N

N

CA Manager: a Framework for Creating Customised
Workflows for Ontology Population and Semantic
Annotation

Florence Amardeilh, Danica Damljanovic, Kalina Bontcheva

» To cite this version:

Florence Amardeilh, Danica Damljanovic, Kalina Bontcheva. CA Manager: a Framework for Creat-
ing Customised Workflows for Ontology Population and Semantic Annotation. Semantic Authoring,
Annotation and Knowledge Markup Workshop (SAAKM 2009), Sep 2009, Los Angeles, United States.
hal-00411247

HAL Id: hal-00411247
https://hal.science/hal-00411247v1
Submitted on 26 Aug 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00411247v1
https://hal.archives-ouvertes.fr

CA Manager: a Framework for Creating Customised
Workflows for Ontology Population and Semantic
Annotation

Florence Amardeilh

Danica Damljanovic

Kalina Bontcheva

Mondeca Department of Computer Department of Computer
3, cite Nollez Science Science
75018 Paris, France University of Sheffield University of Sheffield

florence.amardeilh
@mondeca.com

ABSTRACT

The aim of semantic annotation is to bridge the large
gap between structured knowledge and the large vol-
umes of unstructured text data that companies and
people need to deal with daily. Alas, the process is very
labourious and error-prone, even when performed semi-
or fully automatically. Although widely researched, the
two key steps in this process — semantic annotation
and ontology population — still hold outstanding chal-
lenges. While there are numerous tools in existence,
many lack compliance with recent standards, but more
importantly, lack the flexibility to customise the anno-
tation workflow. In this paper, we present the Content
Augmentation Manager Framework, which bridges the
gap between information extraction tools and semantic
repositories by allowing easy plugin of various types of
components. It is also capable of controlling the pro-
cess of semantic annotation and ontology population by
means of consolidation algorithms.

General Terms
semantic annotation, semantic repositories, ontologies,
content augmentation

Keywords
knowledge acquisition, ontology population, software
artefacts, key concept identification.

1. INTRODUCTION

Copyright is held by the author/owner(s).
SAAKM °09 Berkeley, California USA
ACM

Regent Court, 211 Portobello
Sheffield S1 4DP, UK

D.Damljanovic
@dcs.shef.ac.uk

Regent Court, 211 Portobello
Sheffield S1 4DP, UK

K.Bontcheva
@dcs.shef.ac.uk

Gartner predicted in 2002! that for the next decade
more than 95% of human-to-computer information in-
put will involve textual language. They also predict
that by 2012 taxonomic and hierarchical knowledge map-

ping and indexing will be prevalent in almost all information-

rich applications. There is a tension here: between the
increasingly rich ontology-based, semantic models on
the one hand, and the continuing prevalence of human
language materials on the other. This process may be
characterised as the dynamic creation of interrelation-
ships between ontologies and unstructured and semi-
structured textual content in a bidirectional manner.

However, transforming huge amount of unstructured
text into the semantically interlinked knowledge space
is a big challenge. Two key parts of this process are: 1)
semantic annotation, and 2) ontology population. We
define semantic annotation as a formal representation
of content, expressed using concepts, relations and in-
stances as described in an ontology, and linked to the
original resource. Ontology instances are usually stored
in a knowledge base independently from the annotated
resource, as in the case of KIM [11] or ITM [3]. The
process of adding new class instances or property val-
ues to a knowledge base is called knowledge acquisition
or ontology population. As such, the ontology population
looks at semantic annotation as means for data-driven
enrichment of an existing knowledge base.

Although widely researched, both semantic annotation
and ontology population tasks still remain a big chal-
lenge, as the role of human annotators remains paramount.
Consequently, high-quality automation is one of the very
important requirements in order to ease the knowledge
acquisition bottleneck, particularly for annotating large
collections of legacy documents [12]. While there are
numerous tools in existence, many lack compliance with

http://www3.gartner. com/DisplayDocument?id=379859

recent standards, but more importantly, lack the flexi-
bility to customise the annotation workflow. Moreover,
the workflow needs to also accomodate human, as well
as automatic annotators.

