
HAL Id: hal-00411232
https://hal.science/hal-00411232

Submitted on 26 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enhancing XML Data Warehouse Query Performance
by Fragmentation

Hadj Mahboubi, Jérôme Darmont

To cite this version:
Hadj Mahboubi, Jérôme Darmont. Enhancing XML Data Warehouse Query Performance by Frag-
mentation. 24th Annual ACM Symposium on Applied Computing (SAC 2009), 2009, Hawaii, United
States. pp.1555-1562. �hal-00411232�

https://hal.science/hal-00411232
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enhancing XML Data Warehouse Query Performance
by Fragmentation

Hadj Mahboubi and Jérôme Darmont
University of Lyon (ERIC)

5 avenue Pierre Mendès-France
69676 Bron Cedex

France
{hadj.mahboubi,jerome.darmont}@eric.univ-lyon2.fr

ABSTRACT
XML data warehouses form an interesting basis for decision-
support applications that exploit heterogeneous data from
multiple sources. However, XML-native database systems
currently suffer from limited performances in terms of man-
ageable data volume and response time for complex ana-
lytical queries. Fragmenting and distributing XML data
warehouses (e.g., on data grids) allow to address both these
issues. In this paper, we work on XML warehouse fragmen-
tation. In relational data warehouses, several studies recom-
mend the use of derived horizontal fragmentation. Hence,
we propose to adapt it to the XML context. We particularly
focus on the initial horizontal fragmentation of dimensions’
XML documents and exploit two alternative algorithms. We
experimentally validate our proposal and compare these al-
ternatives with respect to a unified XML warehouse model
we advocate for.

Keywords
XML data warehouses, Multidimensional model, XML-native
databases, performance, fragmentation.

1. INTRODUCTION
Decision-support applications currently exploit more and

more heterogeneous data from various sources. In this con-
text, the eXtensible Markup Language (XML) is becoming a
standard for representing complex business data [3] and can
greatly help in their integration, warehousing and analysis.
Many efforts toward XML data warehousing have indeed
been achieved in the past few years [7, 21], as well as ef-
forts for extending the XQuery language with near On-Line
Analytical Processing (OLAP) capabilities such as advanced
grouping and aggregation features [3]. This research notably
aims at taking into account specificities of XML data (e.g.,
heterogeneous number and order of dimensions or complex
measures in facts, ragged dimension hierarchies, etc.) that
would be intricate to handle in a relational environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

XML-native database management systems (DBMSs) sup-
porting XQuery should form the basic storage component
of XML warehouses. However, they currently present poor
performances when dealing with the large data volumes and
complex analytical queries that are typical in data ware-
housing. Distributing a warehouse on a grid-like network
can contribute to improve storage and query performance.
Such a framework indeed provides both computing power
and distributed storage resources. Thus, it can be used to
handle large data warehouses efficiently.

Traditionally, the distribution process starts with data
fragmentation. Fragmentation consists in splitting a data
set into two or more parts (fragments) such that the combi-
nation of the fragments yields the original warehouse with-
out any loss nor addition of information. In the relational
context, derived horizontal fragmentation is acknowledged
as best-suited to data warehouses, because it takes decision-
support query requirements into consideration and avoids
computing unnecessary join operations [2]. Several approaches
have also been proposed for XML data fragmentation, but
they do not take data warehouse multidimensional architec-
tures (i.e., star-like schemas) into account.

In this paper, we thus propose to adapt derived horizon-
tal fragmentation techniques developed for relational data
warehouses to the XML context. We particularly focus on
the initial horizontal fragmentation of dimensions and adapt
and compare the two major algorithms that address this is-
sue: the predicate construction [17] and the affinity-based
[16] strategies.

Adapting these relational techniques onto XML warehouses
requires a well-identified XML warehouse model. Unfortu-
nately, although XML warehouse architectures from the lit-
erature share a lot of concepts (mostly originating from clas-
sical data warehousing), they are nonetheless all different.
Hence, as a secondary contribution of this paper, we pro-
pose a unified, reference XML data warehouse model that
synthesizes and enhances existing models, and on which we
can base our fragmentation work.

The remainder of this paper is organized as follows. First,
we introduce the state of the art regarding XML data ware-
houses, as well as our own reference XML warehouse model
(Section 2). Then, we present general definitions about frag-
mentation and discuss existing research related to relational
data warehouse and XML data fragmentation (Section 3).
We detail the specifics of our adaptation to XML data ware-
house fragmentation (Section 4) and experimentally demon-
strate that proper fragmentation significantly reduces the

execution time of analytical XQueries (Section 5). We fi-
nally conclude this paper and hint at future research direc-
tions (Section 6).

2. XML DATA WAREHOUSING

2.1 Related work
Several studies address the issue of designing and build-

ing XML data warehouses. They propose to use XML doc-
uments to manage or represent facts and dimensions. The
main objective of these approaches is to enable a native stor-
age of the warehouse and its easy interrogation with XML
query languages.

