and short-range scattering in quantum waveguides. Ann. Henri Poincar é
7(1): 105-124, 2006.

[36] R. Tiedra de Aldecoa. Anisotropic Lavine's formula and symmetrised time delay in scattering theory.
Math. Phys. Anal. Geom. 11(2): 155-173, 2008.

[37] R. Tiedrade Aldecoa. Time delay for dispersive systems in quantum scattering theory. Rev. Math. Phys.
21(5): 675-708, 2009.

[38] J. Weidmann. Linear operators in Hilbert spaces. Springer-Verlag, New York, 1980.
[39] Z.-Y. Wang and C.-D. Xiong. How to introduce time operator. Ann. Physics 322(10): 23042314, 2007.

29