In this paper, we present the Content Augmentation
Manager Framework (CA Manager) which is capable of
performing and controlling the process of semantic an-
notation and ontology population by means of consol-
idation algorithms. This framework supports ontology
population from text (semi)automatically, by allowing
easy plugin of various types of components including in-
formation extraction tools, customised domain ontolo-
gies, and diverse semantic repositories. In other words,
this framework helps to bridge the gap between infor-
mation extraction tools and the semantic repositories
which are used to store the collected knowledge.

This paper is structured as follows. In Section 2 we
present CA Manager. Evaluation results are presented
in Section 3. Similar approaches are discussed in Sec-
tion 4. Finally, we draw our conclusions and plan for
future work in Section 5.

2. THE CONTENT AUGMENTATION MAN-

AGER FRAMEWORK

The core philosophy of the CA Manager is to bridge
the gap between the content augmentation tools, and
the semantic repository tools. It is conceived as a mid-
dleware, meaning that it does not have the responsibil-
ity neither of the information extraction task by itself,
nor of the knowledge storage, but it is flexible enough
to adapt to any domain ontology, various content aug-
mentation tools, semantic repositories and workflow re-
quirements. It is, amongst other things, capable of
controlling the quality and the validity of information
extraction results against an ontology, matching them
against existing resources (the application’s knowledge
base or repositories from the linking open data initiative
for instance), and enriching them. To achieve that goal,
the CA Manager relies on the recommendations for-
mulated by the Semantic Web community (RDF/OWL
languages, Service Oriented Architecture) combined with
a UIMA-based infrastructure which has been enriched
and customized to address the specific needs of semantic
annotation and ontology population tasks.

The UIMA (Unstructured Information Management Ar-
chitecture) framework aims at providing a development
platform for systems that analyze large volumes of un-
structured information in order to discover knowledge
that is relevant to an end user?. We adopted UIMA as
the foundation of the internal architecture of the CA
Manager, due to its ease of integration and composi-
tion of internal or external modules, and more impor-

2UIMA website: http://www.alphaworks.ibm.com/tech/
uima

tantly its wide acceptance by the Information Extrac-
tion (IE) community. However, although UIMA pro-
vides the building blocks to develop knowledge acquisi-
tion applications based on text-mining components, it
does not give any guidelines as to which steps should
be arranged in which order. Moreover, none of the ex-
isting components in the pipeline addresses the issue
of controlling the quality and validity of the generated
annotations/instances. Moreover, its Common Analysis
Structure (CAS) defines a high-level annotation schema
but it needs to be redefined for each new application
need. Lastly, it uses a proprietary way to expose web-
services (the Vinci IBM protocol), that makes it even
more complex, as it is not reusing open Semantic Web
standards.

Therefore, we implemented the CA Manager in order
to develop a flexible architecture based on a combina-
tion of several UIMA Analysis Engines. UIMA provides
an Eclipse plugin Eclipse facilitating the definition and
customisation of each Analysis Engines (stored in an
XML file) needed in the target application and their
ordering as a workflow. Therefore, each step of the
annotation workflow is a component that can be plug
in or out according to the objectives of the final ap-
plication. At the same time, we aimed at improving
the UIMA infrastructure with the systematic use of Se-
mantic Web standards We defined an RDF-based an-
notation schema dedicated to ontology population and
semantic annotation tasks, composed of entities, prop-
erties, annotations and offsets. This annotation schema
is produced after applying the first Analysis Engine and
then enriched and controled by the following ones dur-
ing the whole duration of the workflow process. We also
provide a distributed service-oriented architecture rely-
ing on languages and protocols defined for the Semantic
Web, especially for easing the integration with external
components through the use of opened web services.

Furthermore, the CA Manager proposes a default work-
flow composed of a list of logical steps dedicated to se-
mantic annotation and ontology population, see Fig-
ure 1:

e FExtracting the valuable knowledge;
e Consolidating knowledge;

e Storing

These three phases allow the connection with informa-
tion extraction tools (being defined as UIMA analysis
engines plugin or providing a web service), semantic
repositories and domain ontologies or corpus.