Pokorný models a XML-star schema in XML by defin-
ing dimension hierarchies as sets of logically connected col-
lections of XML data, and facts as XML data elements
[21]. Hümmer et al. propose a family of templates, named
XCube, enabling the description of a multidimensional struc-
ture (dimension and fact data) for integrating several data
warehouses into a virtual or federated warehouse [11]. Rusu
et al. propose a methodology, based on the XQuery tech-
nology, for building XML data warehouses. This method-
ology covers processes such as data cleaning, summariza-
tion, intermediating XML documents, updating/linking ex-
isting documents and creating fact tables [22]. Facts and
dimensions are represented by XML documents built with
XQueries. Park et al. introduce a framework for the multidi-
mensional analysis of XML documents, named XML-OLAP
[20]. XML-OLAP is based on an XML warehouse where ev-
ery fact and dimension is stored as an XML document. The
proposed model features a single repository of XML docu-
ments for facts and multiple repositories of XML documents
for dimensions (one repository per dimension). Eventually,
Boussäıd et al. propose an XML-based methodology, named
X-Warehousing, for warehousing complex data [7]. They use
XML Schema as a modeling language to represent user anal-
ysis needs.

2.2 XML data warehouse reference model
The studies enumerated in Section 2.1, though all dif-

ferent, more or less converge toward a unified XML ware-
house model. They mostly differ in the way dimensions are
handled and the number of XML documents that are used
to store facts and dimensions. A performance evaluation
study of these different representations showed that repre-
senting facts in one single XML document and each dimen-
sion in one XML document allowed the best performance [6].
Moreover, this representation allows to model constellation
schemas without duplicating dimension information. Sev-
eral fact documents can indeed share the same dimensions.
Furthermore, since each dimension and its hierarchical lev-
els are stored in one XML document, dimension updates
are more easily and efficiently performed than if dimensions
were either embedded with the facts or all stored in one
single document.

Hence, we adopt this architecture model. More precisely,
our reference data warehouse is composed of the following
XML documents (Definition 1):

1. dw-model.xml that represents warehouse metadata, the
XML graph representing warehouse metadata is de-
noted Gdw−model;

2. a set of factsf .xml documents that each store infor-
mation related to set of facts f ;

3. a set of dimensiond.xml documents that each store a
given dimension d’s member values.

Definition 1. An XML document is defined as a graph
(XML graph) whose nodes represent document elements or
attributes, and edges represent the element / sub-element (or
parent-child) relationship. Edges are labeled with element or
attribute names.

A factsf .xml document stores facts (Figure 1(a)). The
document root node, FactDoc, is composed of fact subele-
ments that each instantiate a fact, i.e., measure values and
dimension references. These identifier-based references sup-
port the fact-to-dimension relationship. The XML graph
representing fact set f is denoted Gfactsf

.
A dimensiond.xml document helps instantiate one dimen-

sion, including any hierarchical level (Figure 1(b)). Its root
node, dimension, is composed of Level nodes. Each one
defines a hierarchy level composed of instance nodes that
each define the level’s member attribute values. In addi-
tion, an instance element contains Roll-up and Drill-Down
attributes that define the hierarchical relationship within
dimension d. The XML graph representing dimension d is
denoted Gdimensiond

.

(b) (a)

...

...

dimension

dimension

Level

instance

instance

@id

attribute

attribute

@id @value

@value @value-id

@id
@dim-id

@id

@Roll-up

FactDoc

fact

measure

@mes-id @dim-id

(2)
(1)

Level

instance

@id

(3)

@Drill-Down

Figure 1: factsf .xml (a) and dimensiond.xml (b)
graph structure

3. DATABASE FRAGMENTATION

3.1 Definition
There are three fragmentation types in the relational con-

text [2]: vertical fragmentation, horizontal fragmentation
and hybrid fragmentation.

Vertical fragmentation splits a relation R into sub-relations
that are projections of R with respect to a subset of at-
tributes. It consists in grouping together attributes that
are frequently accessed by queries. Vertical fragments are
built by projection. The original relation is reconstructed
by joining the fragments.

Horizontal fragmentation divides a relation into subsets
of tuples using query predicates. It reduces query process-
ing costs by minimizing the number of irrelevant accessed
instances. Horizontal fragments are built by selection. The

original relation is reconstructed by fragment union. A vari-
ant, derived horizontal fragmentation, consists in partition-
ing a relation with respect to predicates defined on another
relation.

Finally, hybrid fragmentation consists of either horizontal
fragments that are subsequently vertically fragmented, or
vertical fragments that are subsequently horizontally frag-
mented.

3.2 Data warehouse fragmentation
Many research studies address the issue of fragmenting

relational data warehouses either to efficiently process ana-
lytical queries or to distribute the warehouse.