2.1 Extracting knowledge from text
The information Extraction component is made of two
steps, split (optional) and extract. Split divides the in-

1. Information
Extraction

2. Information 3. Information
Consolidation Storage

Clean +
Merge

Extract

—7

RegExp| | KCIT

Control Infer

PN

™ OWLIM

Split

N AN

RDF | OwL ITM | Sesame

Figure 1: Specialized UIMA processing pipeline

put into multiple parts, for example, a corpus into a set KCIT remains domain-independent, as all domain-specific

of documents, or a single document into well-identified
sections. The second, extract, step calls an Information
Extraction tool, in order to process the text and find
occurrences of the entities in the documents. To com-
ply with the TAO project use cases, we developed the
Key Concept Identification Tool (KCIT) to annotate
software artefacts, based on the GATE [5] framework
for semantic annotation and text mining.

2.1.1 KCIT

KCIT [7] automatically retrieves key concepts from legacy

documents with regards to the domain ontology. These
annotations are created based on the pre-condition that
a specific part of a document is referring to a particu-
lar ontology resource if the lemmas of the two match.
By matching lemmas, we ensure that all morphological
inflections of the relevant terms will be matched. The
KCIT process can be broken down into several steps:

e Building a list of relevant terms. Given an on-
tology, lexicalisations of all ontological resources
(classes, instances, properties, property values) are
lemmatised and added to a gazetteer list.

e Annotating the legacy content. The legacy content
is first lemmatised, with a morphological analyser.
It is then matched against the gazetteer list cre-
ated in the previous step.

e Resolving conflicts. This step includes filtering an-
notations and solving ambiguity problems such as
removing redundant annotations.

To build a list of relevant terms dynamically we first
extract a list of the ontology resource names (i.e., frag-
ment identifiers) and their assigned property values (e.g.,
label and datatype property values). Each item from
the list is further processed, based on some heuristic
rules derived from different ontology designs. Although
there is no need to customise KCIT when using it with
different ontologies, customisation might yield better re-
sults. By default, KCIT apply several rules such as re-
placing dashes and underline characters with spaces and
also splitting camelCase words. In addition it applies
some heuristic rules which are optional, as their usage
depends on the lexicalisations available in the ontology.

issues are implemented through parameters. Typically,
the output of a content augmentation tool is in some
kind of XML format and is not connected directly to
the ontology. In such cases, it needs to be transitioned
to the generic Annotation Schema (AS) of the CA Man-
ager through the use of a mapping. However, as KCIT
produces ontology-based annotations, such a mapping
is not necessary in this case, because the annotations
are directly grounded in the ontology model.

2.2 Consolidating annotations and knowledge

with an ontology repository
We studied in [2] the various possible cases of instances
and annotation creation and identified two axes of con-
solidation:

1. the first axis defines the ontological element con-
cerned, i.e. an instance of a class, a property value
or a semantic annotation

2. the second axis defines the constraints to be checked,
i.e. non redundancy, the domain and range restric-
tions and the element’s cardinality

Each of the CA Manager consolidation algorithms takes
into account these two axis. In the Information Consol-
idation component, they are performed through three
steps, merge, control and optionally infer.

The first step, merge, eliminates the duplicates within
the CAS (same entity or annotations occurring more
than once in the CAS) and queries the semantic repos-
itory in order to retrieve the corresponding URI of the
concerned entity or annotation if not present. These
queries can be simple (class + string label) or multi-
criteria (class + set of required properties that iden-
tify unambiguously an entity in the repository). For
instance, a person can be queried by its name. How-
ever, in cases of homonymy, looking at the person name
is clearly not enough and one might want to query on
particular properties such as the date of birth that can
better discriminate several instances of persons shar-
ing the same name. This multicriteraai search is built
from the restricted properties where cardinality is min-
imum 1; we call these properties identifier properties
as they are required to identify and define an instance

of a concept. In case of law case reports, the identi-
fer properties are the court, the location of the court,
the date of the decision and the decision itself. If it is
not possible to disambiguate between two instances of
the semantic repository because for example no iden-
tifier properties have been extracted and annotated as
such, then the new entity or annotation is tagged with
a metadata ”invalid”.