To improve ad-hoc query performance, Datta et al. ex-
ploit a vertical fragmentation of facts to build the Cuio index
[8], while Golfarelli et al. apply the same fragmentation on
warehouse views [10]. Bellatreche and Boukhalfa apply hor-
izontal fragmentation to a star-schema [2]. Their fragmen-
tation strategy is based on a query workload and exploits
a genetic algorithm to select a optimal partitioning schema
that minimizes query cost. Finally, Wu and Buchmaan rec-
ommend to combine horizontal and vertical fragmentation
for query optimization [24]. A fact table can be horizontally
partitioned according to one or more dimensions, it can also
be vertically partitioned according to its dimension foreign
keys.

To distribute a data warehouse, Noaman et al. exploit a
top-down strategy that uses horizontal fragmentation [17].
The authors propose an algorithm for deriving horizontal
fragments from the fact table based on queries that are de-
fined on all dimension tables. Finally, Wehrle et al. propose
to distribute and query a warehouse on a computing grid
[23]. They use derived horizontal fragmentation to split the
data warehouse and build a so-called block of chunks, a data
set defining a fragment.

In summary, these proposals generally exploit derived hor-
izontal fragmentation to reduce irrelevant data access rate
and efficiently process join operations across multiple rela-
tions [2, 17, 23]. In the literature, the prevalent methods
used for derived horizontal fragmentation are the following
[12].

• Predicate construction. This method fragments a
relation by using a complete and minimal set of pred-
icates [17]. Completeness means that two relation in-
stances belonging to the same fragment have the same
probability of being accessed by any query. Minimality
garantees that there is no redundancy in predicates.

• Affinity-based fragmentation. This method is an
adaptation of vertical fragmentation methods to hori-
zontal fragmentation [16]. It is based on the predicate
affinity concept [25], where affinity defines query fre-
quency. Specific matrices (predicate usage and affinity
matrices) are exploited to cluster selection predicates.
A cluster is defined as a selection predicate cycle and
forms a dimension graph fragment.

3.3 XML database fragmentation
Recently, several fragmentation techniques for XML data

have been proposed. They split an XML document into a
new set of XML documents. Their main objective is either
to improve XML query performance [9] or to distribute or
exchange XML data over a network [4, 5].

To fragment XML documents, Ma et al. define a new
fragmentation type: split [13], which is inspired from the
oriented-object domain. This fragmentation splits XML
document elements and assigns a reference to each sub-
element. The references are then added to the Document
Type Definition (DTD) defining the XML document. An-
drade et al. propose to apply fragmentation to an homoge-
neous XML collection [1]. They adapt traditional fragmen-
tation techniques to an XML document collection and base
their proposal on the Tree Logical Class algebra (TLC) [19].

Bose and Fegaras use XML fragments for data exchange
in a peer-to-peer network (P2P), called XP2P [5]. XML
fragments are interrelated and each is uniquely identified
by an ID. The authors propose a fragmentation schema,
called Tag Structure, to define the structure of data and
fragmentation information. Bonifati et al. also define XML
fragments for a P2P framework [4]. An XML fragment is
obtained and identified by a single path expression, a root-
to-node path expression XP, and managed on a specific peer.

In summary, these proposals adapt classical fragmentation
methods to split XML data. An XML fragment is defined
and identified by a path expression [4] or an XML algebra
operator [1]. Fragmentation is performed on a single XML
document [13] or on an homogeneous XML collection [1].

4. FRAGMENTING XML DATA
WAREHOUSES

4.1 Motivation
Approaches dealing with fragmentation in XML databases

adopt only primary horizontal fragmentation applied onto
one XML document (Section 3.3). They use fragmentation
to minimize XML query expression execution cost. How-
ever, in XML data warehouses, decision-support queries are
more complex: they involve multiple join operations over
multiple XML (fact and dimension) documents. Hence, pri-
mary horizontal fragmentation is not adapted in our con-
text. Relational data warehouse fragmentation approaches
recommend to use derived horizontal fragmentation (Sec-
tion 3.2), which is more adapted to analytical queries. In
addition, there are, to the best of our knowledge, no XML
data warehouses fragmentation works in the literature. In
consequence, we propose to adapt horizontal derived frag-
mentation to XML data warehouses (Definition 2).

Definition 2. In an XML data warehouse, derived hor-
izontal fragmentation first splits horizontally Gdimensiond

graphs with respect to a given workload W , and then par-
titions the Gfactf

graphs with respect to Gdimensiond
frag-

ments.

4.2 General principle
In our fragmentation methodology, we first apply a pri-

mary horizontal fragmentation onto warehouse dimensions
using either the predicate construction method, denoted PC,
or the affinity-based method, denoted AB (Section 3.2).
Both these methods input selection predicates (Definition
3) from W (Section 4.3.1). AB also exploits data access
frequencies. Our adaptations of PC and AB to the XML
context are described in Sections 4.3.2 and 4.3.3, respec-
tively. Both help fragment Gdimensiond

graphs. Note that
we consider both the PC and AB methods to compare their
efficiency, which has never been addressed in the literature

as far as we know. Based on these fragments, we then frag-
ment the Gfactsf

graphs and build a fragmentation schema
for the whole XML data warehouse. This process is detailed
in Section 4.4.

Definition 3. A selection predicate is defined by expres-
sion p := Pak

θ[value | ∅XPath(Pak
) | Q], where Pak

and
Q are path expressions and Pak

is defined on attribute ak,
θ ∈ {=, <,>,≤,≥, 6=}, value ∈ Dk where Dk is the domain
of ak, and ∅XPath is any XPath function 1.

4.3 Primary horizontal fragmentation

4.3.1 Selection predicate extraction
The set P of selection predicates used to fragment the

Gdimensiond
graphs is identified by parsing W . For exam-

ple, p1 := $y/attribute[@id =′ c nation key′]/ @value >′

15′ and p2 := $y/attribute[@id =′ p type′]/ @value =′

PROMOBURNISHEDCOPPER′ are selection predicates
obtained from query q1 in the sample XQuery workload pro-
vided in Figure 2.

q1 for $x in //FactDoc/Fact,
$y in //dimensions[@dim-id=’Customer’]/Level/instance
$z in //dimensions[@dim-id=’Part’]/Level/instance
where $y/attribute[@id=’c nation key’]/@value=’13’
and $y/attribute[@id=’p type’]/@value=’PROMO
BURNISHED COPPER’
and $x/dimension[@dim-id=’Customer’]/@value-id=$y/@id
and $x/dimension[@dim-id=’Part’]/@value-id=$z/@id
return $x

. . .
q10 for $x in //FactDoc/Fact,

$y in //dimensions[@dim-id=’Customer’]/Level/instance
$z in //dimensions[@dim-id=’Date’]/Level/instance
where $y/attribute[@id=’c nation key’]/@value>’15’
and $y/attribute[@id=’d date name’]/@value=’Saturday’
and $x/dimension[@dim-id=’Customer’]/@value-id=$y/@id
and $x/dimension[@dim-id=’Part’]/@value-id=$z/@id
return $x

Figure 2: Workload snapshot

4.3.2 PC primary horizontal fragmentation
Principle
Based on selection predicate set P and metadata from Gdw−model,
PC identifies candidate Gdimensiond

graphs for fragmenta-
tion. A candidate dimension graph Gcandidated

is a Gdimensiond

graph targeted by workload queries.
For each candidate dimension and its corresponding se-

lection predicate set Pd ⊂ P , a set of complete and minimal

selection predicates P
′

d is generated with the COM-MIN al-
gorithm [18] that guarantees completeness and minimality

(Section 3.2). PC finally builds from P
′

d a set of minterms
that horizontally fragment the Gcandidated

graphs.

Fragmentation methodology

1. Attribution of selection predicates to dimen-
sion XML graphs. This step affects to each di-
mension graph Gdimensiond

its corresponding selection
predicate set Pd ⊂ P . Pd is identified from Gdw−model,

1
http://www.w3.org/TR/xpath-functions/

which stores for each dimension its corresponding at-
tributes. Hence, we can identify candidate dimension
graphs (Gcandidated

) for horizontal fragmentation.

Example. Predicate p2 contains attribute c nation key.
In Gdw−model, c nation key is a member of the customer
dimension. Hence, we identify Gdimensioncustomer as a
candidate dimension for fragmentation.

2. Selection predicate completeness and minimal-
ity. In this step, we apply the COM-MIN algorithm,
which inputs Pd and outputs a set of complete and

minimal predicates P
′

d. Given P
′

d, the set Md of minterm
predicates is then constructed.
Md = {mi|mi = ∧qj∈P q∗j }, where q∗j = qj or q∗j = ¬qj ,
1 ≤ j ≤ n, 1 ≤ i ≤ 2n and n represents the number
of selection predicates. A minterm predicate mi ∈ Md

is the conjunction of all predicates from P
′

d, taken in
natural or negative form. m1 = p1 ∧ ¬p2 is an exam-
ple minterm predicate, where p1 and p2 are the sample
selection predicates from Section 4.2.

Example. Let P
′

customer = {$y/attribute[@id =
′c nationkey′]/@value = 13, $y /attribute[@id =
′c nationkey′]/@value > 15} be a complete and min-
imal set obtained by the COM-MIN algorithm for di-
mension customer. A minterm m1 is $y/attribute[
@id =′ c nationkey′]/@value = 13 and $y/attribute[
@id =′ c nation key′]/@value <= 15.