The control step verifies that the extracted entity or
annotation is valid against the ontology model. This
implies controlling domains and ranges, cardinalities,
date formats and the temporal information, the num-
ber formats and metric systems, etc. For instance, if
in the preceding step the extracted entity was merged
with an existing instance, the algorithms look at the
properties of the extracted entity: are these properties
types authorized for the entity’s class? do these prop-
erties already exist on the merged instance? do they
have the same values or different values? then how do
we know which value is the right one, especially when
dealing with thesaurus values such as geographical loca-
tions, or with time value such as dates? The algorithms
try to automatically resolve these issues and when not
possible, they also mark the new entity or annotation
with the ”invalid” metadata. All invalid statements are
stored in the semantic repository on the server so that
they can be retrieved and presented to the end-user for
manual validation, if required by the target application.

The last step of this component, infer, is optional. It ap-
plies inference rules through a reasoning engine in order
to discover new entities or new relations between them
and also to control the overall coherence and quality of
the semantic repository.

2.3 Storing annotations and knowledge in repos-

itories

The Information Storage component has two steps, se-
rialise and store. The serialization step parses the en-
riched and consolidated annotation schema in order to
generate an output in the requested applicatoin format
(XML, RDF, OWL, NewsML, CityGML, etc.). The
second step, storage, is optional as it depends if the ap-
plication directly digests the serialised format or stores
the results in a knowledge store (such as ITM) and/or
in a dedicated annotation server (such as Sesame).

The CA Manager framework is open-source and avail-
able on SourceForge.net®. The release includes a doc-
umentation describing how to install the CA Manager,
how to configure workflows, how to develop new plugins
as for connecting a new information extraction engine
for example, and so on. Moreover, the above pipeline
is also exposed as a web service, and a testing web

3CA Manager release:
projects/scan-ca-manager

http://sourceforge.net/

client application is available from http://client2.
mondeca.com/scan/.

3. EVALUATION

Within the TAO project* we implemented different work-
flows (a combination of different ontologies, semantic

annotation tools, semantic repositories and corpora) for

evaluating the flexibility and the scalability of the CA

Manager framework. One of these was composed of

loading the upper-level PROTON Ontology® in the Sesame
RDF repository and applying simple regular expressions
on the corpus. The other two were based on the GATE
Ontology developed within the TAO project, both using
KCIT as the content augmentation system but one se-
mantic repository being ITM® and the second one being
Sesame RDF repository. Moreover, we have challenged
flexibility of CA Manager beyond the TAO project by
trialing it in different environments with various infor-
mation extraction tools as well. For more details, see

[6].

The GATE domain ontology” contains knowledge about
GATE components, modules, plugins and language pro-
cessing resources and was used by KCIT to annotate
software artefacts about GATE software®. In the rest
of this section, we present evaluation of the two main
steps described above: information extraction and con-
solidation, based on the described workflow configura-
tion, using GATE ontology, KCIT annotation tool and
ITM semantic repository.

We have first evaluated the KCIT information extrac-
tion tool, as consolidation is entirely dependent on the
quality of the KCIT output. As KCIT is primarily a
semantic annotation tool, we have measured its perfor-
mance using standard information extraction measures,
namely precision and recall. We collected 64 GATE
software artefacts of various types, namely source code,
source documentation, GATE user manual, publications
and forum posts from the GATE mailing list. Then, we
organised an annotation exercise with 12 human sub-
jects to whom we gave a manual on how to proceed
in validating annotations and creating a gold standard.
Each document has been assigned to two participants
so that we can calculate inter-annotator agreement.

3.1 Inter-annotator agreement

Inter-annotator agreement is used to establish the upper
bounds on performance of information extraction tools
such is KCIT. Table 1 shows precision, recall and F-
Measure values, based on the results of this experiment.
For computing these measures between two annotation

4TAO website: http://www.tao-project.eu

SPROTON website : http://proton.semanticweb.org
SITTM website: http://mondeca.com/index.php/en/
intelligent_topic_manager
"http://gate.ac.uk/ns/gate-kb

8GATE website: http://gate.ac.uk

sets, one can use one annotation set as gold standard
and another set as system output. One can switch the
roles of the two annotation sets. The Precision and
Recall in the former case become Recall and Precision
in the latter, respectively. But the F1 remains the same
in both cases.

corpus precision recall fl
user manuals 0.90909094 1 0.95238096
publications 0.90909094 1 0.95238096
Web pages 1 08 0.88888896
source code 0.71428573 0.625 (.666666T
Java doc files 0.64 0.9411765 0.7619047
forum posts 1 1 1
0.862077935 0.89436275 0.87037038

Table 1: Inter-annotator agreement

Disagreements between annotators occurred for all doc-
ument types excluding forum posts, with the source
code being most problematic. In some cases, annota-
tors did not agree on the annotation type. For instance,
resources was annotated as a mention of gate:GATE-
Resource® by one annotator, whereas another annota-
tor labeled it as gate:ResourceParameter. In some cases,
annotators decided to delete an annotation such as in
the sentence Couldn’t get resource data for
gate.creole.morph. Morph, although the context indicates
that resource refers to the GATE-Resource concept.

Another interesting example is annotating Annotation-

Schema() with brackets included, or protected FeatureMap

features annotated as a whole, not only features part as
done by the other annotators.

We used the human-annotated corpus mentioned above
to optimise the KCIT tool. In the first iteration we com-
pared the automatic results of KCIT against the gold
standard. Then, the mistakes were examined manually
and rules for improving KCIT performance were de-
rived and implemented, mostly concerning the filtering
and disambiguation phase.

After improving KCIT, 4956 annotations (out of 6175
in total) were correct, 49 partially correct!®, 347 anno-
tations were missing (manually added by participants
who created the gold standard), and 823 annotations
were wrong (manually deleted by the participants who
created the gold standard). These were used in the cal-
culation of the precision and recall figures reported in
Table 2.

We conclude that with the proper configuration and

Ygate: is used instead of the full namespace which is http:
//gate.ac.uk/ns/gate-ontology

10\Manually modified by the participants who created the gold
standard, where modifications include for example extend-
ing the annotation to refer to the longer string; for instance,
if 4an_roberts is not annotated as a whole, but only ian is,
then this is considered partially correct.

tailoring the filtering phase, very good results can be
achieved. The quality of the KCIT annotations ap-
proaches that of human annotators, while offering sig-
nificant gains in terms of annotation effort required.

3.2 Evaluation of the information extraction

and consolidation phase

We selected another 20 documents to serve as a repre-
sentative corpus of GATE software artefacts, on which
to evaluate KCIT’s performance. This selection is made
in order to cover not only the knowledge about GATE,
but also different types of documents (structured, semi-
structured, and unstructured). As before, these were
annotated manually and then used to calculate preci-
sion and recall values as presented next.

3.2.1 Information extraction

To evaluate the information extraction phase, the au-
tomatic annotations produced by KCIT were compared
against the gold standard, using the GATE Benchmark-
ing tool [4]. The results are shown in Table 3.

[Document group [Number || Precision | Recall |
Forum posts 4 0.986 1.0
GATE User Manual chapters | 7 0.96 0.96
Web pages 2 0.944 0.951
publications 3 0.898 0.958
jJava classes 3 0.973 0.989
GATE developer’s guide 1 0.965 0.984

[Total [20 [[0.943 [0.969

Table 3: Precision and recall measures for the
20 GATE software artefacts

For the 20 selected documents, 4523 created annota-
tions were correct, 41 annotations were partially cor-
rect, 126 annotations were missing, and 255 were spu-
rious. Further inspection of the annotated documents
revealed that the majority of the spurious/missing an-
notations were due to errors by the GATE morphologi-
cal analyser. For example, it could not extract correctly
the roots of acronyms and camelCased words: the root
of LanguageResources remained LanguageResources.

In addition, there were many wrong annotations of the
word learn. The problem arises from KCIT not be-
ing able to disambiguate correctly based on the local
context, resulting in each appearance of the word learn,
e.g., learn GATE using movie tutorials, being annotated
as referring to the GATE maching learning plugin. Sim-
ilarly, many annotations were created for each mention
of the word resources, even though there was no refer-
ence to GATE resources. For example, when reporting
the problems on the mailing list, a user said I cannot
waste too much resources on the server..., meaning com-
putational time, not GATE components. Nevertheless,
as demonstrated by the overall results, such problem-
atic cases were quite infrequent.