3. Candidate graph fragmentation. This step builds
primary horizontal fragments from Gcandidated

. A frag-
ment is obtained by associating to each minterm pred-
icate mi ∈ Md the set of nodes in Gcandidated

that
verifies it.

Example. Minterm m1 is used to fragment
Gcandidatecustomer .

4.3.3 AB primary horizontal fragmentation
Principle
AB uses query frequency to build horizontal fragments by
exploiting specific matrices (predicate usage and affinity ma-
trices). It clusters selection predicates from P by exploiting
a graphical algorithm. A cluster is defined as a selection
predicate cycle and forms a fragment of a Gdimensiond

graph.

Fragmentation methodology

1. Predicate usage matrix construction. The pred-
icate usage matrix, PUM , is built based on P . It
defines predicate usage of each query qi ∈ W . Matrix
lines represent workload queries and columns simple
selection predicates from P . General term PUM(i, j)
is set to one if qi includes predicate pj and to zero oth-
erwise. In addition, the usage frequency of each query
qi is stored in a vector Freq.

Example. Tables 1 and 2 provide examples of PUM
matrix and query frequency vector, respectively.

2. Predicate affinity matrix construction The pred-
icate affinity matrix, Aff , is built from the PUM ma-
trix (Table 3). It is a n×n matrix, where n represents

query/predicate p1 p2 p3 p4 ... pn

q1 1 0 0 0 0
q2 1 1 0 0 0
...
qm 1 1 0 0 1

n represents the number of selection predicates in P and m
the number of queries in W .

Table 1: Sample predicate usage matrix

q1 q2 ... qm

10 20 ... 5

Table 2: Sample query frequency vector

the number of selection predicates in P . Aff matrix
cells can contain numeric or nonnumeric (⇒, ⇐ and
∗) values. A numeric value of an Aff(i, j) cell gives
the frequency sum of all queries referencing both pred-
icates pi and pj . A value ”⇒” indicates that predicate
pi implies predicate pj ; a value ”⇐” indicates that
predicate pj implies predicate pi; and a value ”∗” indi-
cates that predicates pi and pj are similar. Two pred-
icates pi and pj are similar if: (1) they are defined on
the same attribute; (2) there exists a query qi that uses
predicates pi and pc and another query qj which uses
predicates pj and pc; and (3) pc is a selection predicate
that is defined on another attribute than the pi and pj

predicates [16].

Example. Table 3 shows a example of affinity matrix.

p1 p2 ... p5 ... pn

p1 20 0 10 0
p2 0 30 ⇐
...
p5 10 0 25 0
...
pn 0 ⇒ 0 5

Table 3: Sample predicate affinity matrix

3. Predicate clustering. This step exploits the graph-
ical algorithm proposed by Navathe et al. [15] for
vertical fragmentation, which has been been adapted
for horizontal fragmentation [16]. This algorithm in-
puts Aff and considers it as a complete graph, GAff .
Then, it forms a linearly connected spanning-tree. A
tree node represents a selection predicate pi in Aff(i, j)
and an edge e(pi, pj) an affinity value. The algorithm
detects and extracts a set of cycles C, where a cycle
ci ∈ C groups selection predicates sharing values in
Aff .

Example. Figure 3 shows a sample GAff that is build
from Aff(i, j). C = {c1, c2, ..., cz}, where z represents
the number of cycles. c1 = {p1, p3, p5}.

4. Compose predicate terms. Cycle set C is first eval-
uated to determine distinct common attributes in C

p
1

p
3

p
5

10

20=>

c
1

Figure 3: Predicate clustering example

predicates and construct a specific table called predi-
cate term schematic table. This table stores attribute
usage for each ci. Based on this table, predicate terms
ti are constructed. A predicate term ti constitutes an
horizontal entry in the predicate term schematic table
and covers all common attributes.

Example. Table 4 gives an example of predicate term
schematic table. Predicates in cycle c1 do not in-
clude attribute a2. c1 is hence divided to a set of
sub-cycle c1j . Each c1j sub-cycle contains predicates
from c1 and a predicate pj that includes attribute a2.
t1 = p1 ∧ p3 ∧ p5 ∧ p2 for j = 2 is an example of predi-
cate term.

a1 a2 ... ar

c1 1 0 1
c2 1 1 1
... 0 0 1
cz 1 1 1

a0 represents an attribute from dimension d and r is the
number of attributes in C.

Table 4: Predicate term schematic table

5. Candidate graph fragmentation. Each obtained
predicate term and an additional predicate, called ELSE,
form an horizontal fragment. The ELSE predicate is
the negation of the conjonction of all predicate terms.
It is added to ensure fragmentation completeness. To
ensure fragmentation disjonction, a set of minterms is
also created (Section 4.3.2).

Example. t1 and ELSE=¬p1 or ¬p3 or ¬p5 or ¬p2 are
predicate terms used to fragment Gdimensioncustomer .