Number of
Document group documents

Difference
precision recall

Iteration 2
precision recall

Iteration 1
precision recall

user manuals 10 0.072878 0074256 0944312 0927389 0871434 0853133

publications 2 0.07385 0.06655 0.8992 0.85415 082535 (0.7876

web pages § 0.929883 0883333 0929883 0.883333 0 0

source code 19 0.711411 0930384 0722607 0.94087 0.009433 0.010485

Jjavadoc files 2 0.048976 005625 (.61 0.8505 0.557625 0.79375

forum posts 25 0.391792 0479632 0.714 0.88 0.322008 0.397043
64 0.371465 0415067 0.803334 0.889374 0430975 0473669

Table 2: Average precision and recall values for all documents

The third class of mistakes arose from overlapping an-
notations not being filtered out properly by KCIT. For
example, ANNIE NE Transducer was annotated as the
whole string refering to the eponymous processing re-
source, but also Transducer was annotated as a mention
of JAPE Transducer, which again should have been fil-
tered out as redundant.

Overall, we can conclude that the performance of KCIT
is of a good quality, especially on domain-specific doc-
uments and can be a good base for evaluating the con-
solidation algorithms. For example, forum posts and
java classes were annotated with a very high precision
and recall. As documents get more abstract and gen-
eralised, more ambiguities creep in (e.g., peer-reviewed
publications) and KCIT’s performance degrades.

3.2.2 Consolidation phase

To evaluate the consolidation algorithms, we applied
recall and precision measures on the same corpus using
the GATE ontology, KCIT exposed as a service, and
ITM repository for storage.

Here the recall and precision measures are applied to
the semantic annotations produced by KCIT exploited
for evaluating the two following tasks:

e ontology population (knowledge instances newly
created from annotations) and

e semantic annotation (semantic annotations con-
trolled with regard to the instantiated concepts in
the repository).

Hence, we obtain the two following adapted measures:

e Precision measures the number of annotations/instances

correctly acquired divided by the total number of
annotations/instances acquired.

e Recall measures the number of annotations/instances

correctly acquired divided by the number of anno-
tations/instances returned by KCIT.

Table 4 shows results according to the two different
tasks. We want to emphasize the fact that we are

not evaluating the KCIT results (done in previous sec-
tion) or the quality of the ontology model but the per-
formance of the consolidation algorithms themselves.
First, it is important to notice that the consolidation
algorithms are reducing the final number of knowledge
instances or annotations based on the KCIT annota-
tions. That means that the merging step is successful
in resolving references to different annotations towards
the same instance in the knowledge base. For exam-
ple, in the movies.xml file, on 129 annotations gener-
ated by KCIT, CA Manager created only 46 knowledge
instances and 27 semantic annotations. For instance,
the KCIT annotated the two terms ontology tool and
Ontology Tool that in fact correspond to the same in-
stance of the class GATEPIlugin, with both labels as
names and the following URI, http://gate.ac.uk/ns/
gate-ontology\#0ntology_Tools. This URI is then
used as the reference link to create the semantic an-
notation between the document and this instance. So
instead of having two annotations, only one is produced
in this case and the labels have been consolidated on the
knowledge instances. The same occurs with for example
the term ANNIE which is annotated 9 times by KCIT
whereas at the end of the CA Manager pipeline, there
is only one semantic annotation referring to the same
instance ANNIE of class " GATEPlugin”

It appears that sometimes the consolidation of the se-
mantic annotation on one label has not been correctly
achieved by the CA Manager, producing non pertinent
annotations or instance references as some duplicates

remained. For example, the terms ” pipeline” and ” Pipeline”

produced four knowledge instances: two with the URI
gate:Pipeline and two with the URI
gate:GATEController. At most, we would like to have
one of each URI if the CA Manager could not dis-
ambiguate to which instance the annotation refers to.
But it should aggregate the two labels ”pipeline” and
”Pipeline” on each URI value.

This leads to only 76.5% of precision for creating knowl-
edge instances first and as the semantic annotations are
referring to these instances with their URI, the preci-
sion result is slightly better, reaching 93.3%. Indeed,
if in the knowledge instances results, we obtain four in-
stances with the same URI, each having their own label,

Table 4: Performance results on the representative corpus of the GATE case study

Element Number Number Number Recall Precision F1l-measure
type in of correct of missing of (A/A+B) (A/A4+C) (R*P)/0.5
the elements elements spurious (R+P)
ontology (A) (B) elements

(©)
Kb instances 208 0 64 1 0.765 0.867
Annotations 168 0 12 1 0.933 0.965

in the semantic annotation we point to the URI, and not
the individual labels. As such, the different knowledge
instances possessing the same URI are merged into the
one with now four labels and the semantic annotation
can refer to this federated instance, improving the re-
sults. In fact, the more the CA Manager is used, the
better it enriches the knowledge base and therefore the
semantic annotation results.