4.4 Fact fragmentation
The Gfactsf

graphs are finally fragmented according to
horizontal fragments obtained by applying either the PC or
AB method on dimensions. The fragmentation of Gfactsf

graphs is achieved by semi-join operations based on a virtual
key reference. This key defines the relationships between
Gdimensiond

and Gfactf
graphs. It is explicitly defined by

the join qualification expression provided in Figure 4 and
consists of a conjunction of two path expressions. These
path expressions check whether nodes in Gdimensiond

graphs
correspond to nodes in Gfactsf

graphs.
We finally build an XML document that represents the

fragmentation schema, fragmentation schema.xml. Its cor-
responding graph, denoted Schema, is provided in Figure 5.
The root node, Schema, is composed of fragment elements

document(factsf .xml)/FactDoc/dimension[@dim-id=
document(dimensiond .xml)/dimension/Level/@id]

and

document(factsf .xml)/FactDoc/dimension[@value-id
=document(dimensiond .xml)/dimension/Level[@id

=@dim-id]/instance/@id]

Figure 4: Join qualification

describing the obtained fragments. Each fragment is identi-
fied by an @id attribute and contains dimension elements.
A dimension element is identified by a @name attribute
and contains predicate elements that store minterms used
for fragmentation.

Schema

fragment

dimension dimension

predicate@name

@id

@name

Figure 5: Fragmentation schema

5. EXPERIMENTS

5.1 Experimental conditions
In order to validate our proposal experimentally, we use

XWeB (the XML Data Warehouse Benchmark) [14]. XWeB
is based on the reference model defined in Section 2.2, and
proposes a test XML data warehouse and its associated
XQuery decision-support workload.

XWeB’s warehouse consists of sale facts characterized by
the amount (of purchased products) and quantity (of pur-
chased products) measures. These facts are stored in the
factssales.xml document and are described by four dimen-
sions: Customer, Supplier, Date and Part stored in the
dimensionCustomer .xml, dimensionSupplier.xml, dimension

Date.xml and dimensionPart.xml documents, respectively.
XWeB’s warehouse characteristics are displayed in Table 5.

XWeB’s workload is composed of queries that exploit the
warehouse through join and selection operations. We extend
this workload by adding queries and selection predicates in
order to obtain a significant fragmentation. Our workload
is available on-line 2. We ran our tests on a Pentium 2 GHz
PC with 1 GB of main memory and an IDE hard drive under
Windows XP. We use the X-Hive XML native DBMS 3 to
store and query the warehouse.

5.2 Experiments
Our experiments measure workload execution time, with

and without using fragmentation and separately evaluate

2
http://eric.univ-lyon2.fr/∼hmahboubi/Workload/workload.xq

3
http://www.x-hive.com/products/db/

Facts Number of cells

Sale facts 7000

Dimensions Number of instances

Customer 1000
Supplier 1000
Date 500
Part 1000

Documents Size (MB)

factssales.xml 2.14
dimensionCustomer .xml 0.431
dimensionSupplier.xml 0.485
dimensionDate.xml 0.104
dimensionPart.xml 0.388

Table 5: XWeB warehouse characteristics

the PC and AB primary fragmentation strategies (Section
4.3.2 and 4.3.3, respectively). The fragments we achieve
are stored in distinct collections to simulate data distribu-
tion. Each collection can indeed be considered as a distinct
node/site and can be identified, targeted and queried sepa-
rately. To measure query execution time over a fragmented
warehouse, we first identify the required fragments with the
Schema graph. Then, we execute the query over each frag-
ment and save execution time. To simulate a parallel exe-
cution, we only consider the maximum execution time. We
conducted two series of experiments.

5.2.1 First series of experiments
This series of experiments helps observe the impact of

data warehouse size and workload characteristics on frag-
mentation quality. For this purpose, we exploit three ware-
house and workload configurations (Table 6) in which we
vary warehouse size (i.e., the number of facts) and the num-
ber of workload queries and selection predicates.

Config. 1 Config. 2 Config. 3

Number of facts 800 800 4000

Number of queries 13 19 19
Number of join op-
erations

22 35 35

Number of predi-
cates

20 30 30

Table 6: Warehouse and workload configurations

Experiment results for configurations 1, 2 and three are
showed on Figures 6, 7 and 8, respectively. In these figures,
the X axis represents workload queries and the Y axis fea-
tures query execution time when no fragmentation is applied
on the warehouse, and when derived horizontal fragmenta-
tion is applied with PC and AB primary fragmentation.

For configuration 1, we obtain an average gain over no
fragmentation of 72.95% with PC and 76.32% with AB. For
configuration 2, in which the number of queries is increased
over configuration 1, PC improves query execution time by
74.53% and AB by 78.32% on average. Finally, in config-
uration 3, we increase the number of facts and obtain an
average gain of 62.59% with PC and 80,17% with AB.

These results confirm that fragmentation improves query
performance. They also show that AB provides more bene-

Query

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

No fragmentation PC AB

0,00

10000,00

20000,00

30000,00

40000,00

50000,00

60000,00

70000,00

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6: Configuration 1 results

0,00

10 000,00

20 000,00

30 000,00

40 000,00

50 000,00

60 000,00

1 3 5 7 9 11 13 15 17 19

Query

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

No fragmentation PC AB

Figure 7: Configuration 2 results

fit than PC in all our test cases. We think this is thanks to
AB’s use of query frequencies to group in the same fragment
all dimension instances and facts needed to perform a given
join operation. In addition, we notice that PC fragmenta-
tion gain significantly declines in configuration 3, i.e., when
warehouse size increases. We think this is due to the num-
ber of fragments produced by PC, which is greater than that
obtained with AB (159 and 119, respectively). To further
investigate this issue, we conduct a second series of exper-
iment where we further observe PC and AB gain variation
with respect to warehouse size.

5.2.2 Second series of experiments
This series of experiments helps aim at observing the effect

of warehouse size on fragmentation gain. We vary warehouse
size from 1000 to 5000 facts and measure the fragmentation
gain achieved when using PC and AB primary fragmenta-
tion. The results of these experiments are plotted in Fig-
ure 9, whose X axis represents the number of facts and Y
axis the corresponding gains obtained by PC and AB pri-
mary fragmentation.

Experiment results show that fragmentation gain declines
when warehouse size decreases with both primary fragmen-
tation methods. This is expected, since fragments become
bigger and bigger, inducing a higher and higher scan cost
when performing join operations. However, we also observe
that performance degradation is reasonably slow for AB,
while it is much steeper for PC. We believe that this is be-
cause AB builds fragments containing data required to per-
form the most frequent join operations in W , while storing
less frequently accessed data in the ELSE fragment. PC

0,00

100 000,00

200 000,00

300 000,00

400 000,00

500 000,00

600 000,00

1 3 5 7 9 11 13 15 17 19

Query

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

No fragmentation PC AB

Figure 8: Configuration 3 results

does not take this aspect into account. It just groups in
the same fragment data accessed by one or more queries
simultaneously. It also uses minterms that may distribute
data required to answer a single query in different fragments,
which multiplies reconstruction joins when accessing data.

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,00 1 000,00 2 000,00 3 000,00 4 000,00 5 000,00 6 000,00

PC AB

Figure 9: Fragmentation gain vs. warehouse size

6. CONCLUSION
In this paper, we have adapt, to XML context, and com-

pare the two prevailing primary horizontal fragmentation
methods from the relational world, namely predicate con-
struction and affinity-based fragmentation. We have exper-
imentally confirmed that derived horizontal fragmentation
helped improve query response time significantly. Moreover,
we also showed that affinity-based fragmentation clearly out-
performed predicate construction in all our experiments,
which had never been demonstrated before as far as we
know, even in the relational context.

The natural follow-up of this work is to distribute frag-
mented XML warehouses on a data grid. This raises several
issues that include processing a global query into subqueries
to be sent to the right nodes in the grid, and reconstructing
a global result from subquery results. Properly indexing the
distributed warehouse to guarantee good performance shall
also be very important.

7. REFERENCES
[1] A. Andrade, G. Ruberg, F. A. Baião, V. P.

Braganholo, and M. Mattoso. Efficiently Processing

XML Queries over Fragmented Repositories with
PartiX. In Current Trends in Database Technology,
EDBT 2006 PhD Workshop, Munich, Germany,
volume 4254 of Lecture Notes in Computer Science,
pages 150–163. Springer, 2006.

[2] L. Bellatreche and K. Boukhalfa. An Evolutionary
Approach to Schema Partitioning Selection in a Data
Warehouse. In 7th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK 05),
Copenhagen, Denmark, volume 3589 of Lecture Notes
in Computer Science, pages 115–125. Springer, 2005.

[3] K. S. Beyer, D. D. Chamberlin, L. S. Colby, F. Ozcan,
H. Pirahesh, and Y. Xu. Extending XQuery for
Analytics. In ACM SIGMOD International
Conference on Management of Data (SIGMOD 05),
Baltimore, Maryland, pages 503–514. ACM, 2005.

[4] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and
M. Jain. XPath lookup queries in P2P networks. In
6th ACM CIKM International Workshop on Web
Information and Data Management (WIDM 04),
Washington, USA, pages 48–55. ACM, 2004.

[5] S. Bose and L. Fegaras. XFrag: A query Processing
Framework for Fragmented XML Data. In 8th
International Workshop on the Web and Databases
(WebDB 05), Baltimore, Maryland, pages 97–102,
2005.