The CA Manager obtains 100% recall on both tasks,
hence there is no loss of information after processing
the KCIT annotations to produce the final semantic
annotations and knowledge instances. The CA Man-
ager consolidation algorithms that deal with merging
need to be improved in order to eliminate duplicated
terms with different orthographic labels such as ” datas-
tore”, ”data store”, "DATASTORE”, and ”Data Store”
that must be merged together in the same knowledge
instance and thus producing only one semantic anno-
tation referring to the one particular instance. On the
other hand, the consolidation algorithms that control
the ontology model are performing nicely which is not
very difficult in the GATE case study as we mostly refer
to the class instances. There are no annotations which
refer to the relation between knowledge instances for ex-
ample. For doing this, we need to improve the linguistic
analysis to support that feature and thus evaluate prop-
erly this functionality. This is the case in the research
and industrial projects in which the CA Manager is now
used.

4. RELATED WORK

KIM [11] performs semantic annotation and ontology
population automatically in respect to their ontology,
by identifying the Key Phrases and Named Entities
(NE). As NE they consider people, organizations, loca-
tions, and others referred to by name. They use GATE
[4] for NE Recognition. Our approach is more flexi-
ble than KIM, in the sense that the CA Manager is a
generic framework and can thus support semantic an-
notation based on any information extraction tool, and
also any ontology, or semantic repository.

Other similar work includes frameworks such as S-Cream

[9], MnM [10], Artequakt [1] and OntoSophie [13]. We
can notice important differences between the CA Man-
ager framework and similar approaches: some of them
use machine learning techniques, some are based on

high-level generic ontologies such as PROTON!! rather
than domain-oriented ontologies, or they perform ei-
ther ontology population or semantic annotation. The
main difference between those platforms and the CA
Manager is the fact that the CA Manager preserves the
independence between the content augmentation tool,
such as KCIT, and the semantic repositories (Sesame!2,
ITM®). It acts as a mediator, providing greater flexi-
bility and adaptability capabilities as required by real
world applications. For more details about the existing
semantic annotation platforms we refer the reader to
the survey in [12].

Moreover, as the consolidation phase is a very impor-
tant part of the CA Manager, we would like to empha-
size that the tools for ontology population or semantic
annotation which describe, or even mention, the consol-
idation phase in their workflows [1], are rare. However,
this phase is extremely important to maintain the in-
tegrity and the quality of the application’s referential.
In fact, most of them rely on manual validation only,
to check the generated annotations or instances. In the
knowledge acquisition field, the ArtEquAkt project [1]
was concerned with the consolidation phase where Alani
et al. defined four problems related to the integration
of new instances in a knowledge base: duplicated infor-
mation, geographical consolidation, temporal consolida-
tion and inconsistent information. Their approach con-
sists of instantiating the knowledge base based on the
information extracted from the documents. They apply
a consolidation algorithm driven by a set of heuristics
and methods of terminological expansion based on the
WordNet [8] lexical base.

Contrary to their approach, we are convinced that in
order to preserve the integrity of the knowledge base,
this consolidation phase must be carried out before the
creation of the instances in the repository. Thus, only
new and consistent information is created, yet preserv-
ing the integrity of the referential and thus improving
the quality of the target application.

S. CONCLUSIONS

HPROTON website: http://proton.semanticweb.org/

12Sesame website: http://www.openrdf .org

IBITM website: http://mondeca.com/index.php/en/
intelligent_topic_manager

We presented the CA Manager framework which serves
as a mediator between semantic annotation and ontol-
ogy population, and is capable of consolidating and con-
trolling this process while allowing human annotators
to be involved, if required. We created various work-
flows to evaluate the flexibility and scalability of this
framework, which offers adapted workflows for ontol-
ogy population and semantic annotation based on Se-
mantic Web standards and UIMA concepts. The main
contribution of the CA Manager in comparison to other
similar tools is that it allows easy plugin of information
extraction tools, semantic repositories and ontologies.