[6] D. Boukraa, R. BenMessaoud, and O. Boussäıd.
Proposition d’un Modèle physique pour les entrepôts
XML. In Atelier Systèmes Décisionnels (ASD 06), 9th
Maghrebian Conference on Information Technologies
(MCSEAI 06), Agadir, Morocco, 2006.

[7] O. Boussäıd, R. BenMessaoud, R. Choquet, and
S. Anthoard. X-Warehousing: An XML-Based
Approach for Warehousing Complex Data. In 10th
East-European Conference on Advances in Databases
and Information Systems (ADBIS 06), Thessaloniki,
Greece, volume 4152 of Lecture Notes in Computer
Science, pages 39–54. Springer, 2006.

[8] A. Datta, K. Ramamritham, and H. M. Thomas.
Curio: A Novel Solution for Efficient Storage and
Indexing in Data Warehouses. In 25th International
Conference on Very Large Data Bases (VLDB 99),
Edinburgh, UK, pages 730–733. Morgan Kaufmann,
1999.

[9] M. Gertz and J.-M. Bremer. Distributed XML
Repositories: Top-down Design and Transparent
Query Processing. Technical report, Departement of
Computer Science, University of California, USA,
2003.

[10] M. Golfarelli, D. Maio, and S. Rizzi. Vertical
fragmentation of views in relational data warehouses.
In Settimo Convegno Nazionale su Sistemi Evoluti Per
Basi Di Dati (SEBD 99), Como, Italy, pages 19–33,
1999.

[11] W. Hümmer, A. Bauer, and G. Harde. XCube: XML
for data warehouses. In 6th International Workshop
on Data Warehousing and OLAP (DOLAP 03), New
Orleans, USA, pages 33–40. ACM, 2003.

[12] A. Koreichi and B. L. Cun. On data fragmentation
and allocation in distributed object oriented
databases. Technical report, PRiSM, Versailles
University, France, 1997.

[13] H. Ma and K.-D. Schewe. Fragmentation of XML
Documents. In XVIII Simpósio Brasileiro de Bancos
de Dados, Manaus, Amazonas, Brasil, pages 200–214.
UFAM, 2003.

[14] H. Mahboubi and J. Darmont. Benchmarking XML
data warehouses. In Atelier Systèmes Décisionnels
(ASD 06), 9th Maghrebian Conference on Information
Technologies (MCSEAI 06), Agadir, Morocco, 2006.

[15] S. Navathe and M. Ra. Vertical partitionning for
database design: A graphical algorithm. In ACM
SIGMOD International Conference on Management of
Data (SIGMOD 89), Portland, Oregon, pages
440–450, 1989.

[16] S. B. Navathe, K. Karlapalem, and M. Ra. A Mixed
Fragmentation Methodology for Initial Distributed
Database Design. Journal of Computer and Software
Engineering, 3(4), 1995.

[17] A. Y. Noaman and K. Barker. A Horizontal
Fragmentation Algorithm for the Fact Relation in a
Distributed Data Warehouse. In 1999 ACM
International Conference on Information and
Knowledge Management (CIKM 99), Kansas City,
USA, pages 154–161. ACM, 1999.

[18] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems, Second Edition. Prentice-Hall,
1999.

[19] S. Paparizos, Y. Wu, L. V. S. Lakshmanan, and H. V.
Jagadish. Tree Logical Classes for Efficient Evaluation
of XQuery. In SIGMOD International Conference on
Management of Data (SIGMOD 04), Paris, France,
pages 71–82, 2004.

[20] B.-K. Park, H. Han, and I.-Y. Song. XML-OLAP: A
Multidimensional Analysis Framework for XML
Warehouses. In 7th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK 05),
volume 3589 of Lecture Notes in Computer Science,
pages 32–42. Springer, 2005.

[21] J. Pokorný. XML Data Warehouse: Modelling and
Querying. In 5th International Baltic Conference
(BalticDB&IS 06), Tallin, Estonia, pages 267–280.
Institute of Cybernetics at Tallin Technical University,
2002.

[22] L. I. Rusu, J. W. Rahayu, and D. Taniar. A
Methodology for Building XML Data Warehouse.
International Journal of Data Warehousing and
Mining, 1(2), pages 67–92, 2005.

[23] P. Wehrle, M. Miquel, and A. Tchounikine. A Model
for Distributing and Querying a Data Warehouse on a
Computing Grid. In 11th International Conference on
Parallel and Distributed Systems (ICPADS 05),
Fuduoka, Japan, pages 203–209. IEEE Computer
Society, 2005.

[24] M.-C. Wu and A. P. Buchmann. Research Issues in
Data Warehousing. In Datenbanksysteme in Buro,
Technik und Wissenschaft, pages 61–82, 1997.

[25] Y. Zhang and O. Orlowska. On fragmentation
approaches for distributed database design.
Information Sciences, 1(3):117–132, 1994.