We have created a gold standard corpus in the do-
main of software engineering, based on which we could
calculate Inter Annotation Agreement, and also preci-
sion and recall values of automatically processed results.
First, we have used this corpus to calculate the perfor-
mance of KCIT - a GATE-based information extrac-
tion tool which has been exposed as a Web service and
used by the CA Manager; then we calculated the per-
formance of the consolidation algorithms based on the
same corpus. The automatically produced annotations
reach the level of human annotators and are therefore
suitable for practical applications.

6. ACKNOWLEDGMENTS

This research was partially supported by the EU Sixth
Framework Program project TAO (FP6-026460).

7. REFERENCES
[1] H. Alani, S. Kim, D. Millard, M. Weal, W. Hall,

P. Lewis, and N. Shadbolt. Web-based Knowledge
Extraction and Consolidation for Automatic
Ontology Instantiation. In Proceedings of the
Knowledge Markup and Semantic Annotation
Workshop (SEMANNOT’03), Sanibel, Florida,
2003.

[2] F. Amardeilh. Semantic annotation and ontology
population. In J. Cardoso and M. Lytras, editors,
Semantic Web Engineering in the Knowledge
Society. Idea Group Publishing, 2008.

[3] F. Amardeilh and T. Francart. A semantic web
portal with hlt capabilities. Veille Stratégique
Scientifique et Technologique (VSSTO04),
2:481-492, 2004.

[4] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools
and Applications. In Proceedings of the 40th
Anniversary Meeting of the Association for
Computational Linguistics (ACL’02), 2002.

[5] H. Cunningham, V. Tablan, K. Bontcheva, and
M. Dimitrov. Language Engineering Tools for
Collaborative Corpus Annotation. In Proceedings

[10]

[12]

of Corpus Linguistics 2003, Lancaster, UK, 2003.
http://gate.ac.uk/sale/cl03/distrib-ollie-c103.doc.

D. Damljanovic, F. Amardeilh, and K. Bontcheva.
CA Manager Framework: Creating Customised
Workflows for Ontology Population and Semantic
Annotation. In Proceedings of The Fifth
International Conference on Knowledge Capture

(KCAP’09), California, USA, September 2009.

D. Damljanovic, V. Tablan, and K. Bontcheva. A
text-based query interface to owl ontologies. In 6th
Language Resources and Evaluation Conference

(LREC), Marrakech, Morocco, May 2008. ELRA.

C. Fellbaum, editor. WordNet - An Electronic
Lezical Database. MIT Press, 1998.

S. Handschuh, S. Staab, and F. Ciravegna.
S-CREAM — Semi-automatic CREAtion of
Metadata. In 13th International Conference on
Knowledge Engineering and Knowledge
Management (EKAW02), pages 358372,
Siguenza, Spain, 2002.

E. Motta, M. Vargas-Vera, J. Domingue,

M. Lanzoni, A. Stutt, and F. Ciravegna. MnM:
Ontology Driven Semi-Automatic and Automatic
Support for Semantic Markup. In 13th
International Conference on Knowledge
Engineering and Knowledge Management
(EKAW02), pages 379-391, Siguenza, Spain, 2002.

B. Popov, A. Kiryakov, A. Kirilov, D. Manov,
D. Ognyanoff, and M. Goranov. KIM — Semantic
Annotation Platform. In 2nd International
Semantic Web Conference (ISWC2003), pages
484-499, Berlin, 2003. Springer.

V. Uren, P. Cimiano, J. Iria, S. Handschuh,

M. Vargas-Vera, E. Motta, and F. Ciravegna.
Semantic annotation for knowledge management:
Requirements and a survey of the state of the art.

Web Semantics: Science, Services and Agents on
the World Wide Web, 4(1):14-28, January 2006.

A. G. Valarakos, G. Paliouras, V. Karkaletsis, and
G. Vouros. Enhancing ontological knowledge
through ontology population and enrichment. In
Engineering Knowledge in the Age of the
Semantic Web, pages 144-156, 2004.

